XINJE

XS series PLC
User manual [software] (Codesys)

Wuxi XINJE Electric., Ltd.

Data No. PS04 20220516EN 1.1

Basic description

*

*

*

Thank you for purchasing the Xinje XS series programmable controller.

This manual mainly introduces the software of XS series programmable controllers.

Before using the product, please read this manual carefully and programming on the premise of fully
understanding the contents of the manual.

Please deliver this manual to the end user.

Notes to users

*

Only operators with certain electrical knowledge can conduct wiring and other operations on the product.
If there is any unknown place, please consult our technical department.

The examples listed in the manual and other technical data are only for users' understanding and
reference, and do not guarantee certain actions.

When using this product in combination with other products, please confirm whether it conforms to
relevant specifications and principles.

When using this product, please confirm whether it meets the requirements and is safe.

Please set up backup and safety functions by yourself to avoid possible machine failure or loss caused
by the failure of this product.

Statement of responsibility

*

Although the contents of the manual have been carefully checked, errors are inevitable, and we cannot
guarantee complete consistency.

We will often check the contents of the manual and make corrections in subsequent versions. We
welcome your valuable comments.

The contents described in the manual are subject to change without notice.

Related manuals

For the hardware related and advanced motion control instruction application of XS series PLC, please consult the
following manuals.

« XS series motion control manual
« XS series hardware manual

~

WUXI XINJE ELECTRIC CO., LTD. All rights reserved
This material and its contents shall not be copied, transmitted or used without explicit written permission. Violators
shall be liable for the losses caused. All rights provided in the patent license and registration including utility

modules or designs are reserved.

November 2021 /

Catalog

1. CODESYS OVERVIEW AND INSTALLATION . ..ottt s 1
1-1. CODESYS OVERVIEW ...utiutiittiueetestesteestestesseaseestessesseessessesbesseasseabesbeasseabesbeebeessenbeebeeRe e st e ebesbeanbebenbenbeennenbe e 1
1-2. CODESYS SOFTWARE ARCHITECTUREc.utttettetestesteestestestesseessestessesssessesbesseassesbesbesseesseseessssssessessessesssesseses 1

I N D Y= o]] 4T - P 2
1-2-2. COMMUNICALION TAYEFviitiieieieete sttt b e bbbt bbb b e b e st sbennens 2
I T D ot - PSS 2
1-3. XINJE PLC SUPPORTED BY CODESYSctttiteuiattstestesteseste st steeese st st ssesesbesbesbe e abesbesbesbestsbesne b seenesnesnennenes 3
1-4. CODESYS INSTALLATION AND UNINSTALLATION ...vitiuieueatesteeesentestesseseesessessessesessessessessesessessessessssessesseseenes 3
1-4-1. SYSEEM FEOUITEIMENTS ...evviveetiesiestesteeee e steste et estestesse et e stestesseeseesbesteeseeseesbesseeseeseesbeaneesaesbesseeneeneenras 3
1-4-2. ODLAIN thE COUBSYSnviuieiiiteiteiieiiete sttt sttt sttt b bbbt st e b b e s et esbesbe e esesbesbennenes 3
1-4-3. CodESYS INSTAITALIONc.eoviiiiieiieiiee bbb ettt b e bbb 3
1-4-4. Codesys VErsion MANAGEMENT.......viueuiiereeierestesreetesteseeeeeseestesseeseeseessesseeseessessesseessessessesseessenses 3
1-4-5. Codesys UNINSTAHATIONcccorieiieiiieieese e e et sb e s 3
1-5. CODESYS HELP ..tiuiitieiiitete ettt stttk b bbbt bbbt bt s bt bbb £ b b e b e bt e bbb e b e e b e e b b e bt e bt eb e b e e eb e b b e enes 4

2. CODESYS STRUGCTUREooitiiiiititeee sttt bbb b bbb bt eb e b bt et b e b 5

2-1. SOFTWARE MODEL ...c.tttutiutitesteestestestesssestestesteessessesbesseessesbesseessesbesbeaseesbesbeebeesbesbesbesbeesbeabesbeeseenbesbesneenbenben 5
2-1-1. Software model INTFOAUCTIONoouiiiieiii bbb 5
2-1-2. Characteristics of SOftware MOlcoooiiiiiie e 6

22, DEVICE ... ittt b e bbb bt b h e b e ke R £ oAb b e Re SR e e b Re Rt R e Re R e e R e e b e b bt e bR nRe e e e benre 6
F e B LY ol T T =T 0 T=T o 7
B A B 1=V (ol o) (o) SOOI 9

2-3. APPLICATION ...ttt etttk sttt b e b e s ekt b bbb bt b b e R e eb £ A b h b e b £ b e e b b e R e e b e e bt e b e b eb e e b e nb e b e s e et e et e nb e e ens 10
230 TASK .ttt bbb b E R R R R bR R R R bRt b e R b e bt b e nn s 10
2-3-2. LIBFAIY FIIBS ...ttt bbbttt bbb b enes 17
B T oo 1130 L1 o SRS 19

o 1 SRS 19
e I @ 10 (1T (U RSP TR 20
2-2-2. FUNCHION ...ttt bbb bbb bbbt b bbbt b e b b et e bbb et e bt et b e 21
2-4-3. FUNCLION DIOCK.......ciiitiiticicc et st b et esbeereenre st 23
Y (a0 = o [OOSR 25

2-5. APPLICATION OBUIECT ...tiutiuteuiatestesteseetestesseseeseatessesseseesessessesbeseabesbesbe e eb e abenbe e b es e ebeabeab e b ebe et e nb e s b e st ebenbenbe e ens 26
P BT Vo T o] [1 = Tod T o PSSP 26
2-5-2. PersiStent VArIADIEooiiii e 27
P T D L WU 1) 1Y L OSSP 27
2-5-4. Global NEIWOIK VAriahIESccooiviiiiiiciccc ettt sreare s 27
2-5-5. RECIPE MANAGETc.uiiteeteerieiti st ete st s e e st e st e s e e e st e s tesseese e testesse e s e e tesbeaseeseesaesteeseestestesreeneenrenrens 28

3. BASIC INSTRUGCTIONS.......c ottt ettt sttt se s be st st e et esbe st e e reebesb et eneebesbenbeneenesteseeneenes 29

3-1. BIT LOGIC INSTRUCTIONSc.ttttuteueautstestessesessessesteeesessessesseseasessessessessasesaessesesessesaessesessessessessesessessessensns 29
3-1-1. BaSIiC [0QIC INSIIUCLIONScviiveeieieiie sttt ae s besse e e e besreenaenrenrens 29
3-1-2. Set priority and reset priority trigger INSITUCTIONSccoveririiiiie e 29
KR T B T L WU] 1oL RSN 29

3-2. TIMER INSTRUCTIONS .. .ettettsteteseeseesessessesseseasessessessasessessessesessessessessessssessessessessssessessessesessessessesessessessensans 30

3-3. COUNTER INSTRUCTIONS ...uttttetereesestesseseeseesessessessesessessessesessessessessessssessessessesessessessessesessessessessssessessensens 30

3-4. DATA PROCESSING INSTRUCTIONScttteuteueatesteteeesestessesseseesessesaessesessesaesaessesessesaeseesessessessessesessessessensns 31
3-4-1. SeleCt OpPeration INSTFUCTIONSc.voeirieirieersieet ettt bbbt bbbt 31
3-4-2. COMPAIE INSLIUCTIONSvvevviiicieeie ettt e st e be e se et e s besteeseesbesbesreeneenrenrens 31

K T 11 A [1Y« 0T A o o R 32

3-5. OPERATION INSTRUCTIONttutiutiuiettatesesesestessesseeesesse st ssesease b s b essabeabe b s st abenb b e ebeab e s b nne e abennenr e 32
3-5-1. ASSIGNMENT INSTIUCLION........oviiiicieic ettt be e esaesbesreeaesbesreeneenrenrens 32
3-5-2. AFTtNMETIC OPEIALION.eiiiiiieeie sttt sttt be s tesre et esaesbeeseesaesbesreeneeneenrens 32
3-5-3. Mathematical Operation INSrUCLION...........cccoiviiiiiiieeer e 33
3-5-4. Address 0peration INSIIUCTION.coueiiiiiieiec e b e b 33
3-5-5. Data CONVEISION INSIIUCTION.ccveiiiiiieieie e seeie et eee st sressaeaesresresneeneenrens 34

4. SPECTAL FUNGCTIONS......ce ittt b e bbbt bbbt bbb e st b e s b e s b et e bt sbesbe e e st ebesbenb e e 35

4-1. HIGH SPEED COUNTING -..ttuttutettttteteseettstesteseesesbesseseeseabessesseseebeabesb e b ese ek e a b e s b e s s eb e abenb e b esb ek e nb e e b e ebenbenb e 35
I U g Vo o 0 =] T ST 35
4-1-2. Function BIOCK INEFOTUCTIONoouiiiiiiie et bbb e 35
R I o T 10 4T T 7] X T S 38
4-1-4. APPIICALION BXAMPIE......iiiiiiieiiie et b e et b e bbb b bt bbb e 38

4-2. EXTERNAL INTERRUPT ..ttttttiitteittesttesteesteesteesseesseesseesssesssesseesssesssesssesssessseaseeassessseassessbeanbeenbeanseenseanseenseenes 39
e I U Tox o 0 =] YT ST 39
4-2-2. APPLICALION BXAMPIE......iitiiirieie ettt bbb b et b et st sb et b e e 39

B-3 PLEC SHELL. ...ttt bbb bbb b bbb b bbb b bbb e 40
I U Tod o 0 =] YT S 40
R O 11 1 - Ta o I 1] SRS 40
R I A o] o] o= U To] (=D = 1] S 40

S O 0 Lo} PSSR 45
4-4-1. FUNCLION OVEIVIBW.c.viitiiiiiie ittt sttt ettt ettt beese et esbesbe e st e st e s beeae et e s besbeeneesbesbesteensenaennas 45
AN o] o] o= Ao (=D s o] S 46

5. CODESYS PROJECT EXAMPLESottt st sttt bt sne s 48

5-1. BASIC PROGRAMMING OPERATIONcuvitiuteutatesteteseesestessesseseesessesaessesessessessessesessessesbesessessesseseesessessessessans 48

B2, I/O MAPPING ...ttt ettt sttt b e bbbt b e b bt e b e bt e b e b e h £ e bt A E e b b e b £ e bt e b b e e ekt R bt n e b e b e 50

5-3. TASK CONFIGURATION.....cuttetteteesteeteesseesseesseesseesseesssessesssessssssssessssssssssssssssssssssssssssssssssssssessssesssssssessenssees 51

5-4. PROGRAM DOWNLOAD/IREADviuiitiitesteiestatestesteseesessestesbeseesesbesaestestabesbesbe e eseabesbesbeseebeabesbesbeneabesbenbe e e 54
ORI O 101 | [OSSP 54
R A oo [T (011 1 (o o ISP 55
5-4-3. SOUrce COUE AOWNIOAAccueiiieieiecic ettt e et teesa e e sresreeneeneenrens 56
R T Ta o (0] -V PRSP 56

5-5. PROGRAM DEBUGGING......cucitititeuietistestesieseate st st eesestestestesessesbesbe b eseabesbeabe e ebeabesbesbe e ebeabesbesbeseebesbenben e 57
ST I (- OSSR 57
5-5-2. Program AEDUGGING .. .cvovieriiieiie ettt bttt bttt ne et n b nneneenes 58

B8, SIMULATIONutitiettte ettt ettt ettt b e st b e b b et e bt bt e b b et e b e e b A b b e s £ e b A b A b e e b £ e b e e b b e R e e b e eb e s b b e bt e besbenb e 59

5-7. PLC SCRIPT FUNCTION ... tettettstesteseetestesteseeseeseseesteseesessessesseseasessesaessesessessessessesessessessessesessessessesessessessensans 59

6. INDUSTRIAL FIELDBUS TECHNOLOGYooiiiiiiieieiee ettt sttt sttt sneneenis 61

6-1. MODBUS COMMUNICATION ...c.viutiueiuiitesteieseatestesteeesestessesseseasesaesseseesessesaesseseasesbesbesseseasesbesbeeesesneseeseens 61
B-1-1. MODBUS OVEIVIEW........ocuiiiiitietieie ettt ettt ettt et ettt s be et st et e e ae et e sbesbeeraesbesbesbeenaesresrens 61
6-1-2. Parameter CONFIGUIALIONcociiiiiii e b e re e naenre s 62

B-2. MODBUS TCP ...ttt bbb bbbt b bbbt b e b b et e bt e bbb e bt e b e e b b et e bt sbesbeneens 65
6-2-1. MODBUS TCP OVEIVIBW.oviiiiiiiitiitectecte ettt ettt sttt s ettt e s beete et e sbesbeebeebesbesbeensesresrens 65
6-2-2. Parameter CONFIGUIALIONcociiiiiii ittt re e e srenre s 66

SR T 1 O SRS 69
6-3-1. OPC UA COMMUNICALION OVEIVIEWvecuiiiiitiitectieite ittt sttt sttt sbe b b sbesreenae v srens 69
6-3-2. Parameter CONFIGUIALIONcocieiiii e a e sre e e naenre s 69

B4, FREE FORMATeutittetiitestesteteetesteteseesestesseseeseesessessessesestessesseseasestesse e eseabenbe e eseaseabenbe b eneebenbe st eneesenbeneeneenes 71
6-4-1. Free FOrMAt OVEIVIBWoouviiiiecie ettt be s et st be s e besbesreeneentenrens 71

6-4-2. Parameter SEIINGcceeieieiireeie ettt ettt e e bbb e b b nbe st b reeneenrenre s 71

LR TN o] o] [[o%: 11 o] SOOI 72

B-5. TICPIIP .ttt et b bbbt b e b e b oAbt SR e R £ R £ R e b b oA £ Rt R b b e Rt b e b b e bbb e ens 73
B-5-1. TCP/IP OVEIVIBWcuiiiiiiteiteieie ettt bbb bbb bbb bbbt b b e bt et nne s 73
6-5-2. Parameter CONFIGUIALIONoviuiiiieiciie bbbttt 73
B-5-3. APPIICALION ... bbb b bbb bbb b 73

7. COMMON PROBLEMS AND SOLUTIONSottt 75
7= PACKAGE ...ttt ettt sttt sttt ekt e st bt b e b et e bt e ke e b e £ e Rt ekt S b h e R £ e R e e R e bt b oA £ e R e e Ee bR eReeRe b bttt b e neens 75
7-1-1. Package NAMING FUIEoviiiiieie ettt e et tesre et saesbeeseesaesbesreeneenrenrens 75

A O o] -V T 1o 1 Vo TSP 75
7-1-3. Package INSLAIIALION.ooiiiiiei bbbt sb et sb e 75

7-2. XS SERIES PLC FIRMWARE UPDATEueiuttittittstetetesestessessesessestessesseseasessesbessasessessessesessesnesbeseesesnesneneens 76
7-2-1. FIrMWare NAMING FUIE ..ot bttt sttt b 76
7-2-2. Obtain the FIMMWEIEcoiiiie ettt b et b e bt b et sbeseens 76
7-2-3. Firmware installation and PreCaUtioNScooveieieieneee e see et eseenrens 76

7-3. XS SERIES LOCAL EXPANSION MODULEceittitiaieetestesteeseestestesteeseesbesbesseesesbesbesssessessessesssessessessessesssesss 77
7-4. XS SERIES REMOTE EXPANSION MODULEucittitiiiuietesteste ettt sttt sb et sbe st b sbese bbb seebesnesnesnens 78
T-5. IML_TCP ettt bbbt bt bbbt b bR bt A h e H e b e R e R R R £ Rt AR bR R bt h e bt b e b ne e 81
7-5-1. UPPEr COMPULET SELLINGS ...vevvirietiiierierietise sttt sttt sttt bbb et b b enesbe b seenes 81
ST A =] TSR 82

T-8. DIAL CODEtitiiuieiteite st tte st sttt sb e it et b bt e st e b e s bt e bt e s e b e e b e eh £ e R e e b e A b e e b e e s b e eb e e b e e b b et e e b e nb e eh e e b e e b e sbeeneenbenrs 84

1. Codesys overview and installation

1-1. Codesys overview

The Codesys programming platform of German 3S company is selected for the Xinje XS series controller.
Codesys is an industrial information technology, automation programming software and intelligent manufacturing
equipment programming development platform, which provides global users with an open, flexible, stable and
reliable series of advanced industrial information technology, software products and industry solutions. At present,
about 350 control system manufacturers worldwide are Codesys users. The platform fully supports PLCopen
specification and provides all editors defined and supported by IEC international standards for automated
application development.

1-2. Codesys software architecture

Codesys software has powerful functions, high reliability and good openness. It integrates PLC programming,
visual HMI, safety PLC, controller real-time core, fieldbus and motion control. It is a complete automation
software. Codesys software can be divided into three layers in terms of architecture: application development
layer, communication layer and device layer, as shown in the figure:

Editor / compilation I l XS series hardware and l Motion I |visualization|
Development debugger bus configuration control
layer
(IDE) | CODESYS Automation Platform |
FAN
V CODESYS OPC Server
Communication
layer CODESYS Gateway Server
FAN
\/
Hardware | CODESYS Runtime System
device layer
(XS series) - OIS N T Equioment taraet N
| IEC 61131-3 | Network service | 1 Eadipment arget
application T 1 visualization |

1-2-1. Development layer

Codesys Development System (It has perfect online and offline programming functions), compiler and its
accessories, visual interface programming components, etc, at the same time, the optional motion control module,
safety module and other components make Codesys more complete and powerful.

B Editor

Codesys provides six programming languages defined by IEC61131-3: function block diagram (FBD), ladder
diagram (LD), instruction list (IL), structured text (ST), sequential function diagram (SFC) and continuous
function diagram (CFC).

B Compiler

Responsible for converting the application program in Codesys into machine code and optimizing the
performance of the programmable controller. When users input wrong application code, they will immediately
receive syntax error warnings and error messages from the compiler, so that programmers can quickly make
corresponding corrections. Users can use different Codesys based hardware devices (systems) for engineering
development without changing the programming mode.

B XS series hardware and bus configuration

For XS series hardware devices and different fieldbus protocols, this part is responsible for setting corresponding
parameters in Codesys.

B Visual interface programming

Visual programming (HMI) can be realized in Codesys, and the system has integrated a visual editor.

B Motion control module

The motion control function has been integrated into Codesys to form the softmotion (CNC) software package.
The toolkit based on PLCopen can realize single axis and multi-axis motion, electronic cam transmission,
electronic gear transmission, complex multi-axis CNC control, etc.

1-2-2. Communication layer

The communication between the application development layer and the hardware device layer is realized by the
gateway server in Codesys, in which the OPC server is installed.

B Codesys gateway server

It functions between the application development layer and the hardware device layer. It can use TCP/IP protocol
or CAN and other bus to realize remote access. It is an integral part of Codesys development kit.

B Codesys OPC server

For the Codesys based controller, it does not need to consider the hardware CPU. It has integrated and realized the
multi-client function of OPC v2.0 specification, and can access multiple controllers at the same time.

1-2-3. Device layer

XS series PLC is the hardware equipment layer of the system. Codesys runtime system has been installed, which
can meet the real-time response and accurate control requirements of the industry. At the same time, functional
expansion can also be realized by using optional components of Codesys, such as Codesys target visual
programming module or network visual programming module.

1-3. Xinje PLC supported by Codesys

XSDH series, XS3 series, M series and visual industrial computer.

1-4. Codesys installation and uninstallation

1-4-1. System requirements

Hardware and software requirements

+ windows 8 or windows 10 64-bit OS
+ Memory 4GB and above
¢ Hard disk space above 12GB

1-4-2. Obtain the Codesys

Download from the official Codesys store, website is http://www.Codesys.cn/.

1-4-3. Codesys installation

1. Basic requirements for hardware and software

Since Codesys v3.5 software is relatively large and has a lot of processing information, it has certain requirements
for PC hardware and software. The required minimum configuration and recommended configuration are shown
in the following table:

Item Minimum configuration Recommended configuration
oS Windows 2000 Windows10
(Windowns XP/Windows Vista/Windows7)
Memory 4GB 4GB
Hard disk 12GB 12GB
CPU Pentium V, Centrino>1.8GHz, Pentium V, Centrino>3.0GHz,
Pentium M >1.0GHz Pentium M>1.5GHz

2. Installation

Run Codesys 64 3.5.16.0.exe as an administrator to enter the installation, and the installation assistant will guide
the user to install throughout the installation process.
Note: It is not recommended that users install the software on disk C.

1-4-4. Codesys version management

The upper computer of Codesys supports the installation of multiple versions at the same time. The compiler also
supports the installation of multiple versions. Version 3.5.16.40 is recommended. Using other versions of the
upper computer may cause abnormal use of some functions.

1-4-5. Codesys uninstallation

The Codesys programming software can be uninstalled through the windows control panel. Open control panel - >
Add / remove programs, select Codesys, click the delete button, and complete the uninstallation according to the
prompt.

http://www.codesys.cn/

1-5. Codesys help

After opening the Codesys application, users can find the help menu and click “contents” to open the online help.
Users can quickly find the required content according to the index or search keywords, as shown in the figure:

' CODESYS Online Help € Q@Engsh- [E35170~

» CODESYS Development System

» Fieldbus Suppart

» Runtime Systems, OPC UA Server
» CODESYS Application Composer
» CODESYS Store

» CODESYS Visualization

¢ CODESYS Installer

» Libraries

Glossary

L

Scripting Engine
» CODESYS Automation Server
Add-ons

2. Codesys structure

2-1. Software model

2-1-1. Software model introduction

The software model of Codesys describes the basic software elements and their relationships, which are expressed
in a hierarchical structure. Each layer contains many characteristics of its underlying layers, and its internal
structure is shown in the following figure. Among them, the software elements include: equipment, application,
task, global variable, access path and application object. They are the software foundation of modern soft PLC.
The software model is consistent with the software model of IEC 61131-3 standard.

Devices
Task 1 Task 2 Task 3 Task 4
Program P1 Progra Program P4
FB3| |FB4
\

Global direct address variable

Access path
A

Y
Communication

function

The software model describes how to decompose a complex program into several small manageable parts in
principle, and there is a clear and standardized interface method between the decomposed parts. The software
model describes how a programmable controller can run several independent programs at the same time, and how
to fully control the program execution.

B Devices

At the top layer of the model is "equipment", which can be equivalent to all the software required by a PLC. For
large and complex application systems, such as the automation of the whole product line, multiple PLCs may be
required for online communication. It is necessary to realize bus communication between one PLC and multiple
other equipment interfaces. At this time, "equipment” can be understood as a specific type of control system,
which includes hardware devices, processing resources, 1/0 address mapping and system memory storage capacity,
that is, it is equivalent to a PLC.

B Application

In the PLC system, the equipment combines all "applications" into groups to provide a means of data exchange for
"applications”. In each device, there are one or more “applications", which are located in the second layer of the
software model. "Application” not only provides a support system for running programs, but also reflects the
physical structure of PLC and provides an interface between programs and PLC physical I/O channels.

The application is allocated in the CPU of a PLC, so the application can be understood as a microprocessor unit in

5

a PLC. Global variables defined within an application are valid within the application. The main members of the
application include global variables, tasks, and program organizational units (POU).

B Access path

The main function of access path is to link global variables, direct representation variables and input/output
variables of program organization unit to realize information storage. It provides a method to exchange data and
information between different applications. Variables in each application can be accessed through other remote
configurations.

B Communication function

Provide communication with other systems, such as other programmable controller systems, robot controllers,
computers and other devices, for program transmission, data file transmission, monitoring, diagnosis, etc.
Generally, communication methods conforming to international standards (such as RS232, RS485) or industrial
field buses such as CANopen, EtherCAT, MODBUS, Ethernet/IP, DeviceNet, etc. are adopted.

2-1-2. Characteristics of software model

The Codesys software model has the following features:

+ Codesys software model can load, start and execute multiple independent programs in one PLC at the
same time.

+ Codesys software model can realize full control over program execution. Through the standard task
mechanism, the PLC system can fully control the program execution. The traditional PLC program can
only scan the execution program in sequence, and can not execute a certain program regularly according
to the actual requirements of the user. The task mechanism in the software model allows different parts
of the program to execute in parallel at different times and at different rates, which greatly expands the
application scope of PLC.

+ Codesys software model is an international standard software model, which can adapt to different PLC
structures. It is not only for specific PLC system, but has strong applicability. It is suitable for both
small PLC systems and large distributed systems.

+ Codesys software model supports the reusability of program organization unit: software reusability is an
important advantage of Codesys.

o Codesys software model supports hierarchical design: a complex software can be decomposed into
manageable program units through layer by layer.

2-2. Device

The device represents a specific target, that is, the hardware object, which is located at the top of the Codesys
software model. The hardware object can be a controller, a fieldbus site, a bus coupler, a driver, an input / output
module or a touch screen. Each device is defined by a "device description™ file, which is installed in the Codesys
native system for insertion under the device tree (the "device tree" here represents the tree list in the device
window). The device description document determines the relevant configuration, programmability and
interconnection with other devices. Device is a structural element, which is located at the top level of the software
model. It is a large language element inside the software.

2-2-1. Device management

The management of equipment includes the addition of equipment, the management of installation package and
the management of equipment library.

1. Add device
When creating a new project, a dialog box will pop up automatically, as shown in the following figure. You can

select to create an empty project or a standard project in the template option. When selecting a standard project,
you need to select the actual connected hardware device.

You are about to create a new standard project. This wizard will create the following objects
within this project:

- One programmable device as specified below

- A program PLC_PRG in the language specified below

- A oyclic task which calls PLC_PRG

- A reference to the newest version of the Standard library currently installed.

Device XS3-26T4 (Wuxi Xinje Electric Co.,Ltd.)

PLC PRGIin Structured Text (ST)

Click OK to get the following device tree.

Devices > @ X
=3 Untitled2 v
= [Device (XS3-26T4)
= B PLC Logic
-O Application

m Library Manager

- [E] PLC_PRG (PRG)
- (@ Task Configuration
‘@ MainTask
) PLC_PRG
----- "3 SoftMotion General Axis Pool
----- "2 Local High Speed IO
----- "2 Local High Pulse

----- 2 Local Extend Module

2. Package manager

All "devices" must be installed in the "package manager" in advance. The package manager can be selected in the
"tools™ menu, and users can add or delete packages.

Different hardware configuration parameters are required for different hardware devices. The parameters that must
be configured include code generator, memory management, PLC function, I/0 module configuration. In addition,
the library, gateway driver, INI files for error messages and relevant information of PLC browser must be linked.
In addition, the package integrates special functions, including corresponding library files, device description files,
etc.

The package manager installation process for this product is as follows:
7

Open "tools" and select "package manager".

Click "Install" and find the corresponding installation package in the directory. This example uses XJ_
XS3.package.

Click OK, the installation is successful, and the "XJ_XS3" icon will be displayed in the package manager, as
shown in the following figure:

Currently Installed Packages
Sortby | Name v Install...
Name Version Installation date Update info License infc| Uninstall...
& CODESYS Automation Server Connector 1.14.0.0 6/28/2022 Free version 1.25.0.0 available Mo license re|
Details...
& CODESYS SoftMotion 4.9.0.0 6/28/2022 Free version 4.11.0.0 available No license re| =
B x-xs3 1.0.0.0 6/28/2022 No license re|
& XSDH-60A32 1.0.0 6/28/2022 No license re| Updates
Search Updates
Download...
‘CODESYS Store
Rating...
CODESYS Store
< >
[] Display versions Search updates in background Close

3. Device library management

The device library is the operation that the user needs to do when adding or deleting hardware device information.
The device library is the database of the device. All data after installation is imported into the user's local system
for Codesys development. The device library dialog box is shown in the following figure:

System Repository v/ Edit Locations. .

(C:\ProgramData\CODESYS\Devices)

Installed Device Descriptions

|Str'|ng for a ful text search Vendor

Mame Vendor Version Description Uninstall
e ﬁ Miscellaneous
Export..
+&i Fieldbuses

+ (5} HMI devices

o-(@ pLcs

+- &P SoftMotion drives

Details...

The device library can be used to add all hardware devices. After importing the corresponding files in this option,
the corresponding data can be generated in the local system for easy calling in the project. The device that can be
added include the supplier's PLC, softmotion motion control equipment (encoder, driver, etc.), fieldbus, special
interface and other equipment.

The device description files that can be added to this product include the device description files of the ontology
and extension modules officially provided by Xinje, the XML files of EtherCAT, the EDS and DCF files of
CANopen, the 10DD of 10-Link and the GSD files of Profibus DP, etc.

2-2-2. Device Editor

The device editor is a dialog box for configuring devices. Open by selecting the device icon, right clicking the edit
object command, or double clicking the device object entry in the device window.

The main dialog box is named by the device name according to the device type. This product provides tabs
containing the following sub dialog boxes, as shown in the following table:

Communication

Configuration related to the connection between the target device and other

setting programmable devices (PLCs)
Application Display the configuration of device parameters respectively
Backup and Backing up application specific files on the PLC
restore
File Configuration of file transfer between host and PLC
Log Display log file of PLC
PLC setting Application related to 1/0 operation, 1/O status in stop state, configuration of

bus cycle options

PLC command

PLC can be configured through shell command

Users and groups

User management related to equipment access during operation (not to be
confused with engineering user management)

Access rights

Configuration of access rights for running objects and files by special user
groups

IEC object Access to device "objects” through IEC applications
Clock 1/0 Provide real time clock
mapping
Task deployment | Displays input and output tables and their assignments to defined tasks
Status Detailed status and diagnostic information of equipment
Information Basic information of equipment (name, supplier, version, serial number, etc.)

2-3. Application

An application is a collection of objects required to run a program on a hardware device (such as a PLC). These
objects are independent of the hardware device platform, and users can manage them in the program organization
unit (POU). Then instantiate them in the device window and assign them to specific devices. This method accords
with the idea of object-oriented programming.

Application objects include tasks, program organization units, task configurations, global variables, library
managers, and sampling traces. The resource objects in Codesys v3.x can only be managed in the device tree.
After adding objects to the device tree, it is necessary to map with the controlled device according to certain
"rules". The effective range of objects (such as libraries and global variable lists) in the project depends on the
hierarchical relationship between applications and device objects in the device tree. Generally speaking, an object
in an application is also valid for its "sub applications" and can be used.

2-3-1. Task

1. Overview

A program can be written in different programming languages. A typical program is composed of many
interconnected function blocks, which can exchange data with each other. The execution of different parts of a
program is controlled by "tasks". After the "task" is configured, a series of programs or function blocks can be
executed periodically or triggered by a specific event.

There is a task manager tab in the device tree, which can be used in addition to declaring specific PLC_PRG, it
can also control the execution and processing of other subprograms in the project. Task is used to specify the
attributes of the program organization unit at run time. It is an execution control element with the ability to call. In
a task configuration, multiple tasks can be established, and in a task, multiple program organization units can be
called. Once the task is set, it can control program cycle execution or start execution by triggering specific events.
In task configuration, it is defined by name, priority and task startup type. This startup type can be defined by time
(periodic, random) or by internal or external trigger task time, such as using the rising edge of a Boolean global
variable or a specific event in the system. For each task, you can set a series of programs started by the task. If this
task is executed in the current cycle, these programs will be processed within the length of one cycle. The
combination of priority and condition will determine the timing of task execution. The task setting interface is
shown in the following figure:

(] Untitled4.project
File Edit View Project Bulld Online Debug Tools Window Help
B & =1 dh 2L 48 0 [T |4 | Application [Device: PLC Logic] - ©
Devices ~ 7 x| [# Task Confguration & MainTask x PLC_PRG
=45 Untiteds ~ || Configuration
=-[Device (X53-26T4)
= [PLC Logic Priority (0..31): 4
=L} Application
il Library Manager RS :
PLC_PRG (PRG) @ cydic v Interval (e.g. t#200ms) 20
=& Task Configuration
=& MainTask Watchdog
B PLC_PRG [Enable
3 SoftMotion General Axis Pool
s Local High Speed IO Time (&.9. t#200ms)
3 Local High Pulse
Sensitivity 1
'3 Local Extend Module
4= Add Call * Remove Call (£ Change Call Move Up Move Down | ™= Open POU
POU Comment
& PLC_PRG

10

Users should follow the following rules when configuring tasks:

(1) The maximum number of circular tasks is 100

(2) The maximum number of free running tasks is 100

(3) The maximum number of event triggered tasks is 100

(4) According to the target system, PLC_ PRG may be executed as a free program in any case without inserting
into the task configuration

(5) Processing and calling programs are executed from top to bottom in the task editor.

2. PLC program execution process

The following figure describes in detail the complete process of executing the program inside the PLC, which is
mainly composed of three important steps: input sampling, program execution and output refresh.

A J
Read input
l 1. Input
sampling
Shadow register
l A
‘ Task 1
Task 2 2.Program
execution
) '
A
Shadow register
i 3. Output
refresh
Write output
A 4

(1) Input sampling
At the beginning of each scanning cycle, PLC detects the status of input devices (switches, buttons, etc.) and
writes the status into the input image area. In the program execution stage, the running system reads data from the
input image area for program solution. The refresh of the input image area only occurs at the beginning of a scan.
During the scan, even if the output state changes, the input state will not change.

(2) Program execution

In the execution program stage of the scanning cycle, the soft PLC reads the status and data from the input image
area or the output image area, and performs logical and arithmetic operations according to the instructions. The
results of the operations are saved in the corresponding units of the output image area. At this stage, only the
contents of the input image register remain unchanged, and the contents of other image registers will change with
the execution of the program.

(3) Output refresh

The output refresh stage is also called the write output stage. The PLC transmits the status and data of the output
image area to the output point, isolates and amplifies the power in a certain way, and drives the external load.

In addition to completing the tasks of the above three stages within a scanning cycle, PLC also completes
auxiliary tasks such as internal diagnosis, communication, public processing and input / output services.
According to the scanning mode of PLC, in order to quickly respond to the changes of input and output data and
complete the control task, the scanning time of PLC is relatively short, and the scanning time of PLC is generally

11

controlled in ms. therefore, it is necessary to develop a stable, reliable and fast response real-time system for the
PLC operation system.

The PLC repeats the above processes (1) to (3), and the time for each repetition is a working cycle (or scanning
cycle).
From the working process of PLC, it can be seen that since PLC adopts the circular working mode, the input
signal will only be refreshed at the beginning of each cycle, and the output will be output intensively at the end of
each cycle. Therefore, the lag between the output signal and the input signal is inevitable.
It takes a period of time from the change of a signal input at the PLC input to the response of the PLC output to
the change of the input signal. Lag time is an important parameter that should be understood when designing PLC
control system.
The lag time is related to the following factors:
+ The filter time of the input circuit is determined by the time constant of the RC filter circuit. The input
delay time can be adjusted by changing the time constant.
+ The lag time of output circuit is related to the mode of output circuit. The lag time of relay output mode
is generally about 10ms, and the lag time of transistor output mode is less than 1ms.
+ The working mode of PLC is cycle scanning.
+ The arrangement of statements in a user program.

3. Task execution type

There is a "task configuration™ at the top of the task configuration tree. The following are the currently defined
tasks, each represented by a task name. The POUs calling for a specific task is not displayed in the task
configuration tree.

For each independent task, you can edit and configure its execution type. It includes cyclic, event, external,
freewheeling and status. See the figure below for details.

Type
Cyclic W
& Event
1 # External
% Freewheeling
Status

(1) Cyclic
According to whether the instructions used in the program are executed or not, the processing time of the program
will be different, so the actual execution time will change differently in each scanning cycle, and the execution
time will vary from long to short. By using the fixed cycle mode, the program can be executed repeatedly for a
certain cycle time. Even if the execution time of the program changes, a certain refresh interval can be maintained.
Here, it is also recommended that you give priority to the fixed cycle task startup mode.

For example, suppose that the task corresponding to the program is set to the fixed cycle mode, and the interval
time is set to 10ms, the sequence diagram of the actual program execution is shown in the following figure:

12

Actual program execution time

/ Wait time
END / END END END
A L./\
|
P 8ms ‘|‘2ms“ éms | 4ms | 7ms | . 3ms_| 8ms S
10ms 10ms 10ms 10ms
- 7‘ > >l >
\p

Fixed cycle set time

If the actual execution time of the program is completed within the specified fixed cycle setting time, the spare
time is used as waiting. If there are tasks with lower priority in the application that have not been executed, the
remaining waiting time is used to execute tasks with lower priority. See the description of task priority for details.

(2) Freewheeling

The task will be processed as soon as the program starts running. After one running cycle, the task will be
automatically restarted in the next cycle, as shown in the following figure. It is not affected by the program
scanning cycle (interval time). That is to ensure that each time the last instruction of the program is executed, the
next cycle is entered. Otherwise, the program cycle will not end.

Actual program execution time

/ END;0 END;0 END;0 END;O END;0 END
—_—

A
\
A
\
A

A
Y

8ms ‘|‘ bms 7ms 3ms 8ms ‘|‘ 7ms

This execution method has no fixed task time, so the execution time may be different each time. Therefore, the
real-time performance of the program cannot be guaranteed, and this method is rarely used in practical
applications.

(3) Event

If the variable in the event area gets a rising edge, the task starts.

(4) Status

If the variable in the event area is true, the task starts.

The status triggering method is similar to the event triggering function, except that the program will be executed
as long as the trigger variable of status triggering is true, and will not be executed if it is false. The event trigger
only collects the effective signal of the rising edge of the trigger variable.

The following figure compares event triggering and status triggering respectively. The green solid line is the
boolean variable status selected by the two triggering methods. The following table shows the comparison results.

13

| | | |
I P > »

Different types of tasks showed different responses at sampling points 1-4 (purple). This specific event completes
the condition of the state driven task for true. However, an event driven task requires the event to change from
false to true. If the sampling frequency of the task plan is too low, the rising edge of the event may not be
detected.

Execution point 1 2 3 4
Event Not execute Execute Execute Execute
Status Not execute Execute Not execute Not execute

4. System events

The system events that can be selected by the user depend on the actual target system. The corresponding library
file of the target system provides the corresponding system events. Therefore, the system events corresponding to
different target hardware devices may be different. Common system events include: stop, start, login, change, etc.
In task configuration, you can set system events in task configuration.

The user can select "task configuration” - > "'system event" through the mouse to enter the interface shown in the
figure below.

Monitor | Variable Usage System Events | Properties
=% Add Event Handler Remove Event Handler | € Event Info..] Open Event Function

MName Description

Select the "add event handler" button to add system events. The opened interface is shown in the following figure.

Event |AfterReadingInputs

Function to call

Scope (@) Application () POUs

Implementation language | Structured Text (ST)

Description Called after reading inputs. Context=IEC task. Debugging=Enabled

The "event" types that can be selected are shown in the following figure. You must create a new function
name in "function to call" instead of using functions that already exist in the POU. "Implementation
language" is the programming language of the corresponding function. Click "OK" after setting.

14

AfterReadingInputs ™
AfterReadingInputs

AfterWritingOutputs i
BeforeReadingInputs
BeforeW'ritingOutputs
CodelnitDone
Debugloop
DownloadDone
Exception

Login

Logout
OnlineChangeDone
PrepareDownload
PrepareExit
PrepareExitComm
PrepareExitTasks
PrepareOniineChange
PrepareReset I
PrepareShutdown
PrepareStart
PrepareStop
ResetDone
StartDone
StopDone

5. Task priority

Codesys software can set the priority of tasks. There are 32 levels in total (a number between 0 and 31. 0 is the
highest priority and 31 is the lowest priority). When a program is executing, the task with high priority takes
priority over the task with low priority. High priority task 0 can interrupt the execution of the program with lower
priority in the same resource, so that the execution of the program with lower priority is slowed down.

If the task type is "cyclic", it will be executed according to the time cycle in "interval". The specific settings are
shown in the following figure.

Configuration

Priority (0..31): 1

Type
Cydlic v Interval (e.g. t#200ms) 20

6. Watchdog

The watchdog is a kind of controller hardware timing device, which can be enabled through "task
configuration” in Codesys. The watchdog function is not used by default.

The main function of the watchdog is to monitor the exception during program execution or the failure of the
internal clock. For example, when the system crashes or the program enters the dead cycle, the watchdog
timer will send a reset signal to the system or stop the program currently running by the PLC. We can
understand it vividly as a puppy needs its owner to feed it regularly. If it is not fed after the specified time, it
will be hungry immediately. To configure the watchdog, you must define two parameters, time and
sensitivity. The configuration of the watchdog is shown in the following figure.

Watchdog
Enable

Time (e.g. t#200ms) |1#200ms

Sensitivity 1

15

(1) Time
Codesys can configure independent watchdog for each task. If the target hardware supports long watchdog time
setting, the upper and lower limits can be set. The default watchdog time unit is milliseconds (MS). If the program
execution cycle exceeds the watchdog trigger time, the watchdog function will be activated and the current task
will be aborted.

(2) Sensitivity
Sensitivity is used to define the number of task watchdog exceptions that must occur before the controller detects
an application error. The default value is 1. Please refer to the following table.

Sensitivity Multiple of set time exceeded
0,1 1
2 2
n n

Final watchdog trigger time = time x<sensitivity. If the actual execution time of the program exceeds the watchdog
trigger time, the watchdog is activated. For example, if the time is 10ms and the sensitivity is set to 5, the
watchdog trigger time is 50ms. As long as the task execution time exceeds 50ms, the watchdog will be activated
immediately and the task will be aborted.

7. Task running status monitoring

Each task can be directly enabled or disabled, and the system will automatically configure a task monitor. After
entering the online mode, the user can use the monitor provided by the system to monitor the task execution
related parameters such as the average / maximum / minimum cycle time of the task. As shown in the following
figure:

(24 Task Configuration x & MainTask

Variable Usage | System Events | Properties
Task Status I[EC-Cycle C... CyceC... LastCycleT... Average CycleTi... Max.CyceTi... Min.Cycle Tim... Jitter... Min. Jitter...
MainTask

At the initial stage of the project, the maximum / minimum / average cycle time can be tested, which can be used
to measure the stability of the program and optimize the task cycle time set by the program. See the following
table for the specific definitions of each parameter in the monitoring window:

Parameter Description Parameter Description
Task Task name defined in task configuration Average cycle | Average execution time of
time (us) task, unit: ps
Status They have the following states: Max /min cycle | Task maximum/minimum
Not created: the consistency is not established after time (us) execution time, unit: us

the program is downloaded. This state may occur
when trigger task in the used time

Create: the task has been established in the
real-time system, but has not been officially run
Effective: the task is being executed

Exception: an exception occurred in the task.

IEC cycle | The cumulative count of cycles since the program Jitter (us) Jitter value measured in
count started running. '0' means the target system is not the last cycle, unit: us
supported.
Cycle count | Count of cycles that have been run. Depending on | Min/max jitter | Measured
(us) the target system, it can be equal to the IEC cycle (us) maximum/minimum jitter
count, or greater. In this case, even if the time, unit: us

16

application is not running, the cycle is also
counted.

Last cycle | Task execution time of the previous cycle, unit: ps
time (us)

After understanding the definitions of the above times, the following time setting relationship should be followed.
According to this setting method, the program task cycle and watchdog time can be better optimized to ensure the
stability of the program and the real-time performance of the program.

Watchdog trigger time > fixed cycle time > program maximum cycle time

When the cycle time is longer than the fixed cycle time, the CPU will detect that the program has exceeded the
count. At this time, the real-time performance of the program will be affected. If the program cycle time is longer
than the watchdog time setting, the CPU will detect the watchdog fault and stop the execution of the program.

8. Running of multiple subprograms

In actual engineering projects, the program can usually be divided into many subroutines according to the control
flow or according to the object of the equipment. Therefore, designers can program according to each processing
unit. As shown in the figure below, the main program is divided into several subroutines with different processes
by the control process. The purpose of splitting is to make the main program conditioning clearer and facilitate
future debugging.

PLC_PRG

Controlprocessl Subprogram Control process 1
PRG1 ‘
7777777777 l After program *

Control process 2 | splitting ‘Subprogram Control process 2
~ PRG2 ‘
,,,,,,,,,,,,,,,,,,,,, ‘] Y

' Control process n ! Subprogram Control process n
PRGn

The right half of the figure above shows the subprograms PRG1, PRG2..PRGn classified by process, the left half
of the figure is the main program PLC_ PRG, PRG1..PRGn can be called respectively in the main program.

There are two ways to run multiple subroutines. The first is to add subroutines to the task configuration. The
second method is to call subroutines in the main program, which is also a common and flexible way.

2-3-2. Library files

Library files are used to store program organization units (POU) that can be used multiple times in Codesys.
Codesys provides a basic library. Users can construct a new library based on the basic library and reference it in
the program by loading.

Library file is a collection of functions, function blocks and programs, which also contains some specially defined
structures, enumeration types, etc. In terms of function, library files can be divided into system library files,
application library files and manufacturer defined library files. Among them, the system library file is a file that
supports Codesys software system, including support for software structure and syntax writing, as well as support
for standard 1/O. Application library file is a file library that supports basic applications, including data operation

17

function, timer, counter, edge detection, etc. The vendor defined library file is a specially made library file
according to the product specifications of different manufacturers.

1. Management of library files

The library manager displays all libraries related to the current project. The POU, data type and global variables of
the library can be like user-defined POU and data class. The library manager is opened through the library
manager command, and relevant information including the library is saved together with the project.

If you need to install the library file on the computer or call the library file provided by the supplier, you need to
use the library file management. Library file management is defined by using the menu command "tools" - >
"library repository". The following figure shows the view of library file management.

Location System Edit Locations...
(C:\ProgramData\CODESYS\Managed Libraries)

Installed libraries: Install...

Company (Al companes) Uninstall

= (Miscellaneous)
== Application Export...
= Docs

= Intern

= System

ok
[
ik
ot
®:
®=
ok
3,
=
ot
=
ot

= Use Cases

Find...

Details...

Trust Certificate

Group by category Dependencies...

Library Profiles...

The categories of displayed library files include application, communication, controller, device, system, etc.

The use process of library files is as follows:

(1) Installation of library files. Before using a library file, you must first "Install” it in the Library dialog box.
After installation, the library can be called in the project.

(2) Call of library file. After installing the library file, you need to add the library file through the library manager
to realize the call of the project to the library file.

2. Properties of library files

The library file needs to realize the uniqueness and security of access.

(1) Access uniqueness. If several modules or variables in a project have the same name, the paths to access
variables with the same name must be different (that is, "unique access"), otherwise compilation errors will occur.
This rule applies to local projects, libraries, and modules or variables in libraries referenced by other libraries.
Users can achieve unique access by adding a namespace before the module or variable name.

(2) Access security. Codesys provides library file encryption function to protect the source code of developer
library files. By adding permission information to the library file in the project settings and saving it as a
"compiled function library", the user needs to log in with a password to open the library file next time. If the
password is wrong, the library file cannot be used and opened, and a log alarm is triggered.

18

2-3-3. Access path

The access path is used to connect global variables, direct representation variables, input/output of function blocks
and local variables to realize the storage of information. It provides a method to exchange data and information
between different configurations. Many variables with specified names in each configuration can be accessed
through other remote configurations.

The access path function has been integrated into Codesys. Users do not need to operate it. All access operations
will be carried out automatically in the background of Codesys.

2-4. POU

Program organization unit (POU) is the smallest program unit of user program, which is composed of declaration
area and code area. It is the basis for a comprehensive understanding of new language concepts. According to
function, program organization unit (POU) can be divided into function (FUN), function block (FB) and program
(PRG).

Right click “application”, click “add object...” --- “POU”, which will pop up below figure. In the dialog box,
users can choose to add programs, function blocks or functions, and the corresponding programming language can
be selected in the drop-down menu. After adding, you can view the corresponding attributes in the brackets of the
POU in the project device tree on the left. FB is the function block, FUN is the function, and PRG is the program.

Add POU “

@ Create a new POU (Program Organization Unit)

Name

o Devices > 4 x
Type = Uniitiedd -
(@ program = [Device (X53-26T4)
() Function block =Bl PLC Logic
Extends =1} Application
implements il Library Manager

PLC_PRG (PRG)
POU (PRG)

Access specifier

Method implementation language POU_1 (FBJ
Continuous Function Chart (CFC) POU_2 (FUN)
(O Function = -[#4 Task Configuration
Return type = @ MainTask
& PLC_PRG
Inplemeniaion/ngiags '3 SoftMotion General Axis Pool
Continuous Function Chart (CFC) v

"2 Local High Speed IO
"2 Local High Pulse
"2 Local Extend Module

s

The program organization unit has the following characteristics:
+ User's function block library can be set for each application field, which is convenient for engineering
application. For example, establish a library of motion control function blocks
Function blocks can be tested and recorded
It can provide global library inventory retrieval function
It can be used repeatedly, and the number of times of use is unlimited
The programming can be changed to establish the function block network.

* & o o

19

2-4-1. POU structure

A complete POU consists of three parts: POU type and naming, variable declaration part and code instruction part
(POU body). The structure diagram is as follows:

Function block .
Program name name Function name

Interface variables Declaration
area
Local variables
Instructions (POU Code area
main body)

Function block end
flag

Program end flag Function end flag

In the above figure, from the perspective of specific functions, the program (PRG) on the left, the intermediate
function block (FB) and the function (fun) on the right can be formed respectively. From the structure of each
function, it can be divided into declaration part and code part.

All variables declared by the user are ultimately used by the program organization unit. Interface variables and
local variables can be declared in the variable declaration.

1. Declaration area

The variable declaration area is used to specify the name, type and initial value of variables.
The variable declaration editor is used to declare POU variables and data types. The declaration part is usually a
text editor or a table editor. All variables to be used in this POU are declared in the declaration part of the POU,
including input variables, output variables, input / output variables, local variables, added variables and constants.
The declaration format is based on IEC61131-3 standard. The declaration of variables adopts the following
format:

< identifier >{AT<Address>}: <data type>{: =< initialization >}:

Part of {} is optional.

2. Code area

In the code area, Codesys supports two text languages: instruction list (IL) and structured text (ST). Four
graphical languages: function block diagram (FBD), ladder diagram (LD), sequential function diagram (SFC) and
continuous function diagram (SFC). Users can choose one or several languages to program in the main part. The
main editor interface is shown in the figure below, in which ladder diagram (LD) program language is used.

20

@ POU_1 x| [f] Device PLC_PRG FUUN_MachineState g MainTa -

PROGRAM FOU 1 -
= z VAR E
3 blounter: BOOL: D
g bReset: BOOL; /¢ Stop signal
5 CIU_a:CT0;
3 néurrentvalue:int; S
4 fr 3
& 7
"
bInputl
11 pLab=11
bInputi blutputz
1 i
Labell:
CTU_0
bEnable CTT
N — =0 =y
bCounter —CU T Q0 —bkDcne
bEeset —RESET CV —nCurrentValue
999 —BW

k[0 | 1m0 € -
k

2-4-2. Function

For the application of PLC programming language, function (FUN) is also defined as a program organization unit.
Function is a program organization unit that can be assigned parameters but has no static variables. That is, when
a function is called with the same input parameters, the function can always generate the same result as the
function value (return value). An important feature of functions is that they cannot use internal variables to store
values, which is completely different from function blocks.

Function (FUN) is a basic algorithm unit with no internal state (no memory allocation at runtime). In other words,
as long as the same input parameters are given, the calling function must get the same operation result, and there
is absolutely no ambiguity. Various mathematical operation functions we usually use, such as sin (x), sqrt (x), etc.,
are typical function types.

A function is a basic algorithm unit with at least one input variable, no private data, and only one return value.
Standard functions are already pre-existing in the standard library of Codesys.
Functions can be used by functions, function blocks, and programs.

1. Representation and declaration of functions

(1) Representation of custom functions

The internal logic part of the function can use any of the six programming languages. The function name is the
return value of the function, which can also be understood as the output value of the function, as shown in the
following figure:

[# Task Configuration s MainTask il Library Manager POU POU_1 POU_2 x
FUNCTION pPOU_2 (*function name/return value*) : BOOL (*return value data type¥*)
V.F!R_INPUT

B

(2) Declaration of variables in functions

When users customize functions, they should pay attention to the following matters:

21

+ Afunction can have many input variables, but only one return value (output variable). However, there is
no restriction on the data type of the return value, so it can be a structure as the return value.

+ The important feature of functions is that they cannot store values in internal variables, which is
different from function blocks.

+ The function has no specified memory allocation and does not need to be instantiated like a function
block.

+ Functions can only call functions, not function blocks.

+ The argument configured to VAR_INPUT can be empty, constant, variable or function call. When the
function is called, the function is called as the actual argument.

2. Standard functions

Codesys supports all IEC class 8 standard functions. In addition, the following functions not specified in IEC standards
can be used: ANDN, ORN, XORN, INDEXOF, SIZEOF, ADR, BITADR, etc. Codesys supports the following 11
types of functions. The use and description of specific functions will be introduced in detail in Chapter 6.

3. Properties of function

(1) Overloaded property

For a function, if its input is described by generic data type, it is called overloaded function. This means that the
input of this function is not limited to a single data type, but can be used for different data types. All standard
functions of Codesys have overload properties, which can be applied to different data types. If a function is only
applicable to a certain data type, it needs to be declared in the function name, which is called function typing.
For example, if a PLC can recognize INT, DINT and SINT, it supports overload function ADD of generic data
type ANY_INT (including BYTE, WORD, DWORD, SINT, USINT, REAL, etc.). For example, ADD_INT is an
INT addition function limited to data types. It is a typed function. In this way, the overload function is
independent of type. The description of overloaded functions is shown in the following figure:

| |
ARNTY) g— |
| ADD_INT | —— INT |
OINT —— |
| |
| |
| :
|
| DINT — | | ANY_INT ——|
ADD_DINT | DINT | [) ADD L ANY_INT
| DINT —— | ANY_INT ——
| |
| |
| |
| SINT ——| |
| ADD_SINT | —— SINT |
| SINT —— |
| |
| |

When using overloaded functions, the system will automatically select the appropriate data type. For example, if
the called ADD argument data type is DINT, the system will call ADD_DINT standard functions.

(2) Scalability

The property that the number of input variables of a function can be extended is called the extensible property of a
function. For example, the input variables of the ADD function can be more than two. It can realize the addition
of multiple input variables. Therefore, the add function can be said to have extensible properties. Not all standard
functions have extensible attributes. The extension limit of this function is subject to the upper limit imposed by
PLC, the height limit of the box in the graphic programming language, or the function definition limit of the
function itself. For example, DIV function has this attribute. Functions with extensible properties can simplify the
program and reduce the required storage space. The following figure is an example of some functions with
extensible properties.

22

ADD™= AND — XOR--

(3) EN and ENO

This attribute is valid only in ladder and function block diagram programming languages. EN and ENO are the
input enable and output enable of the function respectively. All functions can enable or disable this property.
The application principles of enable input and enable output are as follows:
+ When the input function is called, the value of EN is false, then the operation defined by the function
body will not be executed by the program, and the value of ENO is false.
+« When EN is true, the function is called, the operation defined by the function body is executed, and the
value of ENO is true.
+« EN and ENO attributes are additional attributes, which can be enabled or disabled according to actual
needs.

The following figure compares the ADD function with EN/ENO with the ordinary ADD function.

ADD P
22?2 —EN ENO|
222 — — +

-+ 222 — — 222

2727 —

222 —

2-4-3. Function block

Function block is to convert some program blocks that are used repeatedly into a general component. It can be
called by any programming language in the program and used repeatedly, which not only improves the
development efficiency of the program, but also reduces the errors in programming, thus improving the quality of
the program.

A program organization unit that can generate one or more values when a function block is executed. The function
block retains its own special internal variables, and the controller target execution system must allocate memory to
the internal state variables of the function block, which constitute its own state characteristics.

The execution logic of the function block constitutes its own object behavior characteristics. Therefore, for the
input variable value of the same parameter, there may be different internal state variables, so different calculation
results may be obtained. In the control system, the function block can be some kinds of control algorithm, such as
PID function module is used for closed-loop control, and other function blocks can be used for counters, slopes,
filters, etc.

1. Representation and declaration of function blocks

(1) Representation of custom function blocks

Like functions, the internal logic part of function blocks can use any of the six programming languages. The
function name is the return value of the function, which can also be understood as the output value of the function.
The following figure is the syntax expression of the function block.

23

@

MainTask POU [[# Task Configuration POU_1 x ffifl Lbrary Manager [
FUNCTION BLOCK POU_1
B 2| VAR INPUT

4| END VAR
=] 5 VAR OUTPUT
(*Output in

7 END VAR

(2) Declaration of variables in function blocks

Variable declarations in function blocks are similar to those in functions. When writing, you should pay attention
to the following matters:

+ The internal and output variables of a function block can use the qualified attribute RETAIN to indicate
that the variable has a hold function. Input variables can only be declared with retain properties at the
time of invocation.

+ Itis generally not allowed to assign values to function block input variables. Only when the input is the
calling part of the function block, it is allowed to assign a value to the input variable of the function
block.

+ Since function blocks can call functions and function blocks, you can also call function block instances
as variables of instances of other function blocks. Such as DB_ FF(S1:=DB_ON.Q, R:=DB_OFF.Q).

+ The input of function blocks is not assigned, which means that their initial values are maintained.

+ To ensure that the function block does not depend on hardware, address variables with fixed addresses
(such as %IX1.1, %QD12) are not allowed to be used as local variables in the variable declaration of the
function block, but they can be assigned values when called.

+ Use VAR_INPUT and VAR_OUTPUT will occupy too much memory. Therefore, VAR_IN_OUT can be
used as much as possible when programming function blocks to reduce the occupation of storage area.

2. Standard function block

Bistable elements, edge detection, timers and other functional blocks have been included in the standard library.

3. Attributes of function blocks

(1) Instantiation

According to IEC61131-3 standard, the type of function block is the definition of abstract structure type, rather
than real data entity. If it is not defined and instantiated, it cannot be called and executed by the program.
Therefore, function blocks need to be instantiated before they can be used.

The instantiated function block is an independent structural variable that has private data, can complete specific
functions according to the established logic, and is completely encapsulated. Thus, the previous abstract type
definition is transformed into a data entity.

(2) Scalability

Codesys supports object-oriented programming, so function blocks can also derive "sub™ function blocks. In this
way, the “child" function block has the attribute of the "parent” function block, and can have its own additional
characteristics. It can be visually considered that the “child" function block is an extension of the "parent"
function block. So in this article, we call this "function block extension".

Add the keyword "extends"” when declaring the function block to use the extended function. You can also expand
by selecting the "extends" option when adding a function block in the "add object" dialog box.

(3) EN and ENO

24

Function blocks have the subsidiary attributes of EN and ENO, which are similar to the use of EN and ENO in
functions.

(4) Differences between function blocks

To sum up, the obvious differences between functions and function blocks are summarized in the following table:

Function (FUN) Function block (FB)
Memory allocation | No specified memory allocation | All data allocated memory address
address
Input/output Only one output variable is allowed Multiple output variables or no
variables output variables
Calling relationship | Functions can be called, but function | Callable function block or function
blocks cannot be called

2-4-4. Program

Program is the main core of planning a task. The program has the greatest call right and can call function
blocks and functions.

Generally speaking, it is divided into main program and subroutine. In a broad sense, it also includes
hardware configuration, task configuration, communication configuration and target setting information.
Generally, general global variables, mapped hardware address global variables and local variables are defined
in the program. The application logic is realized by calling between programs.

1. Representation and declaration of program

The program is expressed by the following syntax expression, and the logic part of the program can use any
of the six programming languages.

£ MainTask [# Task Confiquration POU x| il Library Manager PO
1 PROGRAM POU (*program names¥*)

B 2| VAR INPUT

3 (*Input in
sl END VAR

B 5| VAR OUTPUT

Uutput Interracs variaole 4declaration ol program’™)

41 wariaoile aeciladaraticon ol program

— [0
e
-
3
[
Q
5]
i
u
5
-
v
]
1,
]
8]
M
5
i
4
i
2]
]
H
1
3
i
*]
5
i
|
s

2. Program performance

(1) A program can contain the configuration of addresses. It is allowed to declare the direct representation
variables that store the physical address of PLC, and the direct representation address configuration is only used
for the declaration of internal variables in the program. Direct representation variables allow hierarchical
addressing mode descriptions, such as the following representations.
You can fill in the program declaration in the following format.

bTest AT %QX10.3:BOOL:=TRUE;
(2) A program organization unit cannot call itself directly or indirectly, that is, a program organization unit cannot
call an instance of a program organization unit with the same type and name
(3) Programs are instantiated only in resources. Declared in the resource. An instance of a program only needs to
combine the program with a task, otherwise it will not be executed. Function blocks can only be instantiated in
programs or other function blocks.

25

3. Program calling relationship

It is allowed to call function block instances, function and other programs in the program, as shown in the
following figure:

Program (PRG)

Function (FUN) Function block (FB) Program (PRG)
Function Function block

Function (FUN)

FUN (FB)

According to the above figure, functions and function blocks are used to form subroutines, and programs are used
to form user main programs. Therefore, programs are considered global. Program is the largest form of program
organization unit, which can call functions, function blocks and programs.

Function blocks can call other function blocks and functions. Since there are no private variables in the function,
the function can only call other functions, not function block instances.

2-5. Application object
2-5-1. Sample tracking

The function of sampling and tracking is to monitor and track the history of variable values on the controller. The
working mode of sampling tracking is similar to that of digital sampling oscilloscope. It is a very practical and
effective debugging tool in the process of program debugging and diagnosis. The user can add the "tracking
object" and set the "tracking configuration™ in the tracking manager to record the command word, status word,
motor speed, position and other parameters used in the execution of the program. The user can understand the
whole process of the program running in the control system by observing these parameters. This function is shown
in the following figure:

(6 Task Configuration @ Trace_Multichannel x |] PLCWinNT v
1000 hd Configuration
Add variable
0 < - [PLC_PRG.S7.0UT -]
-960
V,.\Aj/ \/ w= PLC_PRG.S8.0UT
0 -48
.'. e .‘ " Q‘ -
e 5 s 5 . | mm PLC_PRG.59.0UT
20 P r P B i | g3
(1] - - * » - * ¥ * -
2 . T S T S S S == PLC_PRG.S10.0UT
. - e “ > .. e .. * " h 1
';" g . - (¥4 -
10004 . !,.
] t
A
-1 * L 4 F ‘ »
R i I G 4
17 } L3 L4
S 4
-1000—w* k¥ WA L
13:—J
I s I
P I ot | -
o - ¥
N ",.v*' IL"'""
400 __

LA N L L L L L B B B
24m1@sm12sim2Qsm2 Bim228m2 Isim2 A8 m 23 m2@m2’

26

2-5-2. Persistent variable

The function of persistent variable is to save the data to the storage unit after the system is shut down or abnormal
interruption, and call it out after power on again, and it can continue to be used by the program. In order to adapt
to the on-site working conditions, when designing the PLC control system, it is necessary to consider the storage
and recovery of data after power failure or abnormal interruption. Users can register the data that needs to be
maintained during power failure in the list by adding the persistentvars list, which can realize the continuous
variable function.

2-5-3. Data unit type

The function of data unit type (DUT) is to provide users with a user-defined data type, including structure,
enumeration, alias and union, as shown in the following figure. The use of data unit type plays a role in
standardizing programming process, improving programming efficiency, optimizing programming format, and
realizing object-oriented programming.

Add DUT n

Create a new data unit type

Mame
puT]

Type
(®) Structure

[] Extends

(_) Enumeration
() Alias

Base type

(") Union

2-5-4. Global network variables

The global network variable list (GNVL) is divided into two forms: sender and receiver. The function of the
sender is to declare and list the global variables of the network variable list (receiver) that should be sent to other
devices or network items. The function of the receiver is to list the received network variables and display
information (network, transmission information, sender, etc.). Users can add the global network list of sender and
receiver to the device tree by configuring the global network variable editor to realize the interaction of global
variables in the network.

27

@ Createa global variable list received via a network
(Use object properties to edit settings)

MName
NVL|

Task

‘ MainTask

Sender

‘ Import from file

Import from file

2-5-5. Recipe manager

The function of the recipe manager is to provide a list of user-defined variables (recipe definitions). Users can
configure the storage location, storage method and storage category through the recipe manager, as shown in the
following figure. After the recipe manager is configured successfully, users can upload and download recipe

definitions.

£ MainTask POU ffif} Lbrary Manager ', Recdipe Manager x|

Storage | General

Storage type | v ‘

File path | |
|

File extension |.txtrec'|pe

Separator
() Tab () Semicolan () Comma
(O Space @:= Ol
Available Columns = Selected Columns
¥ Type ¥ variable
P Name ¥ Current Value
9 Comment

<
“# Minimal Value
H# Maximal value

e o

28

3. Basic instructions

3-1. Bit logic instructions

3-1-1. Basic logic instructions

Instruction Command icon Function
DL
AND — — Operator AND
oR 12
OR — - Operator OR
—ior]
NOT
NOT | | Operator NOT
XOR
XOR - Operator XOR

3-1-2. Set priority and reset priority trigger instructions

Instruction Command icon Function
SR_0 =
R 5515‘““"““"5“ = Set priority trigger: set bistable
_RESET trigger, set priority
RS_D]
Standard RS '— e .
Reset priority trigger: reset bistable
RS —SET Gl P yrngg
RESET1

trigger, reset priority

3-1-3. Data unit type

Instruction Command icon Function
RTRIGO —
Standard R_TRIG '—| .. .
R_TRIG cLk a- Rising edge trigger
FTRIGOD
F_TRIG Standard.F_TRIG '— Falling edge trigger

—CLK Q-

29

3-2. Timer instructions

Instruction Command icon Function
Pulse timer: once IN becomes TRUE,
5 Ea?d TP Q is true, and the time will start
TP _| counting in milliseconds in ET until
- its value is equal to PT, then Q is
FALSE
TON_0 Power on delay timer: once IN
T m"ﬂ: becomes TRUE, the time will start
TON _| Q counting in milliseconds in ET until
— ET its value is equal to PT, then Q is
TRUE
StaEaFd[;'DFE Power off delay timer: when IN is
TOF i al- FALSE and ET is equal to PT, Q is
—FT ET FALSE. Otherwise, it is TRUE
RTC D [
RTC N Stﬂ"dﬂ“i-mcl":; Real time clock: starts at a given time
I B and returns the date and time
—POT COT—

3-3. Counter instructions

Instruction Command icon Function
SHEI;';’[?ETUE Increme-nt- <?ognter: if RESE_T_is
CTU cu a TRUE, initialize to 0. The rising edge
—RESET CWl of CU always increases by 1. Once
—PY CV > =PV, Q will be set to TRUE
CTDO = Minus counter: if LOAD is TRUE,
Standard CTD'— CV will be set to the starting value
cTD —CD Qr given by PV. The rising edge of CD
—LOAD V- always increases by 1, the counter
R value (CV) decreases by 1 until 0,
and Q will be set to TRUE
CTUD_O ()
Standard CTUD '—
—CU QU
CTUD —CD QD Up/down bidirectional counter
—{RESET CW-
—{LOAD
—{Pv

30

3-4. Data processing instructions

3-4-1. Select operation instructions

Instruction Command icon Function
One out of two instruction: when the
e SEL | selection switch is FALSE, the output
SEL — 1o is the first input data; when the
—m selection switch is TRUE, the output
is the second data
MAX
MAX _ Take the maximum value
MIN — — Take the minimum value
Limit value: if the IN value is higher
LIMIT .
_ by B than the upper limit of Max, LIMIT
LIMIT —m generates Max. If the value of IN is
— lower than the lower limit of Min, the
result is Min
— Choose one from many: MUX selects
—x L the Kth value from a group of values.
MUX — The first value is K=0. If K is greater
— than the number of other inputs (n),

Codesys passes the last value

3-4-2. Compare instructions

Instruction Command icon Function

EQ

EQ 1 = [Equal to
ME

NE — __)é — Not equal to
GT

GT] - B Greater than
GE

GE] - B Greater than or equal to
LT

LT Tl < B Less than

31

Instruction Command icon Function
LE
LE T < B Less than or equal to

3-4-3. Shift instruction

Instruction Command icon Function

SHL E

SHL | Shift left by bit
SR o _

SHR | L Shift right by bit
ROL'—

ROL _ | Rotate left
FIDH

ROR - Rotate right

3-5. Operation instruction

3-5-1. Assignment instruction

Instruction Command icon Function
44
MOVE MOVE d Assignment
3-5-2. Arithmetic operation
Instruction Command icon Function
ADD
ADD] + B Addition
SUB
sSuB T — B Subtraction
MUL
MUL] ¥ B Multiplication
DIV
DIV | ,’ B Division

32

Instruction Command icon Function
MOD
MOD T B Residual
3-5-3. Mathematical operation instruction
Instruction Command icon Function
ABS ABS ! Absolute value instruction
SQRT n SQRT Square root instruction
EXP EXP = Exponent instruction
LN LN — Natural logarithm instruction
LOG LOG™- Common logarithmic instruction
SIN SIN Sine command
Cos cos Cosine instruction
B4
ACOS ACOS & Arccosine instruction
A.SIN ;
ASIN Arcsine command
TAN TAN g Tangent instruction
ﬂ
ATAN ATAN Arctangent instruction

3-5-4. Address operation instruction

Instruction Command icon Function
SIZEOF SIZEOF Data type size
ADR ADR Adress operator
.
BITADR BITADR Bit address operator

3-5-5. Data conversion instruction

Instruction Command icon Function
BCD_TO BYTE BCD_TO_BYTE - BCD convert to BYTE
—B BCD_TO_BYTE
BCD_TO_DWORD BCD_TO_DWORD '— BCD convert to DWORD
— BCD_TO_DWwWORD
BCD_TO_INT BCD_TO_INT '— BCD convert to INT
—B BCD TO_INT
BCD_TO _WORD BCD_TO_WORD BCD convert to WORD
— BCD_TO_WORD
BYTE_TO_BCD BYTE_TOBCD BYTE convert to BCD
—EB BYTE_TO_BCD —
DWORD_TO_BCD DWORD_TO_BCD DWORD convert to BCD
—Ix D\WORD_TO_BCD |-
B4
INT_TO_BCD INT_TO_BCD INT convert to BCD
—] INT_TO_BCD

WORD_TO_BCD

WORD_TO_BCD —
WORD_TO_BCD

WORD convert to BCD

34

4. Special functions

4-1. High speed counting

4-1-1. Function overview

XS series PLC has high-speed counting function. By selecting different counters, it can measure high-speed input

signals such as measurement sensors and rotary encoders, and its maximum measurement frequency can reach
200kHz.

4-1-2. Function block introduction

1. Command format

Command Name Graphic representation ST performance
EJ_Counter(
¥J_Counter_0 : Counter:= ,
Hich speed XJ XJ_Counter - Enable:= ,
XJ Counter 1gh Spee —{Counter Counter\Value Mode:= ,
- counter —|Enable Error CounterValue=> ,
—{Mode ErrorlD Error=>» ,
ErrorID=>);
EJ_CounterGetValue (
¥J_CounterGetValue_0 = Counter:= ,
. X*J X)_CounterGefValue Execute:= ,
Read high —|Counter Getvalue GetValue=> ,

XJ_CounterGetValue

speed counter| —|Execute Done Done=> ,
Error Error=> ,
ErroriD ErrorID=>);
EJ_Counter3etValue (
*J_CounterSetValue_0 - Counter:= ,
Write high XJ X _CounterSetValue Exec‘._ute:: .
XJ CounterSet\Value —Counter Done SetValue:= ,
h speed counter| _lExecite Error Done=> ,
—SetValue ErrarlD Error=> ,
ErrorID=> j;
2. Related variables
[XJ_Counter]
(1) Input variables
Input Name Data type Effective Initial Description
variables range value
Counter Counter | COUNTER_REF - - High speed counter, which specifies the
high-speed counting input and initial value
Enable Enable BOOL TRUE, FALSE | Normally open enable counting
FALSE
Mode Counting Mode AB_Mode, | FALSE |High speed counting mode:
mode Single_Mode MODE=XJ.AB_Mode, is AB phase high
speed counting

35

MODE=XJ.Single_Mode, is single phase
high speed counting

(2) Output variables
Output Name Data type Effective range Initial Description
variables value
CounterValue | Counter value DINT Data type 0 High speed counter value
Error Error flag BOOL TRUE, FALSE FALSE
ErroriD Error type UINT - 0
[XJ_CounterGetValue]
(1) Input variables
Input Name Data type Effective range | Initial Description
variables value
Counter | Counter | COUNTER_REF - High speed counter, which specifies the
high-speed counting input and initial value
Execute | Enable BOOL TRUE, FALSE | FALSE | Trigger on the rising edge to read the current
high-speed count value
(2) Output variables
Output Name Data type Effective range Initial Description
variables value
GetValue | Read value DINT Data range 0 Present counter value
Done | Completed flag BOOL TRUE, FALSE | FALSE |After reading, the flag bit is
TRUE
Error Error flag BOOL TRUE, FALSE | FALSE
ErrorlD Error type UINT - 0
[XJ_CounterSetValue]
(1) Input variables
Input Name Data type Effective range Initial Description
variables value
Counter Counter COUNTER_REF - - High speed counter, which
specifies the high-speed counting
input and initial value
Execute Enable BOOL TRUE, FALSE | FALSE |Trigger on rising edge, write
high-speed count value, write the
value of SetValue to
CounterValue
SetValue |Write in value DINT Data range 0 Write high speed count setting
value
(2) Output variables
Output Name Data type Effective range Initial Description
variables value
Done Complete flag BOOL TRUE, FALSE | FALSE | After writing, the flag bit is TRUE
Error Error flag BOOL TRUE, FALSE | FALSE
ErrorlD Error type UINT - 0

Note: if the displayed value of ErrorID is 2, it is because the range of CounterID is not 0-3.

36

3. Function description
(1) The high-speed counting function has three function blocks: high-speed counting function block, read
high-speed counting function block and write high-speed counting function block. XS3 series high-speed input
can only receive differential signal (DIFF) and cannot receive open collector signal (OC). Please be sure to choose
the encoder of differential signal. XSDH series high-speed input is to receive open collector signal (OC).

(2) Counter is COUNTER_REF data type:
The specific description of COUNTER_REF is as follows:

Member Name Data type Effective range Initial Description
value
CounterID Counter port INT 0,1,2,3 0 Select high speed counter
input port
CounterValue | Counter initial DINT Data range 0 Set the initial value of the
value counter

(3) XS3 and XSDH series high-speed counting function has two modes, single phase increasing mode and AB phase
mode respectively.

(@) Incremental mode (Mode= Single_Mode)

In this mode, count the input pulse signal, and the count value increases with the rising edge of each pulse signal.

(b) AB phase mode (Mode=AB_Maode)

In this mode, the high-speed count value incremented or decremented according to the pulse signal (phase A and phase
B) with a phase difference of 90< and the default counting mode is 4 times frequency.

(4) XS series high speed counter input port

XS3-26T4

Single phase incremental mode AB phase mode

CounterlD 0 1 2 3 0 1 2 3

Max

200k 200k 200k 200k 200k 200k 200k 200k
frequency

X0+ U+ A+

XO0- U- A-

X1+ B+

X1- B-

X2

X3+ U+ A+

X3- U- A-

X4+ B+

X4- B-

X5

X6+ U+ A+

X6- U- A-

X7+ B+

XT7- B-

X10

X11+ U+ A+

X11- U- A-

X12+ B+

X12- B-

X13

37

XSDH-60A32-E

Single phase incremental mode AB phase mode

CounterlD 0 1 2 3 0 1 2 3

Max

200k 200k 200k 200k 100k 100k 100k 100k
frequency

X0 U A

X1 B

X2

X3 U A

X4 B

X5

X6 U A

X7 B

X10

X11 U A

X12 B

X13

4-1-3. Parameter setting

Add library file:
Add “XinjeCnt” in Library Manager. High speed counting function can be used after adding.

Devices - q ﬁ—@ PLEPR m Library Ti] x
SREW T T T |E3 Add Library Delete Library Properties Details 5] Placeholders | (fif] Library Repository @ lcon legend...
= [evice (sDH-60432) Name Namespace Effective version
= Eﬂ PLC Logic % 3
=% o 5.0
m Library Manager . _
PLC_PRG (PRG) o
= @ Task Configuration 5
= MairTask |0 25 = |
& pLc_PRG o Library
'3 SoftMotion General Axis Pool | | XimjeCnt
2 Local High Speed 10
3 Local Extend Module
Watch 1
Expression jpared value Exec
I —
€ | Advanced... ‘ oK ‘ Cancel |
—

4-1-4. Application example

Example 1: use the first channel of high-speed counter, read the current count value in the counter, and modify the
current high-speed count value.

Program operation:

(1) Install the library to be used according to the steps in section 4-1-3.

(2) Write a high-speed counting program.

Programming: use the function blocks "XJ.XJ_Counter", "XJ.XJ_CounterGetValue", "XJ.XJ_CounterSetValue".
Set the high-speed counting port, high-speed counting mode and high-speed counting value in the program.

38

m Library Manager
B z VAR

ﬂi Device

EJ_Counter_ 0: XJ.KJ_Counter;
KEJ_CounterSetValue_0: XJ.EJ_CounterSetValue;
5 EJ_CounterGetValue 0: XJ.EJ CounterGetValue;
€ HS5C0:XJ.COUNTER REF:=(CounterID:=0,CounterValue:=0);//select channel set mitial value
7 Counter_enable: BOOL;//high speed counter starts counting

3 read present high speed counter value
SetValue_enable: BOOL;// give setting value for high speed counter
CounterValue0:DINT; //high speed counter value

GetValue_enable: BOOL;

PLC_PRG X

11 GetCounter0:DINT; //read present high speed counter value
END VAR
=
*J_CounterGetValue_0
XJ XJ_CounterGetValue
Counter GetValue
[GolVaue_erable—fxecute Dare
Error
ErrorlD
¥J_Counter_0
XJ_XJ_Counter
HSCO Counter CounterValue
Counter_enable Enzble Error—
Single_Mode Mod ErrorlD—

XJ_CounterSet\ialue_0

XJ XJ_CounterSetValue

HSCO

Set\alue_enable

0

Counter Done
Execute Error
Setvalue ErrorlD

4-2. External interrupt

4-2-1. Function overview

8|
100 % € v
"l
&4 Q) | 100% R

XS series PLC supports X-terminal interrupt, and the same terminal supports rising edge and falling edge interrupt.
In Codesys, interrupt is used in the form of external events in task type. Such as X2R_TRIG stands for X2 rising
edge interrupt, X2F_TRIG represents the falling edge interrupt. For the number and type of interrupts supported
by each model, see the "external event" option.

4-2-2. Application example

Double click "task" and set it to external event "external” in the pop-up interface - external interrupt uses terminal
X, and you can also set the priority of external interrupt events.

vices

> 3 X

PLC_PRG

& Task

(] AATFE
=[] Device (¥SDH-60A32)
=80 pLC Logic
=1} Application
i) Library Manager
PLC_PRG (FRG)

= (#8 Task Configuration

=g Task

] PLC_FRG
"2 SoftMotion General Axis Pool

"% Local High Speed 10
& Local Extend Module

| Configuration

x

Priority (0..31)z |1

Type
4 Bxternal |v

iy, Freewheeling
Status

Sensitivity 1

Cydlic

External event ||X2R_TRIG

&k Add Call 3 Remove Call [# Change Call |+ Move Up & Move Down | *=Open POU
POU Comment
& pLC_PRG

Wiatch 1

39

4-3. PLC SHELL

4-3-1. Function overview

PLC shell function is a text-based control monitor, which can be used to query the specific information of the

controller, input the specified command in the input window, and receive the response from the controller in the
result window.

4-3-2. Command list

Command name Function
ipaddr / IPADDR Get/set the IP address of PLC
netmask / NETMASK Get/set the subnet mask of PLC
gateway / GATEWAY Get/set the gateway of PLC
dhcp / DHCP Set IP to automatic acquisition
fpga / FPGA Get FPGA version of PLC
version/ VERSION Get firmware version of PLC
rtc-get / RTC-GET Get the current UTC time
rtc-set / RTC-SET Set UTC time

4-3-3. Application example

Double click “Device”, input “?” in “PLC Shell”, it will show all the functions. Here you can modify the IP,
obtain the firmware version, set / read the clock information, and so on.

Jevices >~ B X (] Device x §
=5 _sicshel || e—— ~
= Device [connectes SDH-60A32)
@ [i) Applications ty settings and the current configuratiom.
= 20 PLC Logic
=-£» Application Backup and Restore Set and get the IP address
- IDADDR
[l Library Manager Set and get the IP address
Files
PLC_PRG (PRG) petmask
Set and get the netmask.
= (&4 Task Configuration Log NETMASK
= ¥ MainTask Set and get the netmask.
= gateway
8] pLc_pre PLC Settings Set and get the gateway.
'3 SoftMotion General Axis Pool T e and oot the gat
oLC shell et and get the gateway.
"% Local High Speed 10 dhcp
Automatically Obtaining an ID address
"3 Local Extend Module Users and Groups I
Automatically Obtaining an IP address.
Access Rights (EECH
Read the FPGA version information.
fpga
Symbol Rights Read the FEGA version information.
IEC Objects
Task Deployment
retains to files(s). [Optional only from specified application].
Status restoreretains [<applicationname>
re retains from file(s). [Cptiomal only for specified application].
Information
v
—1
[] N
v
Watch 1 - ¥

For example, enter "ipaddr"” to get the current IP address of PLC.

40

Set and get the IP address. ~
o netmask
Applications Set and get the netmask.
NETMASE
Backup and Restore Set and get the netmask.
gateway
Set and get the gateway.
Files CATEWAY
Set and get the gateway.
Log dhcp
Automatically Obtaining an IP address.
DHCP
PLC Seftings Butomatically Obtaining an IP address.
FEGR
PLC Shell Read the FPGA version information.
fpga
Read the FPGA version information.
Users and Groups rersion

Read version information.
Access Rights [VERSION

Read version information.
saveretains [<applicationname>]

symbol Rights Save retains to files(s). [Optional only from specified application].
restoreretains [<applicationname:]

[EC Objedts Restore retains from file(s). [Opticnal only for specified application].

Task Deployment

Status ipaddr

N 192 168 €.%6
Information

Input “ipaddr 192.168.61.196”, set PLC IP address. If "write to successful" is displayed, the writing is successful.

[pevice x -
e e g -
Set and get the gateway. ~
GRTEWAY
Applications Set and get the gateway.
dhep
Backup and Restors Butomatically Obtaining an IP address._
DHCP
Butomatically Obtaining an IP address.
Files roca
Read the FPGA version information.
Log fpga
Read the FPGA version information.
[version
PLC Settings

Read version information.
[VERSTION
Read version information.

saveretains [<applicationname>]

d Save retains to files(s). [Optiomal only from specified application].
Users and Groups restoreretains [<applicationnames]
Restore retains from file(s). [Optional only for specified applicatiom].
Access Rights
Symbol Rights L
ipaddr
IEC Objects

152.1€2.6.%

Task Deployment

Status ipaddr 152.1€8.€.10

. Write to successful.
Information

E——
H\paddr 192,168,610 | v

Input “netmask” can get the current subnet mask of PLC.

Enter "netmask 255.255.254.0" to set the subnet mask of PLC. If "write to successful" is displayed, the writing is
successful.

41

Read version information. ~
VERSION

Applications Read version information.
saveretains [<applicationname=]

Backup and Restare Save retains to files(s). [Optional only from specified application].
restoreretains [<applicationname>]

Fi Restore retains from file(s). [Optional only for specified application].

iles

Log

. ipaddr

PLC Settings
152 _168_6_€

PLC Shell

Users and Groups ipaddr 192_16€8.6.10

Access Rights Write to successful.
Symbaol Rights o

netmask
IEC Objects

255_255_255.0

Task Deployment

Status nmetmask 255.255.255.

=)

Write to successful.

Information

| A4
| [netmask 255.255,255.0 | -
v
" "
Enter "gateway" to get the current default gateway of PLC.
[{] Device x -
Trmmmm— Bestore retains from file(s). [Optional only for specified application]. "~
Applications
Backup and Restore —
ipaddr
Flm 152.165.¢.¢
Log
ipaddr 192.1€8.6.10
PLC Settings
Write to successful.
PLC Shell
Users and Groups ;;;;ask
Access Rights 255.255.255.0
Symbol Rights —
netmask 255.255.255.0
IEC Objects
Write to successful.
Task Deployment
Status gateway
192.168.6.1
Information
v
1
| |gateway | v|
I v

Enter “gateway 192.168.60.1” to set PLC gateway, if "write to successful” is displayed, the writing is successful.

42

[1] pevice x -

- S
"
192.162.6.6
Applications
Backup and Restore ==
ipaddr 152_1€8.€_10
Flm Write to successful.
Log
netmask
PLC Settings
255.255.255.0
PLC Shell
Users and Groups netmask 255.255.255.0
Access Rights Write to successful.
Symbol Rights I
gateway
IEC Objects
192.168.6.1
Task Deployment
Status gateway 152.168_6.1
Write to successful.
Information
v
| [pateway 192.158.6.1 -
A4

Enter "dhcp" and set the IP acquisition method of PLC to automatic acquisition. If "write to successful" is
displayed, the writing is successful. When the IP acquisition method is automatic, it is necessary to ensure a good
network environment.

e s e

Applications

Backup and Restore

Write to successful.

Files 255_255_255.0
Log

netmask 255.255.255.0
PLC Settings

PLC Shell

Users and Groups
Access Rights
Symbol Rights
IEC Objects

Task Deployment
Status

Information

Enter "FPGA" to get the current FPGA version of PLC.

Write to successful.

gateway

152 168 _€.1

gateway 192.168.6.1

Write to successful.

dhcp

Write to successful

|
po |

43

Applications

Backup and Restore

Files

Log

PLC Settings

PLC Shell

Users and Groups

Access Rights

Symbol Rights

IEC Objects

Task Deployment

255 255.255.0

netmask 255.255.255.0

Write to successful.

gateway

152.1e2.6.1

gateway 192.1€8.€.1

Write to successful.

dhcp

Write to successful

Status

Information

fpga

20201125

oo |

Enter "version” to get the current firmware version of PLC.

[T Device x|

e

Applications

Backup and Restore

Files

Log

PLC Settings

PLC Shell

152.1e2.6.1

gateway 192.1€8.€.1
Write to successful.
dhcp

Write to successful

£]
Users and Groups pas
20201125
Access Rights
Symbol Rights ;;;lan
IEC Objects
Task Deployment —
versicn

Status

3.5.15.40_1.0.0_2021101%

Information

|uersion

Enter "rtc-get" to get the current UTC time.

44

Applications

dhcp

Backup and Restore
Write to successful.

Files

Log fpga
20201128

PLC Settings

PLC Shell =
vwesion

Users and Groups

Access Rights

[version

Symbol Rights
3.5.15.40_1.0.0_2021101%
IEC Objects

Task Deployment

rte-get

Status
Current UIC date and time: 2000-01-05T07:20:53,400Z

Information

|rtc-get ‘ o

Enter “rtc-set 2021-10-25T18:24:30” to set UTC time. If “RTC successfully set to 2021-10-25T18:24:30,000Z” is
displayed, the writing is successful. “000Z” display content is not fixed.

ﬂj Device X -
e e s
A
Applications e
Backup and Restore 20201125
Files L
vwesion
Log
PLC Settings

PLC Shell version

3.5.15.40 1.0.0_2021101%
Users and Groups - -

Access Rights

to-get
Symbol Rights FEeTeR

Current UTC date and time: 2000-01-05T07:20:53, 4002
IEC Objects

Task Deployment

rtc-set 2021-10-25T18:24:30

Status
RTC successfully set to 2021-10-25T18:24:30,0002

Information

1
|rtc€et 2021-10-25T18:24:30 ~

4-4. Clock

4-4-1. Function overview

XS series PLC integrates RTC, which is used to record the current system time. The clock is powered by battery,
which can ensure the accuracy of time. At the same time, it also supports users to modify RTC time manually.

45

4-4-2. Application example

How to get events:
1. Double click “Device”, enter “rtc-get” in “PLC Shell” to get the current time.

Devices * 1 x [l Device x

= O et ~|| | communication Settings -
=[] Device [connected] (xSDH-60A32) ——
= Ellf PLC Logic 1 Applications

=-1C} Application
il Library Manager

Backup and Restore

PLC_PRG (PRG) Files rersion
=-[&4 Task Configuration
= MarTask Log 3.5.15.40_1.0.0_2021101%
&) pic e PLC Settings

& softMotion General Axis Pocl

2 Losabigh Sped 10 z |==—=

3 Local Extend Modue (Current UTC date and time: 2000-01-05T07:20:53,400Z
Users and Groups

Access Rights

Symbol Rights rto-ses 2021-10-25T18:24:30
mbol Rights

RTC successfully set to 2021-10-25T18:24:30,000Z
IEC Objects

Task Deployment

reo-get

Status 4
(Current UTC date and vime: 2021-10-25T13:25:58,155Z

Information

v
’7rr.c-get | 3 v
2. Use clock instruction
(1) Add related library file
3 HEET X4 B 99 H H
Add “Util” in “Library Manager”. After adding, you can use the clock function.
Jevices - X PLC_PRG i) Library Manager x
=5 e ~[EJAdd Library 3 Delete Library |75 Properties Details 5] Placeholders (ffflLibrary Repository @ Icon legend...
= @ peviee pisoHc0Az) Name 2 Namespace Effective version
=Bl pLC Logic . o R
=1} Application i .
PLC_PRG (PRG) .
=3 Task Configuration 4 ‘
=g MainTask i |
&) pLC_PRG 4 | - |
‘& SoftMotion General Axis Pool ‘ Juur |
% Local High Speed 10 Lbrary | placeholder
‘& Local Extend Module
Match Library ~
| util 3.5.17.0 4
[UtiltyRandomness Siorace 39 Storage, 3.5.13.0
[a UtiityGetCurrentDateAndTime 39 Storage, 3.5.13.0
| cpsvaProtocolutils, 3.5.14.0
UtiHaveToSwapForBinTaglti CDSVIPratocolUtis, 3.5.14.0
UtilvalidateByteOrder CD5V3ProtocolUtils, 3.5.14.0
UtiReadMisalignedword CDSV3ProtocolUtils, 3.5.14.0
UtiReadMisalignedLWord CDSV3ProtocolUtils, 3.5.14.0
UtiReadMisaignedDWard CosVProtocollis, 35,140
? >
Details... | | Library Repository... 5 ‘ Cancel |
Watch 1 1 I -

(2) Make the clock program

Obtain the current time by using the function block “Util.GetLocalDateTime”, “Util.SplitDateTime”. There are
other function blocks about clock in this library, which can be viewed in the library "Util".

46

| [5] mcere [l Library Manager POU x| [Device
PROGRAM POU
VAR
TimeZone:Util.TimeZone;
END_VAR

=]

Bow o e
qu

w

100 % Eﬁ

7] (o]
Util. GetLocalDateTime — Util SpiitDateTime ~ '—{

TimeZone HzTimeZone GetlocalDateTime uliDateTime SplitDateTime —
eErrorlD i~ uiYear—
uiMonth —
uiDay—

uiHour -
uiMinute —
uiSecond
uiMilliseconds—
elwleekday —

kG 100 % &R

47

5. Codesys project examples

5-1. Basic programming operation
1. Start Codesys

(1) Set administrator permissions

Right click the Codesys v3.5 software, click properties, select “Run as administrator”.
» CODESYS V3.5 SP16 Patch 4 Properties

General | Shoricut | Compatibility | Security | Details

3 CODESYS V3.5 SP16 Patch 4
»

Targettype: Application

Targetlocation: Common

Target JESYS.exe" ~Profile="CODESYS V3.5 SP16 Patch 4"
Choose the advanced properties you want for this shortcut.

| |Run as administrator

This option allows you to run this shortcut as an
administrator, while protecting your computer from
unauthorized activity.

Startin: "C:\Program Files\CODESYS 3.5.16 40\CODESYS\C:
Shortcut key: MNone

Run: Mormal window w

Comment

Open File Location Change lcon...

#|Run in separate memory space

(2) Start Codesys

Double click Codesys software on the desktop.

(3) Create a project

Select the new project in the file menu to create a new project, as shown in the figure.

(4) Select the project
User can build empty project or standard project. And enter the name and path for the project file, then click ok.

48

Categories Templates

o 5 d
Empty HMI project Standard Standard
project project project wi...

A project containing one device, one application, and an empty implementation for PLC_PRG

MName Untitled1

Location F:\Document

2. Create PLC program file

The establishment of PLC program file is not only the establishment of operation sequence of operation structure,
but also the establishment of programming mode, and even includes the segmentation of data area. Before
establishing the program file, the operation structure should be divided in detail, the continuous, periodic and
event triggered tasks should be determined, and the priority of periodic and event triggered tasks should be
arranged. After creating a Codesys project, a default continuous task will be automatically generated, under which
there is a default program and PLC_ PRG.

(1) Create atask
First of all, manage tasks in "task configuration”. In general project applications, it can be divided into main
logical tasks and communication tasks. Communication will put it at a higher task priority and a shorter cycle time
because it needs to update the data source. In addition, if motion control is involved in the project, it will also be
separated into a task and placed at the highest priority, as shown in the figure:

= @ Task Configuration
@ Communication
£ EtherCAT Task
& MainTask

(2) Create POU

Click “Application”-->right click “add object”, select POU.

(a) Variable declaration
In the device window, the default POU is "PLC_PRG". Double click "PLC_PRG" in the device tree to
automatically open it in the ST language editor in the middle of the Codesys user interface. The language editor
consists of a declaration part (upper part) and an implementation part (lower part), separated by an adjustable
dividing line. The declaration part includes: the line number, POU type and name (such as "PROGRAM
PLC_PRG") displayed, and the variable declaration between the keywords "VAR" and "END_VAR", as shown in
the following figure. In the declaration section of the editor, move the cursor after VAR and click enter. Insert a
new blank line, declare INT variable "Ivar”, INT variable "Erg", FB1 variable "Fbinst".

49

Jevices 1 x PLC_PRG X

=5 thotleds - 1|| PROGRAM PLC_PRG
=[] Device (¥SDH-60A32-E) = '] Tvar:INT:
=& PLC Logic 2 Fbinst:FBI; variable declaration
=1} Application 5 Erg:INT;
m Library Manager e END_VAR
PLC_PRG (PRG)
= @ Task Configuration
=-g& MainTask
& pLC_PRG o

‘I!. SoftMotion General Axis Pool
2 Local High Speed 10
"2 Local Extend Module

(b) Input the program

Enter the following code in the program editing area under the declaration area:
1 Ivar:=Ivar+l;
2 Fbinst{in:=11,o0ut =>Erg)r

(c) Custom function / function block
In the variable declaration area, you can see that the function block "FB1" is called, but "FB1" is not a standard
function block, so you need to customize the function block. Select the add object command from the Project
menu. Select "POU" on the left side of the "add object” dialog box, enter the name: FB1, and activate the
"function block (b)" option in the type option. Select “structured text (ST)" as the implementation language. Click
the "open" button to confirm the object setting.
The edit window for the new function block FB1 opens. Like the variable declaration of PLC_PRG, the following
variables are declared here:
FUNCTION BLOCE FBI
VAR INPUT
_in : INT;
END VAR
VAR OUTPUT
_n::ut :INT;
END VAR
i
ivar:INT:=2;
END VAR
Enter the following in the program editor implementation section:

out:=int+ivar;

The function is to add "2" to the input variable "in" and assign it to the output “out".

5-2. 110 mapping

In Codesys application, when variable mapping with | / O module of programmable logic controller or network
communication with external equipment is required, two methods can be adopted:
(1) Bind the parameters defined in the POU to the variables
(2) Use the keyword AT to directly link the variable to the determined address. The direct variable must
comply with the following rules:
AT<address>:
< identifier> AT<address>:<data type>{:=< initialize value>};

{}is an optional part.

50

Start with %", followed by the position prefix symbol and size prefix symbol. If there is a grade, use an integer to
represent the grade, and use the decimal point symbol ".", such as %1X0.0, %QWO. The specific format of direct
variable declaration is shown in the following figure:

identifier AT address : Data type ;

(identifier } @ %I J @ \Byte BltJ Data type}
palncamc

5-3. Task configuration

1. Overview

A program can be written in different programming languages. A typical program is composed of many
interconnected functional blocks, which can exchange data with each other. The execution of different parts of a
program is controlled by "tasks". After the "task™ is configured, a series of programs or function blocks can be
executed periodically or triggered by a specific event to start executing the program. There is a task manager tab
in the device tree, which can be used to declare a specific PLC_PRG and control the execution of other
subprograms in the project. Task is used to specify the attributes of the program organization unit at runtime. It is
an execution control element with the ability to call. In a task configuration, multiple tasks can be established, and
in a task, multiple program organization units can be called. Once a task is set, it can control program cycle
execution or start execution through specific events.

In task configuration, it is defined by name, priority and start type of task. This startup type can be defined by time
(periodic, random) or by internal or external trigger task time, for example, using the rising edge of a Boolean
global variable or a specific event in the system. For each task, a series of programs started by the task can be set.
If this task is executed in the current cycle, these programs will be processed within the length of one cycle. The
combination of priority and condition will determine the sequence of task execution. The task setting interface is
shown in the following figure:

31 untiteds ~|| configuration
= Device (xSDH-60A32-E)

= &1 pLc Logic

=} Application
Libr M:
M tibrary Manager Interval {e.g. t#200ms)| \ZD | ms v
FBL (FE)
PLC_PRG (PRG)
= - onfiguration
¥ Freswheeling
Status
S ms
'8 SoftMotion General Auxis Pool T A
"3 Local High Speed 10
3 Local Extend Module
al emove Call [# Change Ca Move Move Down en
Add Call ¥ R Call [# Change Call Move Up & Move D +=Open POU
POU Comment

& pic_PRG

Since Codesys v3.x has the following attributes during task configuration, programmers should follow the
following rules:

+ The maximum number of cycle tasks is 100.

+ The maximum number of free running tasks is 100.

51

+ The maximum number of event triggered tasks is 100.

+ According to the target system, PLC_ PRG may be executed as a free program in any case without
inserting into the task configuration.

+ The processing and calling program are executed according to the top-down sequence in the task editor.

2. Task priority

In Codesys, you can set the priority of tasks. There are 32 levels (a number between 0 and 31, 0 is the highest
priority and 31 is the lowest priority). When a program is executing, the task with high priority takes precedence
over the task with low priority. The high priority task 0 can interrupt the execution of the lower priority program
in the same resource, so that the execution of the lower priority program is slowed down.

Note: when assigning a task priority level, do not assign tasks with the same priority. If there are other task
views that precede tasks with the same priority, the results may be uncertain and unpredictable.

3. Task execution type

Type editing and configuration can be performed for each independent task. Including fixed-cycle cycle, event
trigger, external trigger, free running and state trigger.

(1) Cyclic
According to whether the instructions used in the program are executed or not, the processing time of the program
will be different, so the actual execution time will change differently in each scanning cycle, and the execution
time will vary. By using the fixed cycle mode, the program can be repeatedly executed with a certain cycle time.
Even if the execution time of the program changes, a certain refresh interval can be maintained. Here, we also
recommend that you preferentially choose the fixed cycle task startup mode.
For example, if the task corresponding to the program is set to the fixed cycle mode and the interval time is set to
10ms, the sequence diagram of the actual program execution is shown in the following figure.

Actual program Waiting

execuytion time time
/ END / END END END

_ 8ms ngs“ bms | 4ms | 7ms | 3ms_|_ 8ms S
10ms 10ms 10ms 10ms

e J
Y

Fixed cycle set time

If the actual execution time of the program is completed within the specified fixed cycle setting time, the spare
time is used as a waiting time. If there are tasks with lower priority in the application that are not executed, the
remaining waiting time is used to execute tasks with lower priority.

(2) Freewheeling
The task will be processed as soon as the program starts to run. After the end of one running cycle, the task will be
automatically restarted in the next cycle.
It is not affected by the program scanning cycle (interval time). That is, ensure that the next cycle is entered after
the last instruction of the program is executed every time. Otherwise, the program cycle will not be ended.

52

Actual program
execytion time
/ END;0 END; 0 END;0 END;O END;0 END

o o o oy
]] L

A
A

8ms J‘ bms Tms 3ms 8ms Tms

Since there is no fixed task time in this execution mode, the execution time may be different each time. Therefore,
the real-time performance of the program cannot be guaranteed, and this method is rarely used in practical
applications.

(3) Event
If the variable in the event area gets a rising edge, the task starts.

(4) Status
If the variable in the event area is true, the task begins.
In the following figure, the event trigger and status trigger are compared respectively. The green solid line is the
boolean variable status selected by the two trigger methods. The following table is the comparison result.

|
I 2 3 4

Task input trigger signal

The state triggering mode is similar to the event triggering function, the difference is that the program will be
executed as long as the trigger variable of the state triggering is true, and will not be executed if it is false. While
the event trigger only collects the rising edge effective signal of the trigger variable.

Different types of tasks showed different responses at sampling points 1-4 (purple). This specific event is true to
complete the condition of the state driven task. However, an event driven task requires the event to change from
false to true. If the sampling frequency of the task plan is too low, the rising edge of the event may not be
detected.

Execution point 1 2 3 4
Event Not execute Execute Execute Execute
Status Not execute Execute Not execute Not execute

(5) External interrupt
If the variable in the event area gets the rising edge or falling edge of an external interrupt signal X, the task starts.
The input terminal X can be used as an input of an external interrupt. Each input terminal corresponds to an
external interrupt, and the rising edge or falling edge of the input can trigger an interrupt.

(6) Watchdog
The watchdog is a controller hardware type timing device. It can be enabled by "task configuration” in Codesys.
The watchdog function is not used by default.
The main function of the watchdog is to monitor the abnormality during the execution of the program or the
failure of the internal clock. If the system crashes or the program enters the dead cycle, the watchdog timer will
send a reset signal to the system or stop the program currently running by the PLC. We can vividly understand it
as a puppy needs its owner to feed it regularly. If it is not fed within the specified time, it will be hungry

53

immediately. To configure the watchdog, you must define two parameters, time and sensitivity. The configuration
of the watchdog is shown in the figure.

m Device \i‘% MainTask X -
Configuration
Priority { 0.31): |8
Type
& Cydlic ~ Interval (e.q. t#200ms) |ZU ms
Watchdog
[Enable
Time (e.g. t*200ms) |ZUD | ms v
Sensitivity |1 |
(D Time

Codesys can configure independent watchdog for each task. If the target hardware supports long watchdog time
setting, the upper and lower limits can be set. The default watchdog time unit is milliseconds (ms). If the program
execution cycle exceeds the watchdog trigger time, the watchdog function will be activated and the current task
will be aborted.

(2) Sensitivity
Sensitivity is used to define the number of task watchdog exceptions that must occur before the controller detects
an application error. The default is 1.
Final watchdog trigger time = time > Sensitivity. If the actual execution time of the program exceeds the
watchdog trigger time, the watchdog is activated. For example, if the time is 10ms and the sensitivity is set to 5,
the watchdog trigger time is 50ms. As long as the task execution time exceeds 50ms, the watchdog will be
activated immediately and the task will be suspended.

5-4. Program download/read

5-4-1. Compile

After the program is written, the program needs to be compiled before downloading. The compile command
checks the syntax of the written program and compiles only the programs added to the task. If the created POU is
not added to the task, the compilation command does not check the syntax of the POU.

The compilation instruction does not generate any code, and only checks the syntax of POU. When the device
login command is directly executed, the system will also execute the compilation command by default (equivalent
to manually executing the compilation command first), and then execute the connection login command after
compiling and checking that there is no syntax error. Similarly, no syntax check is performed on POU that are not
added to the task during compilation. Executing the login command generates code at the same time.
Build | Online Debug Tools Windo
¥ Build F11
Rebuild

Generate Code

Generate Runtime System Files...

Clean

Clean all

(1) Compile: compile the current application.
(2) Recompile: if you need to recompile the compiled application, you can recompile it.

54

(3) Generate code: after executing this command, the machine code of the current application is generated.
When executing the login command, the generated code is executed by default.

(4) Clear: deletes the compilation information of the current application. You need to regenerate the
compilation information when logging in to the device again.

(5) Clear all: deletes all compilation information in the project.

After executing the compile command, you can see that the " PLC_PRG " added to the task is displayed in blue,
and the " PLC_PRG " not added to the task is displayed in gray. The compilation instruction does not check the
syntax of the gray POU because the program unit is not in the active state. The compilation instruction only
checks the syntax of the POU in the active state. If the program unit that needs to be run is displayed in gray
during the compilation process, you can check whether the program unit has been successfully added to the task
that needs to be run.

After the compilation command is executed, you can see the information generated by compilation in the message
bar, where you can see whether the compiled program has errors or warnings, and the number of errors and
warnings. If there are errors and warnings, you can view and find them in the message window and modify the
program according to the prompt information.

5-4-2. Login download

1. Login

Login enables the application to establish a connection with the target device and enter the online state. The
prerequisite for correct login is to correctly configure the communication settings of the device and the application
must be free of compilation errors.

For login with the current active application, the generated code must be free of errors and the device
communication settings must be configured correctly. After login, the system will automatically select program
download.

2. Download

Download command is valid in online mode. It includes compiling the current application and generating object
code. In addition to syntax checking (compilation processing), application object code is generated and loaded
into PLC.

The application changed since last download. What do you wantto do?

Options
(®) Login with online change

() Login with download
(") Login without any change

[] Update boot application

Cancel Details...

(1) Login with online change
When the user selects this option, the changed part of the project is loaded into the controller. Use the "login with
online change" operation to prevent the controller from entering the stop state.
Note:
(DThe user has performed at least complete download once.

55

(@) The pointer data will update the value of the latest cycle. If the data type of the original variable is
changed, the accuracy of the data cannot be ensured. At this time, the pointer data needs to be reallocated.
(2) Login with download
After selecting login and download, reload the entire project into the controller. The biggest difference from "login
with online change" is that after downloading, the controller will stay in the stop mode and wait for the user to
send the run command or restart the controllerto run the program.
(3) Login without any change
When you log in, you do not change the program that was last loaded into the controller.

5-4-3. Source code download

Codesys does not download the source code automatically by default for the protection of the programmer's
source code. If you need to download the source code, you need to manually set it. Click "online™ - > "source
download to connected device". You can also set this attribute in project - > project settings - > source download
- > timing.

® Compiler warnings
m Library development

Destination Device

<All devices in project= ~
% Page Setup
cecuri
scurity Content
SFC The project file itzelf is always part of the source download archive
& SoftMotion [Use compact download

% Source Download |
Static Analysis Light

& Users and Groups

&) visualization () Implicitly at program download and online change

&) visualization Profie () Implicitly at creating boot project

Additional Files...

() Implicitly at creating boot project, download and online change
() Prompt at program download and online change

(® Only on demand

5-4-4. Read program

Open a device selection dialog box in the menu "File > source upload". The user selects the network path
connected to the PLC and clicks "OK". If the archive file already exists under the path selected by the user, a
prompt will be given whether to overwrite it.

It should be noted here that before reading the program, it is necessary to ensure that "source download to
connected device" has been done in the previous download process. Otherwise, the data in the controller cannot be

read.

56

5-5. Program debugging

5-5-1. Reset

There are three ways to reset the Codesys program, which can be selected in the "online™ menu.

Online | Debug Tools Window Help

Co

Login Alt+Fa
@ Logout Ctrl+F8
Create Boot Application

Download
Online Change
Source Download to Connected Device

Multiple Download...

Reset Warm

Reset Cold

Reset Origin

Simulation

Security »
DOperating Mode »

Assign Server Applications on Download

1. Reset warm

After the warm reset, except for the holding type variables (PERSISTENT and RETAIN variables), other
currently applied variables are reinitialized. If the variables with initial values are set, the values of these variables
will be restored to the setting initial values after warm reset. Otherwise, the variables will be set to the standard
initial value 0.

2. Reset cold

Unlike "warm reset", the cold reset command not only sets the value of the common variable to the initial value of
the currently active application, but also sets the value of the holding variable (RETAIN variable) to the initial
value of 0. The persistent variable remains unchanged.

3. Reset origin

When a programmable device is selected in the device tree, this command can be used either offline or online.
Using this command will reset the device to the initial state, that is, any applications, boot projects and remaining
variables in the device will be cleared.

Since all project information has been cleared, it is necessary to "download™ the program again and "start" it after
relogin.

57

5-5-2. Program debugging

The view of "debug™ menu in Codesys is as shown in the figure. The main operations involve breakpoint setting

and single cycle.
Debug | Tools Window Help

| Start F5
m Stop Shift+F8
Single Cycle Ctrl+F5

M Mew Breakpoint..
Edit Breakpoint...
Toggle Breakpoint Fd
Dizable Breakpoint
Enable Breakpoint
Step Owver F10
Step Into F8
Step Out Shift+F10
Run to Cursor

Set Mext Statement

g Show Mext Staterment

[

Write Values Ctrl+F7
Force Values
Unforce Values Alt£F7

= Toggle Flow Control Mode

Core Dump »

Display Mode *

1. Breakpoint

Breakpoint is the function of processing stop in the program. When the program stops, the program R&D
personnel can observe the contents of its variables and 1/0O and other related variables when the program reaches
the breakpoint position, which is helpful to deeply understand the mechanism of program operation and find and
eliminate program faults.

Breakpoints can be set in all programming languages in Codesys. In the text editor ST language, the breakpoint is
set on the line. Set it on the network number in the FBD and LD editor. While in SFC, it is set at step.

2. Step

After the breakpoint is set, the program can be executed step by step. This function allows the program to run step
by step, which is convenient for programmers to debug and check the logic errors in the program.

(1) Step over
This command will execute the current instruction in the program and stop after execution. When POU is not
called, the step over and step into commands have the same effect. However, if the POU is called, step over will
not enter the POU. Instead, the POU calling is regarded as a complete step and executed at one time. Step into will
enter the POU. If the SFC language is used, step over will treat an action as a complete step and execute it at one
time. If you want to jump to the called POU for single-step debugging, you must use step into.

(2) Stepinto
When executed, the current instruction position is indicated by a yellow arrow. If the current instruction does not
call POU, using this command has the same effect as using the skip command.

(3) Step out

58

When single-step debugging is performed in a POU, the remaining instructions of the POU will be executed at
one time by using step out, and then the next instruction at the place where the POU is called will be returned.
Therefore, if the POU is called down layer by layer, the step out will return up layer by layer, one layer at a time.
If the program does not contain any POU calls, the step out cannot be returned to the upper layer, and it will return
to the beginning of the program.

3. Single cycle

Select "single cycle" in "debug", so that the program can run step by step. That is, press once to run, and the
program will stop after one cycle and wait for the next run instruction.

5-6. Simulation

Offline simulation

Select "simulation"” in the menu "online" to enter the program running process in the simulation mode. After
confirming that the option "simulation" has been marked, compile the program and enter the simulation mode

after there is no error.
Cnline | Debug Tools Window Help

8 Login Alt+Fa

Logout Ctrl+F8
Create Boot Application

Download

Online Change

Source Download to Connected Device
Multiple Download...

Reset Warm

Reset Cold

Eeset Origin

v | Simulation

Security »

Operating Mode 3

Assign Server Applications on Download

5-7. PLC script function

The PLC script is a text-based control monitor (terminal). The command with specific information obtained from
the controller is input in an input line and sent to the controller as a string. The result display of the relevant string
in the browsing window is returned. This function is used for diagnosis and debugging purposes.

Double click the mouse to select "device”, find "PLC shell" in the right view, and enter the corresponding

command in the command input box below. Enter ?, Press enter to display all commands supported by the
controller. Refer to section 4-3.

59

Remove a cersificate
showsecuritysettings

Applications Show the list of all security settings end the current configuration.
=&l FLC Logic ipaddr
=} Application Backup and Restore £z gl gEp Wi TP siivees.
IPADDR
[l Library Manager Set and get the IP address.
Files
PLC_PRG (PRG) petmask
Set and get the netmask.
= (&4 Task Configuration Log NETMASK
= MainTask Set and get the netmask.
gateway
8] pLcpre PLC Settings Set and get the gateway.
"3 SoftMation General Axis Pool T e and oot the aat
oLC shell et and get the gateway.
"3 Local High Speed 10 dhcp
Automatically Obtaining an IP address
"3 Local Extend Modue Users snd Groups e
Automatically Obtaining an IP address.
Access Rights [EEED
Read the FPGA version information.
fpga
Symbol Rights Read the FEGA version information.
[wersion
[EC Objects Read versiom informatiom.
vERSTON
Read wersiom information
Task Deployment saveretains [<applicationname>]
Save retains to files(s). [Opticnal only from specifisd application]
Status restoreretains [<applicationname>]
Restore retains from file(s). [Opt 1 only for fied Gz R
Information
—1
]

Watch 1

Note: to use the script function, you must log in the PLC before using the corresponding command.

60

6. Industrial fieldbus technology

6-1. MODBUS communication

6-1-1. MODBUS overview

XS series programmable controller body supports Modbus protocol communication in the form of master and
slave.

Master station form: when the programmable controller is used as the master station device, it can communicate
with other slave devices using Modbus protocol. Data exchange with other equipment. Example: Xinje XS series
PLC can control the frequency converter through communication.

Slave station form: when the programmable controller is used as the slave station equipment, it can only respond
to the requirements of other master stations.

Master slave concept: in the RS485 network, at a certain time, there can be one master and multiple slaves (as
shown in the figure below). The master station can read and write to any of the slave stations, and the slave
stations cannot directly exchange data. The master station needs to write a communication program to read and
write to one of the slave stations. The slave station does not need to write a communication program, and only
needs to respond to the reading and writing of the master station. (wiring mode: all 485 + are connected together,
and all 485 - are connected together)

In the RS232 network (as shown in the figure below), only one-to-one communication is available, and there
is only one master and one slave at a time.

The reason why there are dotted arrows in the figure (including in RS485 network) is that theoretically, in the
two networks, as long as each PLC does not send data, any PLC in the network can be used as the master station
and other PLCs as the slave station. However, since there is no unified clock reference among multiple PLCs, it is
easy to send data from multiple PLCs at the same time, which will lead to communication conflict failure.
Therefore, it is not recommended to use this method.

61

6-1-2. Parameter configuration

1. Modbus master station configuration
(D In the applied project, right-click the device, click "add device", and click "MODBUS com" in the pop-up

dialog box to add.

: [—— | @
= 5] unetieds T‘ Ii
= ﬂ[:ewoe (XSDH Communication S¢| wame [odbus COM
et l 1
=180 PLc Logic | [Aeson
20 Apph By Copy | @ Append device (0 Updats device
Appl |
fipe Paste fo| {[5tria for 3 full text search | vendor | oall vendors> =
Bn Y Delete Narne Vendor Version Description -
=@ a Refactoring , § & Pt
- & R + - {3} HomesBulding Automation
[E2 Properties... LA
5 = Sevial Per
'3 softMotion J o > ' L?mcm 36 - Smart Software SoforsGmbH 3.5.16.0 A serial COM Port on = Windows PC. 3
L) Add Folder... -
% Local Hgh | [1 * i Pro
'Y J_DB“:,‘M" Add Device... | : % Prafinet 10
Update Device... | $ mercs "
:_"f Edit Object B [Grosp by category [Display all wersions [far experts only) [Display autdated versios

Edit Object With...

Edit 10 mapping

Import mappings from CSV...
Export mappings to C5V...
Online Config Mode...

Reset Origin Device [Device]

Simulation

@ mame:tohus com
Vendor: 35 - Smart Software Solutions GmbH
Categories: Modbus Serial Port
Version: 3,5, 16.0
Order Number: -
Description: A serial COM Port on a Windows PC.

=

Append selected device as last child of
Device

‘ | Information

& [Youcan select anather target node inthe navigatar while this window is open.)

4

-—-

Add Device Close

(2) After adding successfully, you can see "MODBUS COM" under the device, click "add device", select
"MODBUS master, COM port" in the pop-up dialog box, and click "add device" to add. Select "MODBUS master,
COM port", select "MODBUS slave, COM port" in the pop-up dialog box, and click “add device™ to complete the

addition.

= B ML Logic

= £ Application
m Library Manager
[5] pLc_PRG (PRG)
= _E Task Configuration
= & MainTask

) pLC PRG

1

[() Modbus_COM (Moghus COM)

2 SoftMotion Generd & Cut
2 Local High Speed 1 B3 Copy

3 Local High Pulse

i Paste

2 LocalExtendMod| X Delete

Refactoring
Properties...

Add Object

Ap

BaiName Modbus_Master_COM_Port

O Update device

[strmg for a ful text search | vendor | <l vendors>

Name Vendor Version

I Action
Filt @ Appenddevice () Insert device
Lo
LEPLS|| = (@ Feldouses
= W Modbus
= W Modbus Serial Device

) Modbus Serial Device

35 - Smart Software Solutons GmbH ~ 3.5.17.0
= W Modbuss Secial Master 3

A device that works as a Modbus Serial standalone slave.

[me.convm 35 - Smart Software Solutions GmbH 3.5.17.0

L

AMNIM5awmmnwﬂcmP+lo!

<

>

[A Group by category [] Display all versions(for experts anly) [[] Display outdated versions

B mame:Modbus Master, COMPort

Bl Messages - Total 0 error(s),

Disable Device

Update Device...
[J° Edit Object

Edit Object With...

Edit 10 mapping

Import mappings from CSV...

() Add Folder... 2 Vendor: 35 - Smart Software Solutions GmbH
. e ol Master
I I Add Device... I Version: 3.5.17.0
Insert Device... Order Number: -

Description: A device that works as a Modbus Master on a serial COM Port of a Windows PC.

o

Append selected device as last child of
Modbus_COM

© (You can select another target node inthe navigator while this window is open.)

62

[| Name [Modbus_Siave COM_Port

Sevices - 1 X
B y— +1|| Acton
=-[fJ Device (XSDH-60A32) (@ Append device O Update device
Bl etege String for ful text search | vendor | <al vendors> >
=-1Ck Application
{f) Lirary Manager Name Vendor Version Description
PLC_PRG (PRG) =~ (i Fieldbuses
= (8 Task Configuration =W Modbus
=g MainTask = Wi Modbus Serial Slave
B ric_rre | [Modbus Slave, COMPort 35 - Smart Software Solutons GmbH ~~ 3.5.16.0 A generic device that works a5 a Modbus Slave on a serial bus.
= [Modbus_COM (Modbus COM)
‘m Modbus_Master_COM_Port (Modbus Master, COM
‘% SoftMotion General Axis Pool
'3 Local High Speed 10
‘& Local Extend Module b >

Group by category [] Display all versions (for experts only) [] Display outdated versions

ﬂi Name: Modbus Slave, COM Port
Vendor: 35 - Smart Software Solutions GmbH
Categories: Modbus Serial Slave -
Version: 3.5.16.0 %
Order Number: - -
Description: A generic device that works as a Medbus Slave on a serial bus.

Append selected device as last child of
Modbus_Master_COM_Port

< >

E] Messages - Total 0 error(s), 0 warning(s), 0 message(s)| Add Device Clase

B & (You can select another target node in the navigater while this window is open.)

(3) After adding, you can see the addition of the Modbus COM master station in the left device bar. Double click
"modbus_slave_com_port™ to configure the reading and writing in the "MODBUS slave channel™ on the right.

Jevices v B X PLC_PRG [Device (] Modbus_Slave_COM_Port x hd
=5 unsteds - 3
; i El
= [Device (xSOH60AT) General Name Access Type Trigger READ Offset Length Error Handling WRITE Offse | |3
= 0 Chamnel0 Read Holding Registers (Function Code 03} Cyclic, t#100ms 1650000 1 Keep last value H
2l i ogic Modbus Slave Channel 9 Regsters (7)_|er ? =
=} Application 2]
) Library Manager Modbus Slave Init =
PLC_PRG (PRE) ModbusGenericSerialSlave /0

= (&8 Task Configuraton Mapping £
= MainTask ModbusGenericserialslave IEC g
& PLC_PRG Rbicc3 H
=i Modbus_COM (Modbus COM) Status yg
= [Modbus_Master_COM_Port (Modbus Master, COM =
[Modbus_Siave_COM_Port (Modbus Save, cdf e 3
g
"3 Softhotion General Axis Pacl 1 L

" Local High Speed 10

"% Local Extend Module

3
< >
Move Up Move Down 2dd Channel Delete Edit...
Watch 1 -3 x

2. Modbus slave station configuration

(D) In the applied project, right-click the "device", click "add device", and click "MODBUS COM" in the pop-up
dialog box to add.

63

=5 Littieds 7“7
Communication Se
= (@ Device (xsoH
Cut)
= 90 pLc Logie ;;_ c L
:) opy
° L Paste
iy & o1
BL ¥ Delste
= la Ta Refactoring 3
- é% Properties...
Y softiotion 15 Add Object 3
% Local bigh |=L_Add Folder.. 2
% LocalExte|___Add Device... | |
Update Device... |
[Edit Object i

Edit Object With...

Edit 10 mapping

Import mappings from CSV...
Export mappings to C5V...
Online Config Mode...

Reset Origin Device [Device]

Simulation

‘ | Information

| @ Append devies

| @

Name [Modbus_COM
Acton
() Update device

Striryg for a full bext search Wendor | <all vendors>

Narme Vendar Wersion
¥ = EtheretP

*+ (&} HomesBuldng Automation

= Modkus.

= mu Serial Por

Description -

L?Mxh.scm 35 - Smart Software Solutions GmbH 15160

+ . prof

A serial OOM Port on & Windows PC. 3

*- 7 prafinet 10
* 5 sereos

[Grown by category [Display all wersians (Far expests anly) [Display autdated versios

@ mame:tohus com
Vendor: 35 - Smart Software Solutions GmbH
Categories: Modbus Serial Port
Version: 3,5, 16.0
Order Number: -
Description: A seial COM Port on a Windows °C.

=

Append selected device as last child of
Device

& [Youcan select anather target node inthe navigatar while this window is open.)

4

—

Close

Add Device

(2)After adding successfully, you can see "MODBUS COM" under the device. Right click "add device" and select
"MODBUS serial device" in the pop-up dialog box. As shown in the following figure:

= € Application
.D Library Manager
[E] PLc_PRG (PRG)
= (@ Task Configuration

=8 MainTask
& i PRE 1
1 @ Modbus_COM (Moghus COM)
‘A SoftMotion Generz & Cut
3 Local High Speed 1 B2 Copy
3 Local High Pulse | [Paste
"3 LocalExtend Mody X Delete
Refactoring
2 Properties...
Add Object
) Add Folder... 2

Insert Device...

Disable Device

Update Device...
(7 Edit Object

Edit Object With...

< Edit 1O mapping

lrnmnrd mazmminae frmm COU

Name |Modbus_Serial Device

Action

(®) Append device () Insert device () Update device

[string for & ful text search | vender |.cal vendors> -
Name Vendor Version Description
= @ Fielduses
= - Modbus
= Modbus Serial Device 3
|Einm:mm:= 35 - Smart Software Solfions GmbH ~ 3.5.17.0 A device that works as a Modbus Serial standalone slave.

+ B Modbus Serial Master

Group by category [] Display all versions (for experts only) [] Display outdated versions

H Hame: Modbus Serial Device
Vendor: 35 - Smart Software Solutions GmbH
Version: 3.5,17.0
Order Number: -
Description: A device that morks as a Modbus Serial standaione slave.

Append selected device as last child of
Hodbus_COM

@ (You can sel=ct another target node inthe navigator while this window is open.)

4

Close

.|

(3)After adding, you can see the addition of Modbus com slave station in the left device bar. Double click
"MODBUS serial device" to configure registers and coils in "General”. After configuration, you can monitor the
reading and writing data of master station to XS slave station in "MODBUS serial device 1/O mapping".

=vices ~ B X PLCPRG (7] Device '[7] Modbus_Serial_Device X | -
) tntitieds -
= Device (XSDH-60A32) General 2
=B pLC Logic . .
Modbus Serial Device /0 Mapping =
= £} Application [watchdog 500 2
i) Library Manager Modbus Serial Device IEC Objects Holding registers 0 3
+[E] pLC_PRG (FRG)
= [Tesk Configuration Status Input registers 10
= 2 ManTask Information Discrete Bit Areas
PLC_PRG
o oran

= [Modbus_coM (Modbus COM)
|2 Modbus_Serial_Device (Modbus Serial Device)
") SoFMoton General Axis Foal
"% Local High Speed 10
"% Local Extend Module

1

Discrete Inputs 16 [ewax)
StartAddresses
ol
Discrete inputs 0 H
Holding register
Input register 0]

[Foaieal Qeemoet vemm ey, (g[eereders [5)

sevices - orox [5] PLL_PRG |4 vewice |14 Modbus_Serial_Uevice X -
=5 Untiteds -

~] Device prsors0n52) General 5 |find Filter Show all - &k Add FB for 10 Channel...
= [0 PLE Logic I Variable Mapping Channel Address Type Unit Description
=1} Application - Holding Registers ~ %QWO0 ARRAY [0..5] GF WORD
m Library Manager Madbus Serial Device IEC Objects) Input Registers HQW 10 ARRAY [0..9] OF WORD
PLC_PRG (PRG) C) Cois %QB40 ARRAY [0..1] OF BYTE
= [3 Task Configuration SEID e Discrete Inputs %QB42 ARRAY [0..1] OF BYTE
= 5 manTask Information
&) PLc_PRG

1
= [Modbus_COM (Modbus COM)

Modbus_Serial_Device (Modbus Serial Device)
"3 SoftMotion General Axis Pool

"3 Local High Speed 10

"3 Local Extend Module

| Reset Mapping Always updatevariables |Enabled 1 (use bus cyde task if not used in any task)

= Create new variable "% =Mapto existing variable

Bus Cycle Options
Bus cydle task MainTask 5

|| watch 1

6-2. MODBUS TCP

6-2-1. MODBUS TCP overview

Modbus TCP uses TCP/IP to transmit MODBUS messages between stations. Modbus TCP combines the TCP/IP
protocol and Modbus protocol as the data representation method of application protocol standard. Modbus TCP
communication messages are encapsulated in Ethernet TCP/IP packets. Compared with the traditional serial port
mode, Modbus TCP inserts a standard MODBUS message into the TCP message without any data parity and
address.

XS series programmable controller supports Modbus TCP protocol communication in the form of master and
slave.

Master station form: when the programmable controller is the master station device, it can communicate with
other slave devices using Modbus TCP protocol. A master station can connect up to 64 slave stations.

Slave station form: when the programmable controller is used as the slave station equipment, it can only respond
to the requirements of other master stations.

65

6-2-2. Parameter configuration

1. Modbus TCP client configuration

(D) In the applied project, right-click the "device", click "add device", and click "Ethernet" in the pop-up dialog

box, as shown in the figure:

= 3 Untitieds ﬂ I -
= @o xsort Communication Se
1
= 8l pLciogic
By Copy
o Ao Paste

0!

X Delete

Refactoring »

2 Properties...
i Add Object »

) _Add Folder... 2
Add Device... | |
Update Device...

Edit Object
Edit Object With...

2 Local Fxm[

5

Edit IO mapping

Import mappings from CSV...

Export mappings to CSV...
% Online Config Mode...

Reset Origin Device [Device]

Simulation

Name [Ehemet
Acbon

@ Append davice (O Update device

|String for & Rl text = vendor | <Al vendors>

earch
Name Vendor Version Description
+ HP Etheret Admter
= EthertietP
W Ethernet Adapter
3 Ethrmet 35 - Smart Softwere SolSons GmbH 3.5.17.0 Ethemet Link. 3

L & U Deafinat 100
[4 Group by category [] Display sl versions (for eperts only) [] Display outdated versions

i mame:gthernet
Vendor: 35 - Smart Software Solutons GmbH
Categories: Ethernet Adapter, Ethernet Adapter, Ethermet Adapter, HomeBBLidng Automesion
Version: 3.5.17.0
Order Number. -
Description: Ethermet Link.

X

Append selected device as ast child of
Device
A

© (You can select snother target node inthe navigator while this window is open.)

.
| cose

(2) After adding successfully, you can see "Ethernet" under the device. Right click "Ethernet", click "add device",
select "Modbus TCP master" in the pop-up dialog box, and click "add device" to add. Select "Modbus TCP
master”, select "Modbus TCP slave™ in the pop-up dialog box, and click "add device" to complete the addition.

& PLC PRG -
Ethernet (E] @® Append device () Insert device evice () Update device
| B, o, |
‘& SoftMofion | s for 3 il et seaech Vendor | <All vendors>
En Copy - -
2 Local High § 5 Name Vendor Version Description
& Paste = [Fckd
3 Local High P @ redtuses
Delete 4 S Ehemey/P
"3 Local Exten = 0 Madbus
Refactoring = st Mocbus TCP Master 3
[Modbus TP Master 35 - Smant Software Solutions GrbH ~ 3.5.17.0 A device that works as a Modbus Master on Ethemet.
Properties... + I TEEbGE U Save Dence
- B Profinet 10
Add Object
) Add Folder.. [Group by category [] Display all versions(for experts only) [] Display cutdated versions
‘ | Add Device... I | 2 [Wame:Modbus TCP Master
- ! Vendor: 35 - Smart Software Solutions GmbH
Insert Device... e e
Disable Device LE IRy —5“.
Order Number: -
Update Device... Description: A device that works as a Modbus Master on Ethernet.
(7 Edit Object
Edit Object With.. Append selected device as last child of
. 5 Ethernet
Edit 10 mapping @ (You can select anather target node in the navigatar while this window is open.)
_— Import mappings from CSV... — 4
Messages - Total 0 er| . Close
Export mappings to CSV...

66

svices ~ ¥ Action
‘B unttieds (®) Append device () Insert device P c= (0 Update device
=[] Device (XSDH-60432)
=B pLC Logic String for a full text search | Vendor | <All vendors> i
= €} Application Name Vendor Version Description
i) Library Manager = @ Fieldbuses
PLC_PRG (PRG) = ¥ Modbus
={&8 Task Configuration = - Wi Modbus TCP Slave
= @ MairTask m Modbus TCP Slave 35 - Smart Software Solutions GmbH 3.5.16.0 A generic Modbus device that is configured as Slave for a Modbus TCP M
] FLC_PRG
1 2
=-[f) Ethernet [Ethernet)
‘ @ Madbus_TCP_Master {Modbus TCP Master) ‘
"2 SoftMotion General Axis Pool
% Local High Speed 10 < >
"2 Local Extend Module Group by category [] Display all versions(for experts anly) [] Display outdated versions
[mame:Modbus TCP Slave
Vendor: 35 - Smart Software Solutions GmbH
Categories: Modbus TCP Slave -
Version: 3.5.16.0 yj
‘Order Number: - =
Description: A generic Modbus device that is configured as Slave for a Modbus TCP Master,
Append selected device as last child of
Modbus_TCP_Master
€ (You can select another target node inthe navigator while this window is open.) 3
—————
‘ Add Device Close

1 Maccznac - Tatal § arare) N warninalel 0 maceanalel]

(3) After adding, you can see the addition of Modbus TCP client in the left device bar. Double click
"modbus_tcp_slave" to configure the read/write in the right "MODBUS slave channel".

=vices -1 x

‘5] Lhotieds ~
= [0 Device (XSDH-60432)
=&l PLC Logic
=¥ Application
1) Library Manager
PLC_PRG (PRG)
= (& Task Configuration
=& MainTask
&) PLC_PRG
= [Ethernet Ethernet)
= [Modbus_TCP_Master (Modbus TCP Master)
[Modbus TCP_Slave (Mocbus TCP Slave) |
"3 SoftMotion General Axis Pool 1
2 Local High Speed 10
'3 Local Extend Moduie

5] piepre [[H Device

(@ Modbus_TCP_Slave x

General
Modbus Slave Channel 2

Modbus Slave Init

ModbusTCPS|ave Parameters

ModbusTCRSlave 1/0 Mapping

ModbusTCPSlave IEC Objects

Status

Information

0 Channel 0

Name Access Type

Read Holding Registers (Function Code 03)

READ Offset
1640000 1

Trigger Length Error Handling WRITE Offse

Cydic, t100ms Keep last value

3 >

Move Up

Move Dowin

Delete

Add Channel.

[watch 1

67

2. Modbus TCP server configuration

(D) In the applied project, right-click the "device", click "add device", and click "Ethernet" in the pop-up dialog

box, as shown in the figure:

= [Untitleds :I I ”3 e
& -~ L A_Communication Se o ’
@ evee (xsori+4 T } 1 :
= B PLC Logic & C | Nome |Eemet
g opy Action
o :': 5 Paste @) Append device O Update device
B X Delete [strmng for o il text search | vendor | <atvendors> v
= @ Ta Refactoring » | Name Vendor Version Description ~
= + B Eheret Admter
& B2 Properties... = = Ehetet?
" ¥ = H Ethernet Adapter
2 SoftMotion| Add Object 5 ¥ @ etermer 35 -Smert Softwere Sobfons GrbH 3.5.17.0 Ethemet Link.
Add Folder... VSN S
3 Loaltigh “ Add Device. I # (2 HomedBuidng Automation
3 Local Exter g & Modbus
Update Device... 5 profius
[Edit Object P | L% o9 peapeatin .2
Edit Object With [Group by category [Display all versions (for experts only) [] Display outdated versions
[@ Mameethemet
Edit 10 mapping Vendor: 35 ~s-.lsoft:nsdn::::ﬁﬁ
Categories: Ethermet Adspter, Ethernet Adapter, Ethermet Adapter, HomeBEuiding Automation
Import mappings from CSV... Version: 3.5.17.0 §
Order Number: - -
Export mappings to CSV... Description: Bhenet Unk.
% Online Config Mode...
it

Reset Origin Device [Device]

Simulation

[Append selected device as last child of
Device

© (You can select another target nade inthe navigator while this window is open.)

|&

(2) After adding "Ethernet", right-click "add device" and select "Modbus TCP slave device" in the pop-up dialog

box. As shown in the following figure:

Narme |[MocbusTCP_Slave_Device
=-[@@ |ask Lonnguranon £z
& @ MairTask (®) Append device () Insert device Plug device () Update device
& PLC_PRG [5tring for a full text search | vender | <allvendors> -
Ethernet % Cut Name Vendor Version Description
‘3 SoftMotion B Copy = @ redbuses
% Local High{ @ Bty
w B2 Paste = W Modbus
Local High # W Modbus TCP Master
% Local ¥ Delete
Exter = Wi ModbusTCP Slave Device 3
Refactoring 3 1 ModbusTCP Slave Device 35 - Smart Software Solutons GmbH ~ 3.5.17.0 A device that works as a Modbus TCP Siave,
. #- 2 Profinet 10
= Properties...
Add Object [~ Group by category [] Display all versions (for experts only) [] Display outdated versions
) Add Folder...
- STCP Slave Device
| Add Device... 2 Vendor: 35 - Smart Software Soutions GmbH
Insert Device... Categories: ModbusTCP Slave Device §
Version: 3.5,17.0 -
Disable Device Order Number: -
it - b
Upda!e Device... A device that worl TCP Slave.
[3° Edit Object
Edit Object With...
Append selected device as last child of
Edit 10 mapping Ethemet
- |rrlport mappings from CSV... @ (You can select another target node inthe navigator while this window is open.) 4
isages - Total 0 e .
Export mappings to CSV... Gose

68

(3)After adding, you can see the addition of Modbus TCP server in the left device bar. Double click
"ModbusTCP_slave_device" to configure registers and coils in "General™. After configuration, you can monitor
the reading and writing data of the client to the XS server in "Modbus TCP slave device 1/0 mapping".

Jevices > 1 X PLC_PRG [Device [ModbusTCP_Slave_Device X
= Uintitleds =
=l General Configured Parameters
= [Device (¥sDH-60432)
X [] watchdog 500 L (ms)
= @[I PLC Logic . .
Serial Gateway Slave port 502 2] [5ind to Adapt:
=1 Application P &) [J8ind ta Adapter
f Library Manager mgssiunzTCP Slave Device /O Holding Registers 10 H (%QW) Writeable
PLC_PRG (PRE) Modbus TCP Slave Device IEC Input Registers 10 3 (seqw)
= [Task Configuration Objects Discrete Bit &
[] Discrete Bit Arzas
=8 Mai
2 MainTask Status i _
8] rLC_PRG oils 16 2 o0
=[] Ethernet (Ethernet) Information Discrete Inputs 16] (mox
m ModbusTCP _Slave_Device (ModbusTCP Slave Devi
"3 SoftMotion General Axis Pool
% Local High Speed 10
"% Local Extend Module
Data Model
StartAddresses
Coils a =
Discreteinputs a =
Holding register a =
Input register a =
1 tinldinn snd innet ranictar Asts arasc auard s
<
levices ~ 3 X |g] Pc_PrG [{ Devie [ModbusTCP_Slave_Device X
E Uiniitleds e
J_] {7l Device xspH-60A32) General Find Filter Show all ~ 4k Add FB for 10 Channel.. *=Go to In
=B PLC Logic serial Gatewny 5 Variable Mapping Channel Address Type Unit Description
=1} Application - Holding Registers ~ %QW0 ARRAY [0..9] OF WORD
i Liorary Manager mss;‘:‘?@ Slave Device /0 " Input Registers QW10 ARRAY [0..5] OF WORD
PLC_PRG (PRG) T T e e T E] Coils %QB40 ARRAY [0..1] OF BYTE
= @ Task Configuration Objects " Discrete Inputs °40QB42 ARRAY [0..1] OF BYTE
= g8 MainTask S
) ric_prG

=[0 Ethemet (Ethernet) 1 Information
[[MadbusTCP_Siave_Device (ModbusTCP Slave Deli

" SoftMotion General Axis Pool

2 Local High Speed IO

"3 Local Extend Module

Reset Mapping | Always updatevarizbles | Enabled 1 (use bus cycle taskif

= Create new variable " =Mapto existing variable

Bus Cyde Options
Bus cycle task MainTask v

6-3. OPC UA

6-3-1. OPC UA communication overview

OPC UA was released in 2008. It is a platform independent service-oriented architecture that integrates all
functions of various OPC classic specifications into an extensible framework.

In XS series PLC, OPC UA server is integrated, which can support users to access data in PLC through OPC UA
client.

6-3-2. Parameter configuration

(D In the applied project, right-click "application", select "add object" - “symbol configuration..”, and select
"support OPC UA feature” in the pop-up dialog box to add, then the function of OPCUA will be enabled.

69

i Find Fit
g M Alarm Configuration...
1t £ Application...
rCul . l o“ Axis Group... -
Copy @ Cam table... Create a remote access symbol configuration.
= (@ Task Configu B Paste @& CNC program...
= & MainTask X Delete &5 CNC settings...
&) pc. Refactoring 5 B Data Sources Manager... 3 e
= @ Ethemet (Ethernet) 2l e [%¢ our.. [Symbol Configuration
@ ModbusTCP Slav '~ 2 & External File..

'3 SoftMotion General A[.}.‘ Add Object l 4 [@ Global Variable List... [include comments in XML

3 Local High Speed 10 || Add Folder...] Image Pool... [] Support OPC UA features 4

3 Local Extend Modde | []° Edit Object =0 Interface...

Edit Object With... @ Network Variable List (Receiver)...
&£ Login @ Network Variable List (Sender)... Client Side Data Layout
Delete application from device g AL O Compatibility Layout

) POU-. (® Optimized Layout
@] POU for implicit checks...
A Recipe Manager...
@ Redundancy Configuration...

® % Symbol Configuration...
1] Text List...
< & Trace..
#1 Trend Recording Manager... 5
w.m,l,i £ Unit Conversion...

) &

(2) double click “Symbol Configuration”, click "build" in the pop-up interface and select the parameters to be

Visualization...

B &

Visualization Manager...

—=

Cancel

J— - = e Ly e U e g .
15 untteds > || [N view + [i | SEtﬁngs ~ Tools +
-3 gﬂ"'m (xsDH-50852) ¥ There are 2 configured variables which are not referenced by the TEC code. Reading and wiiting to them may not have the desired effect(s). | Remove..
= PLC Logic
Changed symbal configuration will be transferred with the next download or online change
= u Application
) Library Manager Symbols Access Rights Maximal Attribute Type Members Comment
PLC_PRE (PRG) #[[] 5] constants
Symbol Configuration 1 -0 ToCanfig_Glabals 3
= Task Configuration = PLC_FRG
=% MainTask # aa " % INT
& PLc_PRG # bb » » T

= m Ethernet (Ethernet)

m ModbusTCP_Slave_Device (ModbusTCP Slave Devi
'3 softMotion General Axis Pool
"3 Local High Speed 10
& Local Extend Module

(3) After downloading the program, open the software of OPC UA, select "DA client", and enter the "IP" address
of industrial control in the pop-up interface (for example, opc.tcp://192.168.61.196) Or you can enter the address
in "log" and find “programs™ in "DeviceSet". There are the parameters just checked. You can right-click the
parameter -- monitor -- to read and write the parameter.

* OPC Unified Arg Ffile Server View Monitored ltems Help
s

Welcome Dashb * QPC UA Technology Sample U NET API Buid: 1.

wiw. opefoundation org
OPC UA . HET AFT Build: 1

FOUNDAT

I 0N

Quickstart Data Access Client

Launch hel; |

ope. tep: /192, 168, 81, 198

A Uze See

~ -
. . (- DeviceSet H: Val: Data T
O UA Configurstion Tool [| @D A —— ane ue Data Type
) Resources HodeClass z Int32
Data Access & hpplication BrowseNane 4:bb Qualifiedfame
= SerialHunber DisplavHame b LocalizedText
O I B o e %deme RevisienCounter Value a Tntls
r About the! Mannfacturer Datal: i=
ype i FedeId
oe B soout U Mol ol Valuskenk S e
] License A e AccessLevel 3 Byte
Historical Access (Data & Events) Overview DeviceRerizion
SoftwareRevision UserAecessLevel E Byte
O HA Data Server Qe HardwareRevision WinimunSanplingTnterval 100 Dauble
£ Frozrams Historizing Falze Boolean
O HA Data Client o e ERiTE
-aa
O ME Data Server ceée bh
Tasks
O ME Data Client o e . GlobslVars
- Server
Info / Status
State: ID Variable Mode Sampling Rate Deadband Value Quality Timestamp Last Error
Info:

Connected [opc.tcp://192.168.61.196/1 05:13:06

70

Devices

-3 x

= 5 untitleds
=[] Device [connect=d] (XSDH-60432) 1
= &7 PLC Logic

=} Application

i) Lirary Manzger
PLC_PRG {PRG)
"3 Symbol Configuration

= {#8 Task Configuration
=g MainTask

&) PLC_PRG
= [Ethemet (Ethernet)

"3 SoftMotion General Axis Pool
"3 Local High Speed 10
"3 Local Extend Module

~

(i ModbusTCP_Slave_Device (ModbusTCP Slave Devi

PLC_PRG [Device x|[™% Symbol Configuration

Communication Settings

\ ©) 0 warning(s) |o 0 error(s) | E) 0 exception(s) | @ 160 information(s) \@ 0 debug message(s) <Al components>

[offlinelogging [UTC time

<
[seniadaig E

Applications
Severity Time Stamp
Backup and Restore 8 261020210254 15
® 26.10.2021023%15..,
Files
¢ 26.10.20210234%15..,
Log 2 & 0501.2000 15:12:51
© 05012000 15:12:51...
FEE=E © 05012000 151251,
BLC Shell & 0501.2000 15:12:51
@ 05012000 15:1:51...
Users and Groups € 05012000 15:1%51...
L] 05.01.2000 15:12:51.
e s © 05012000 15:12:51..
T € 05012000 15:1%51...
L] 05.01.2000 15:12:51.
IEC Objects © 05012000 15:1:51...
€ 05012000 15:1%51...
e € 05012000 15:125L...
Stotus © 05012000 15:12:51...
& 05012000 151251,
Information € 05012000 15:125L...
& 0501.2000 15:12:51

watch 1
>

Description

Valid license: found for OPC UA TecVarAccess provider.
Applcation [Appiication] loaded via [Download]
Mumber of licensed cores for [EC-tasks: 1 from 1
CODESYS Control ready

Setting router 2 address to {2ddc:c0a8:0608)

Setting router 1 address to (0008)

Setting router 0 address to (0006)

Provider CmpOPCUAProviderlecVarAccess with Version 0x3050F28 regist...
Provider CODESYS_DefaultProvider with Version 0x305028 registerd at t...

All available networkadapters are used.
Loopbackadapter activated.

URL: 0pc. tep: XSDH-60A32: 4840 3

Hostname: XSDH-60A32, Port: 4340
OPC UA Server Started:

No certificate for the OPC UA server available,
Network interface BIKDrvTcp at router 2 registered
Local network address: 192.163.6.6

Security policy allows plain text communication. Secure commurication is ...

Companent
CmpOPCUAProviderTecVarAccess
CmpApp

SysCpuMultiCore

M

CmpRouter

CmpRouter

CmpRouter

CmpOPCUAServer
CmpOPCUASErver

.. CmpOPCUAServer

CmpOPCUAServer
CmpOPCUASErver
CmpOPCUASErver
CmpOPCUAServer
CmpOPCUASErver

.. CmpOPCUAServer

CmpOPCUAServer
CmpOPCUASErver
CmpRouter
CmpBkDr/Tep

~

i
2
g
s
g
2
=
o
@
g
v
3 x

6-4. Free format

6-4-1. Free format overview

When Xinje PLC communicates with other equipment, if it is the lower computer, the upper computer must
exchange data with it according to the data format of Modbus RTU. If Xinje PLC is the upper computer, when the
lower computer also supports the Modbus RTU protocol, it can directly use the relevant communication
instructions to communicate, making the program writing simpler and more efficient. If the lower computer does
not directly support the Modbus RTU protocol, it can use free format communication.
The so-called free format means that when the communication protocol of the lower machine does not match the
PLC protocol, the PLC internally defines the data format to send data, so that it can communicate with many

lower machines.

Free format communication is to transmit data in the form of data blocks. Each block can transmit up to 256 bytes.
At the same time, each block can be set with or without a start and end character.

6-4-2. Parameter setting

(1) Add two libraries in the library manager -- Syscom and Systypes, and add the library version corresponding to
the upper computer version. And the compiler version should also correspond to the upper computer version.

Devices v 3 X
=3 Untitled4 S
= Device (X53-26T4)
= B0 PLC Logic

=} Application

[2] PLC_PRG (PRG)

{@] PoOU (PRG)

[# Pou_1 (FB)

{# POU_2 (FUN)

M. Recipe Manager

= (&8 Task Configuration
= MainTask
8] PLC_PRG

3 SoftMotion General Axis Pool
. Local High Speed 10
3 Local High Pulse
3 Local Extend Module

@) Library Manager x|& MainTask

Details 51 Placeholders | i) Library Repository @ Icon legend...

[@ POU | Recipe Manager
Add Library Delete Library Properties
Name
S -
+ @ -
+ L_ > e evice
- 1 b
% |
- _CNC = SM3_
+ L >
+ L S -
- B i
[E) standard = Standard, 3.5.17.0 (System)
- |E] SysCom, 3.5.17.0 (System)
[E] sysTypes2 Interfaces, 3.5.17.0 (System)

71

Namespace

Standard
SysCom
SysTypes

Effective version

3.5.17.0
3.5.17.0
3.5.17.0

Project Settings X

o]

® Compiler warnings

Compiler Version
.]] Library development
Fixversion | [3.5.17.30 v]
é Page Setup
Security
[®] src Settings
& SoftMotion [] Allow unicode characters foridentifiers
f@ Source Download [] Replace constants

§ Static Analysis Light
&1 Users and Groups
& visualization Compiler Warnings
&) visualization Profile Maximum number of warnings |100 v

[Enablelogging inbreakpoints

6-4-3. Application

Example 1: free format communication between two PLCs and data transmission / reception are realized through
the following program.

Note: when free format communication is used for data reception, either the cycle of the corresponding task needs
to be extended when it is normally on, or the rising edge triggering is used for reception.

Program operation:

(1) Install the library to be used according to the steps in section 6-5-2.

(2) Write a free-form program.

] 1 PROGRAM POU
I VAR
SysCom2Settings:SysCom.SysComSettings;
SysCom2SettingsEx:SysCom.SysComSettingsEx;
StartSetting:BOOL:=1;
SendData:ARRAY[0..159] OF BYTE;
result: (*POINTER TO *)SysTypes.RIS_IEC RESULT;
: Send_start:BOOL;
s Ton0:Standard.TON;
10 i:INT;
2 | RCVData:ARRAY([(0..1%] OF BYTE:;
12 RCV_start:BOOL;
13 hCom:SysTypes.RTS_IEC_HANDLE:=SysTypes.RTS_INVALID HANDLE;
14 size : UDINT;
1s // close en:BOOL;

1€ END_VAR

I m o e WwN

72

IF StartSetting THEN ~
2 hCom:=SysCom.SysComOpen (sPort:=SysCom.SYS COMPORTI2,pResult:=ADR(result)):
3 : IF hCom<>RIS_INVALID HANDLE THEN

4 result := SysComGetSettings (hCom:= hCom, pSettings:= ADR(SysCom2Settings), pSettingsEx:= ADR(SysCom2SettingsEx));// call the interface
SysCom2Settings.sPort:=5ysCom. SYS_COMPORT2; // port
SysCom2Settings.ulBaudrate:=SysCom.SYS_BR_19200;// baud rate
SysCom25ettings.byStopBits:=5ysCom.SYS_ONESTOPBIT; // stop bit
SysCom2Settings.byParity:=SysCom.SYS_EVENPARITY; // parity
SysCom2Settings.ulTimeout:=5¥5_NOWAIT:

ComZSettings.ulBu

SysCom2SettingsEx.byBy data bit

SysCom2SettingsEx.bOutX := FALSE;// flow control

SysComSetSettings (hCom:= hCom, pSettings:= ADR(SysCom2Settings), pSettingsEx:= ADR(SysCom2SettingsEx));
SysComPurge (hCom:= hCom) ;

END IF
‘.c'l StartSetting:=0;// port settings cannot be always ON
END_IF
1 TonO (IN:=NOT Ton0.Q ,PT:=T#15,Q0=>,ET=>);
3 5 FOR i:=0 TO 1% BY 1 DO

| 20 IF Ton0.Q THEN
SendData[i] :=SendData[i]+1;

22 END_IF
3 23 END FOR
24 start sending data
3 25 IF Send start AND Ton0.Q THEN
13 SysCom. SysComiirite (hCom:=hCom, pbyBuffer:=ADR(SendData) ,ulSize:=SIZEOF (SendData),ulTimeout:=SysCom.SYS_NOWAIT,pResult:=ADR(result));
END_IF
28 receiving the data
3 2s IF RCV_start THEN
30 size := SysCom.SysComRead (hCom:=hCom, pbyBuffer:=ADR(RCVData) ,ulSize:=SIZEOF (RCVData) ,ulTimeout:=SysCom.SYS_NOWAIT,pResult:=ADR(result));
END_IF 100 % |&R v

6-5. TCP/IP

6-5-1. TCP/IP overview

TCP / IP protocol is a common Ethernet communication protocol. Compared with the open interconnection model
ISO, it adopts a more open way and is widely used in practical projects. TCP / IP protocol can be used on a variety
of channels and underlying protocols (such as T1, X.25 and RS232 serial interface). Specifically, TCP / IP
protocol is a protocol group including TCP protocol, IP protocol, UDP protocol, ICMP protocol and other
protocols.

6-5-2. Parameter configuration

Add the TCP / IP library network in the library manager, and add the network version corresponding to the upper
computer version.

=0 BBBEEFW ~ | [B¥Add Lbrary] > Delete Library Properties = Details & Download Missing Libraries | 5] Placeholders ' ff Library Repository @ Icon Legend... e
=@ E)evn:e (XSLH-30A32) T3 3 Namespace Effective Version
=@ f?L‘CLogIC @ 3 »
= £} Application G- ore
i) Library Manager 1 % | P i -
[2 R
%] 0U_1 (PRG) I» [E) Network, 3.5.17.0 (35 - Smart Software Solutions GmbH) I 3 Network 3.5.17.0
= (& TaskC T T : . H B 4.10,0.(
= & MainTask & s
& pou_t %[l =
3 SoftMotion General Axis Pool &l =
3 Local High Speed I0 -l sM3_Transformation = . e e e 2,10
[E) standard = Standard, 3.5.17.0 (System) Standard 3.5.17.0

Define relevant variables in POU and write programs.

6-5-3. Application

Example 1: through the following procedure, TCP/IP communication between two PLCs is realized to receive and
send data. The IP address of PLC 1 is 192.168.6.17, and the IP address of PLC 2 is 192.168.6.18.
Note: the server needs to open the connection first and wait for the client to connect. Otherwise, TCP/IP
communication may not be established successfully.

Program operation:

(1) Install the library to be used according to the steps in section 6-6-2.

73

(2) Write TCP/IP programs.
Programming: use the function blocks " NBS.TCP_Server ", " NBS.TCP_Client ", " NBS.TCP_Connection ", "
NBS.TCP_Write "', " NBS.TCP_Read " to set the server, client, sending and receiving parameters of the TCP/IP
used in the program.

1 PROGRAM POU

2 VAR
3 TCP_Connection 0: NB5.TCP_Connection;
4 TCP_Server_0: NBS.TCP_Server:=(ipaddr :=STRUCT(sAddr:='192.168.6.17"),uiPort:=4000);// setserver IP and port
5 TCP_Write_0: NBS.TCP_Write;// write data
€ TCP_read 0: NBS.TCP_Read;//read data (receive data)
7 ser_en: BOOL;// open the server
8 T_TON:Standard.TON;
TX_DATA:ARRAY([(0..15] OF BYTE:
10 RC_DATR:ARRAY[0..159] OF BYTE;
11 read_en: BOOL;// start receiving
12 END VAR
13
-
TCP_Server_0 (3
NBS.TCP_Server TCP_Connection_0 (o
ser_en ixEnable xDone— NBS.TCP_Connection
—lipAddr xBusy Enable xDone—
—uiPort xError— hServer xBusy—
eError— xError—
hServer eError—
xActive
hConnection TCP_Wirite_0 [i
NBS.TCP_Wnie
T_TON [z [3 I—xExecx.ﬂe xDone —
Standard.TO AND —udiTimeOut xBusy—
NOT T_TON.G IN Q hConnection xError—
T#100ms PT ETH sizeof(TX_DATA) | z5ize eError—
adr(TX_DATA) pData
TCP_read_0 | s
5 NBS.TCP_Read
xEnable xDone—
read_en e hConnection xBusy—
sizeof{RC_DATA) sz5ize xError—
adr(RC_DATA) pData eError—
xReady —
szCount—
1 PROGRAM POU_1
] z VAR
3 TCP_Client_0: NBS.TCP Client:=(ipaddr :=STRUCT(sAddr:='152.1¢8.€.17'),uiPort:=4000);//Setthe server IP and port to be accessed by the client
4 TCP_Write_0: NBS.TCP_Write;//write data
5 TCP_Read 0: NBS.TCP_Read:// read data (receive data)
€ Client_en: BOOL;//open client
7 TX_DATA:ARRAY[(0..19%] OF BYTE;
S RC_DATA:ARRAY[C..L%] OF BYTE
TON_0: Standard.TON;
10 RC_EN: BOOL;// start receiving
11 END VAR
12
-
'Auto Data Flow Mode' has been activated Properties Help
TCP_Write_0
TCP_Client 03 B NBS.TCP_Write
NBS.TCP_Client AND E xDone
o xDone|- — |uciTimeOut e
[0 | fudiTimeOut xBusy— hC i xError|
—lipAddr xError— sizeof(TX_DATA) szSize eError
—juiPort eError— adr(TX_DATA) pData
Artn
hCi
not TON_0.Q TCP_Read_0
FT - 1
RC_EN }—l _—
sizeof(RC_DATA)
adr(RC_DATA)

74

7. Common problems and solutions

7-1. Package

7-1-1. Package naming rule
Naming format: XSDH-60A32_3.5.15.40_1.0.0_P1 20211027

@ @ ® ® 6

No. Name Note

D XSDH-60A32 PLC model

2 3.5.15.40 Runtime version

3 1.0.0 Package production version

@ P1 The first online upgrade
package after production

5 20211027 Package update date

7-1-2. Obtain the Package

Please contact us, email sales@xinje.com.

7-1-3. Package installation

Select "tools" - "package manager..", install the package in the pop-up interface, select "Install”, and find the
location of the package for installation. For example, to install the package of XSDH-60A32, it is best to uninstall
the previous package before installing a new one.

e
| Curerdy nataled Packiges
Aef Sarthy Hame w Install..
Tools | Window Help = -
Hame Version Installation date Update o | Uairatall..
| @ Package Munager... Y CODESYS Automabion Server Cornectsr 117000 TS Frew version 0, 21.0.0 svallabie 1 [
_I W CoDESYS Softotion 4.10.0.0 ATLE/18 g
m Library Repository... ¥ ¥53-26T4 BOLL MU] ey
. \ . A wspH-E0a32 Lk 0711028 Search Updet
|;|j Device REPOiITOI‘y... arch Lipdetes
& Visualization Style Repository...
[License Repository... CDESTS Store
H License Manager... R
Scripting 3
Customize...
Options...
Import and Export Options...
o] Device Reader... < :
] oisplay versions [#] Seamch updates in background Close
Edge Gateway

75

mailto:sales@xinje.com

7-2. XS series PLC firmware update

7-2-1. Firmware naming rule

Naming rule: XSDH-60A32_3.5.15.40_1.0.0_P1 20211027

©) @ ® ® ©6

No. Name Note

@) XSDH-60A32 PLC model

@ 3.5.15.40 Runtime version

©) 1.0.0 Firmware production version

@ P1 The first online firmware
upgrade after production

5 20211027 Firmware update date

7-2-2. Obtain the firmware

Please contact us, email sales@xinje.com.

7-2-3. Firmware installation and precautions

Upgrade firmware through newpack package:

Create the equipment standard project, connect the equipment, select the "Files" option in the main equipment
directory, click refresh in the upper right corner, transfer the newpack upgrade package to the runtime, wait for the
transfer to be completed, restart the equipment, the ERR light will be on during the upgrade of the equipment, and
the ERR will be off after the update is completed. At this time, the equipment can be scanned.

[pevice x PLC_PRG [M™odbus_TcP -
Communication Settings Host | Location EN\IH—EB\codesys\1§ ~ | @ R Runtime | Location | [/ N%;ng?"\
elETE MName Size lLlpE!a_te package MName Size ified 2
ocation
Tt . [Pldlogic refresh
Backup and Restore (P ¥SDH-60A32_3.5.15.40_1... 199.46KB (.. 2021/10/27... 3 cert
|% ¥SDH-60A32_3.5.15.40_1.... GE6KB (... 1021;10;23...| 1 5| version. txt 28 bytes 2021/10/28 ...
Files = EFnHAR 94 bytes 2021/10/25 ... |% XSDH-60A32_3.5.15.40... G62.66KB (6... 2021;10;29..]
T
Log
PLC Settings
PLC Shell find the newpack
update package)

e s o 3 send the package to runtime
Access Rights gz
Symbol Rights
IEC Objects
Task Deployment
Status
Information

v

< >

76

mailto:sales@xinje.com

7-3. XS series local expansion module

(1) After connecting the local expansion module with the PLC, right-click device — add device — select

"exmodulemaster".
BE | [Enee X
=15 Unsitled?
_I@ Device (XSDH-60A32) | EF ExtModuleMaster
- Bl PLci®ig e
=1} Application O PithnigE (&) O EFRE L)
iy EeEs
PLC_PRG (PRG) BTETEEN=HA ﬁ'—tlﬁﬁ <EEMHER -
= B rEmE = s R R
= @ MainTask = h=R1aI0]
8] pic_PrG i () ExtvioduleMaster | Wi Xinje Blectric Co, Atd, | 2.0.0.0 Extension modue master |
3 SoftMotion General Axis Pool [modbusTcP XINJE 1.0.0.0 XINJE modbus TCP device
3 Fitmo [0 mipzsk

@ #Ex804E O B rERERRER) O DRidEE

i £ : ExtModuleMaster
SR # - Wuxi Xinje Electric Co. Ltd.

E-3- 1 -
A 2.0.0.0 ﬁ
ieS: 1 =Y

#&3% - Extension module master

BaiksE e FiEn

Device

@ [THBEOITHE, S ESREPRER—BFTE)

i

(2) The expansion module can be added by scanning or manually adding.

& | @ Emes X
=151 Untitledd
=[] Device (XsDH-60A32) SFR E4AD2DA
= Bl Pci®sg E
=} Application O rrEE®E OEMESD O BEFEREW
i Eees
PLC_PRG {pjo FH?%K%E?E’*]???% ﬁ%h‘jﬁ <%§Bﬁi\-]ﬁﬁ> e
-3 15ESs £5 1A =
=58 MainTask [ez Wund Xinje Electric Co.,Ltd, 2.0.0.0 Extension module
& pic PRG [e32v Wuxi Xinje Electric Co.,Ltd. 2.0.0.0 Extension module
Iﬂi ExtModuleMaster (ExtModuleMaster) I [e38D4PT2DA WuxiXinje Blectric Co.,Ltd. 2.0.0.0 Extension module
'3 SoftMotion General Axis Pool [e4ap Wuxi Xinje Electric Co.,Ltd. 2.0.0.0 Extension module
3 Fifo (1 [p4anz0n | Wud Xinje Electric Co.,Ltd. 20.0.0 Extension module |
E4DA Wuxi Xinje Electric Co.,Ltd. 2.0.0.0 Extension module
(oA cama o VAL i Vimi Elmmbrie o 1 0 AAnA Corbmmmivi e

@ #R0E O SrfERE RRER) [Briddns

@ £¥: E4ADZDA
EEH: Wuxi Xinje Electric Co. Ltd.

-3 -
A 2.0.0.0 g
H85: 1]

=3k Extension module

BHRRE ARSI FREMN
ExtModuleMaster

8 EHEOITHE, SR EShE PEER—Birna.)

=

77

(3) Testing result.

BE 9 ZMIO | % softotion General Axis Pool '[A Device '[7] E4AD2DA x
= & et EXT44D2DA £
= [Devies BEERAT) (SDH-60A3Z) -
B rLcBE e —— e s “xE mEE E MWAE £= &2
=} Application [3%1T] . @ Fiter_ADIADZ USINT 0 0 0 ADLADZIERE A
i EEEs EXTSAD2DAIECIR: - Fitr_ADIAD4 USINT 0 0 0 ADIDAERFS
B rcpra o) . - % Config_ADL Enumeration of USINT 0-10v 0-10v 0-10v ADIFE LR
= aEmE - - Config_AD2 Enumeration of USINT ~ 0-10v 0-10v 0-10v ADEA R
= G MainTask =8 - Config_AD3 Enumeration of USINT ~ 0-10v 0-10v 0-10v AD3ER
@] pLc_PRS -~ # config_aAD4 Enumeration of USINT ~ 0-10v 0-10v 0-10v ADFR MR
5 [ExtModuleMaster (ExtModuleMaster) - Config DAL Enumeration of USINT 0-10v 0-10v o0-1ov DAIFIE LR
[44204 (E4AD2DA) " # Config DAZ Enumeration of USINT 0-10v 0-10v 0-10v DA R
‘T SoTiMotan General A Foal % - [24 SFOCfg0

3 #io

7-4. XS series remote expansion module

(1) Connect DC24V power supply with remote module LC3-AP.
(2) Add LC3-AP description file in the codesys software.

File Edit View Project Libraries Build Online Debug Window Help

A ICIGGEL) L L - LR R RN

Devices

* o X

=5 Untited4
=1 Device (X53-26T4)

-0 PLC Logic
=& Application
ffif Library Manager
PLC_PRG (PRG)
POU (PRG)
POU_1 (FB)
POU_2 (FUN)
™, Recpe Manager
= (#4 Task Configuration

-@ MainTask

) PLC_PRG

----- [Modbus_TCP (Modbus TCP)
----- 'a SoftMotion General Axis Pool
----- 2 Local High Speed 10
----- "3 Local High Pulse
----- "3 Local Extend Module

Application [Device: PLC Logic] ~

Untitled4.project* - CO

O, wX|(=7=2="28

Location |System Repository

(C:\ProgramData\CODESYS\Devices)

v| | Edit Locations...

Installed Device Descriptions

String for a full text search

Name
+D Servo Drives

‘ - ¥INJE 1O
]X) LC3-AP EtherCAT Adapter _ |
+D Yaskawa Electric Corporation - Servo Drives
[Accelnet FtherCAT Drive (CoF) SoftMotion

<

Vendor
A

Uninstall

Export..

=& C:\Users\TXB\Desktop'\XINJE-LC3-AP-Rev1.3.0.xml

@ Device "XL-E16X16YT" instaled to device repository
@ Device "XL-E4AD2DA" installed to device repository
€ Device "XL-E4DA" installed to device repository

(3) Add EtherCAT Master or EtherCAT Master SoftMotion.

78

Devices -~ 0 X
=4 Untited4
= (@ Device (XS3-26T4) Name | EtherCAT_Master
=0 PLC Logic P
- Applicatio
© App " (®) Append device Insert device Plug device () Update device
il Library Manager
PLC_PRG (PRG) |String for a full text search | Vendor ‘<M vendors= w
POU (PRG)
POU_1 (FB) Name Vendor Version Descr ™
POU_2 (FUN) -ﬂ Miscelaneous
. Recipe Manager &i Modbus TCP Wuxi Xinje Electric Co.,Ltd. 1.0.0.0 Modbt
=[5 Task Configuration B m Fieldbuses
_@ MainTask + AN CANbus
8 PLC_PRG bt EtherCAT
(@ Modbus_TCP (Modbus TCP) ot Master
% SoftMotion General Axis Pool ; m |EtherCAT Master 35 - Smart Software Solutions GmbH 3.5.16.40 Ether(
% Local High Speed 10 | (@ EtherCAT Master SoftMotion 35 - Smart Software Solutions GmbH ~ 3.5.16.40 | Etherc
% Local High Pulse HB Fthernet Adapter
& Local Extend Module “=— EtherNet/IP
+ ™ unmagRnidina AlFAmatinn N
< >
Group by category [| Display all versions (for experts only) [| Display outdated versions
@ Name: EtherCAT Master
Vendor: 35 - Smart Software Solutions GmbH
Categories: Master
Version: 3.5.16.40 —_—
Order Number:
Description: EtherCAT Master...
Append selected device as last child of
Device
1] (ou can select another target node in the navigator while this window is open.)
S Add Device ! Close
Ll Mmoo '_Iﬁ LaTat Y
(4) Select the network port for communication.
Devices ~ 2 x| @ POU | RecpeManager (fif] UbraryManager |'&% ManTask [EtherCAT_Master x
=3 Untitiedd = .
< @ Device (X53-26T4) General [¥] Autoconfig master/slaves EtherCAT.
- B0 PLC Logic I
- Appication Sync Unit Assignment EtherCAT NIC Settings

-l Lbrary Manager
PLC_PRG (PRG)
POU (PRG)
POU_1 (FB)
POU_2 (FUN)
A, Recipe Manager
Task Configuration
8 EtherCAT_Task
= & MainTask
@ PLC_PRG
- modbus_TCP (Modbus TCP)
[l EtherCAT_Master (EtherCAT Maste
[EtherCAT_Master_SoftMotion (Ethe
% SoftMotion General Axis Pool

Log Destination address (MAC) FF-FF-FF-FF-FF-FF
EtherCAT 1/0 Mapping Source address (MAC) 8C-59-3C-10-A9-90 | | Browse... |
Metwork name
EtherCAT IEC Objects
(®) Select network by MAC () Select network by name
Status
4 Distributed Clock I Options
Information

["] sync window monitoring

Sync window 1 Z s

79

Broadcast ["] Redundancy

(5) Scan the devices to add LC3-AP module.

----- [modbus_TCP (Modbus TCP) J
[l EtherCAT Master (EtharCAT Macts
----- @ EthercaT_mas ® Cut

----- % SoftMotion Gerl = COPY

----- % Local High spe{ "€

----- % Local High puls| ~~ Delete

----- ‘% Local Extend M Refactoring v

X O[F W e

il

Properties...

Add Object

Add Folder...

Add Device...

Insert Device...

| Scan for Devices...
Disable Device
Update Device...

[§ Edit Object

Edit Object With...

D E

(6) Copy all devices to project.

Scanned Devices

Device name Device type

[] Show differences to project

Caopy All Devices to Project Close

80

7-5.M_TCP

Note: the Modbus TCP developed by Xinje only supports ARM series models for the time being, and will support
all Codesys models in the future.

7-5-1. Upper computer settings

(1) When using this communication function, please check whether the firmware version of the PLC is
3.5.15.40_1.0.0_P1_20211028 and above, if it is not this version, please upgrade the firmware first. Refer to
chapter 7-2 for details.

BE - 3 x PLC_PRG [pevice x [Modbus_TCP i E=Es
=2 XSOREMTCP R & B FUFTCAS S - A R IF hs —
) BRI Set UTC via DateTime string (see ISO BE0L) .
1] Device [E3f] (xSDH-60A32) I Required format: "rto-set YYYY-MM-DDThR:mm:ss[,sss]"
=50 PLC B8 o cert-getapplist
" . Display all registered applied certificates (Component ID and application
=1} Application cert-genselfsigned [<number retrieved by "cert-getapplist”> <expdays=>]
i e EHINSITE Generate all self signed cercificates
cert-gendhparams [len in bits]
PLC_PRG (PRG) Generate paramsters needed for Diffie-Hellmsn key exchangs. Attention may
= @ HERE S cert-getcertlist [<trustlevel>]
C Get a list of all certificates
2 MainTask = cert-createcsr [<number retrieved by "cert-getapplist”]
&) pLC_PRG Create CSR files for all applications
) - cert-import <trustlevel> <filename>
T rersistentuars PLCiRE Import a certificate
m Modbus_TCP (ModbusTCP) cert-export <trustlevel> [<number retrieved by "cert-getcertlist™:]
Iy - I PLCiES Export a certificate
SoftMotion General Axis Pool cert-remove ctrustlevels <number retrieved by "cert-getcertlist” or "all"s
2 Fio o Remove a certificate
il showsecuritysettings
s iEER Show the list of all security settings and the current configuration.
TR ZESE
Set and get the IP address.
bol h IPADDR
Symbol Rights Set and get the IP address.
|netmask
EGIS Set and get the netmask.
wETMRSK
N Set and get the netmask.
1H5EE o
Set and get the gateway.
s CATEWRY
Set and get the gateway.
e linep
28 Automatically Obtaining an IP address.
DHCP
Automatically Obtaining an IP address.
FRGA
Read the FEGA version information.
tpga
Read the FEGA version information.
rersion
Read version informationm.
VERSION

Read version information.
saveretains [<applicationname>]

Save retains to files(s). [Opticnal only from specified application].
restorerstains [<applicationname=]

Restore retains from file(s). [Optional only for specified application].
version

3.5.15.40_1.0.0 P1l_20211028

version

& i5% [rous

EEEELE

E=,

(2) Right click Device—other item—add Modbus TCP.

81

- o Application

D FEEE
PLC_PRG (PRG)
H anmE

8 MainTask

: -] pLC_PRG
T' PersistentVars

-3 SoftMotion General Axis Pool
‘% o

A iR

(3) Associated variables.

PROGRAM PLC

VAR
M AT $MBO: ARRAY[0..2] OF BOOL;
D AT EMW40000:ARRAY[0..5] OF WORD:

DD AT $MH40010:ARRAY[0..9] OF REAL;
END VAR

7-5-2. HMI settings

M s B
B3 ModbusTCP
hik
OMINEE @A) RS (D HiEREF) O EHiRE)
EEHENFHS HEE <2 BEERE-
EF SR R a3
= [=itim
| MochusTe [XINE [10,00 XINEmodbus TCP device |
¢ s

BiEand () BTHRAERS RIREER) [Bmuiins

i £¥: ModbusTCP
FEA: XINE
-

|AE: 1000
BESE: -
##:- XINJE modbus TCP device

=

HHEREEARE T FREEN
Device

O [{IHEOITHE, SIS HEPRER— BT TE.)

([FmeE || =@

/70X and 1X on the HMI are same, MB0 15 equal to 00 and 1X0 on the HMI

// single register, 3X and 4X on the HMI are same, MW40000 is equal to 3%0 and 430 on the HMI

(1) Set the IP address of the HMI and the device to be connected (new Ethernet device is required).

Auto IP Address
(®) Local IP Address
IP Address 192 , 168 . 6 . 5
Subnet Mask 255 . 255 . 255 . O
Gateway 192 ., 168 . 0 . 1
Port 502

Remote Commu

82

// double registers, 3X and 4X on the HMI are same, 3X10 and 4X10 will occupy MW40010+AW40011

R U Over TCP(Panel is Master start address is 0)
Thinget XNet Series
Siemens S7-1200 Series
Siemens 57-1200/1500 new Series
Siemens S7-200 Smart Series
Siemens S7-200 Smart new Series
Mitsubishi Melsec Series(1E)

P | 192 .168 . 6

Protocol
(® TCP (O uoP

Communicate Pmetets
Waiting time | 0 ms
Timeout | 1500 | ms

[[] Communicate status register
PSv 256

’l: ommunication status information is not exported|

(2) Add the required HMI elements, select Codesys for the device, and the station number must be set to 0!
The object type of the button or indicator is Ox (readable and writable) or 1x (read-only). 0x0 and 1x0 correspond
to MBO, and so on.

Select 3x (read-only) or 4x (read-write) as the object type of data input or data display. 3x0 and 4x0 correspond to
MW40000, and so on.

If the data type input or display is DWORD, then 3x0 and 4x0 occupy MW40000 and MW40001 registers, and so
on.

83

' Obiect | Display | Convert | Inputs | Font | Color | Postion |

Operate Object
Station
Device Codesys Y
VirStaNO 0 Station | 1]
Object
ObjType | 4« vl| 0|
[indirect
Value
Data Type | Word v‘

(3) For the time being, the HMI can only support reading and writing of up to two registers, so floating point
numbers (two registers) can be displayed at most. Double precision floating point numbers can only be converted
in the PLC, and cannot be directly input or displayed on the HMI.

7-6. Dial code

XSDH-60A32-E supports the dial code function, and its specific functions are as follows:
00: Normal startup, no special processing, load user program.

10: Initialize IP.

01: Power on without loading user program.

11: Update the machine, send the SD card data to EMMC.

84

XINJE

WUXI XINJE ELECTRIC CO,, LTD.
No.816, Jianzhu West Road, Binhu District,
Wuxi City, Jiangsu Province, China
214072

Tel: 400-885-0136

Fax: (510) 85111290

www.Xinje.com

