
i

XS series PLC

User manual [software] (Codesys)

Wuxi XINJE Electric., Ltd.

 Data No. PS04 20220516EN 1.1

ii

Basic description

 Thank you for purchasing the Xinje XS series programmable controller.

 This manual mainly introduces the software of XS series programmable controllers.

 Before using the product, please read this manual carefully and programming on the premise of fully

understanding the contents of the manual.

 Please deliver this manual to the end user.

Notes to users

 Only operators with certain electrical knowledge can conduct wiring and other operations on the product.

If there is any unknown place, please consult our technical department.

 The examples listed in the manual and other technical data are only for users' understanding and

reference, and do not guarantee certain actions.

 When using this product in combination with other products, please confirm whether it conforms to

relevant specifications and principles.

 When using this product, please confirm whether it meets the requirements and is safe.

 Please set up backup and safety functions by yourself to avoid possible machine failure or loss caused

by the failure of this product.

Statement of responsibility

 Although the contents of the manual have been carefully checked, errors are inevitable, and we cannot

guarantee complete consistency.

 We will often check the contents of the manual and make corrections in subsequent versions. We

welcome your valuable comments.

 The contents described in the manual are subject to change without notice.

Related manuals

For the hardware related and advanced motion control instruction application of XS series PLC, please consult the

following manuals.

◆ XS series motion control manual

◆ XS series hardware manual

WUXI XINJE ELECTRIC CO., LTD. All rights reserved

This material and its contents shall not be copied, transmitted or used without explicit written permission. Violators

shall be liable for the losses caused. All rights provided in the patent license and registration including utility

modules or designs are reserved.

November 2021

iii

Catalog

1. CODESYS OVERVIEW AND INSTALLATION ... 1

1-1. CODESYS OVERVIEW ... 1

1-2. CODESYS SOFTWARE ARCHITECTURE .. 1

1-2-1. Development layer .. 2

1-2-2. Communication layer .. 2

1-2-3. Device layer .. 2

1-3. XINJE PLC SUPPORTED BY CODESYS .. 3

1-4. CODESYS INSTALLATION AND UNINSTALLATION ... 3

1-4-1. System requirements ... 3

1-4-2. Obtain the Codesys ... 3

1-4-3. Codesys installation .. 3

1-4-4. Codesys version management ... 3

1-4-5. Codesys uninstallation .. 3

1-5. CODESYS HELP .. 4

2. CODESYS STRUCTURE ... 5

2-1. SOFTWARE MODEL .. 5

2-1-1. Software model introduction ... 5

2-1-2. Characteristics of software model ... 6

2-2. DEVICE .. 6

2-2-1. Device management .. 7

2-2-2. Device Editor .. 9

2-3. APPLICATION ... 10

2-3-1. Task ... 10

2-3-2. Library files ... 17

2-3-3. Access path .. 19

2-4. POU .. 19

2-4-1. POU structure .. 20

2-4-2. Function .. 21

2-4-3. Function block ... 23

2-4-4. Program ... 25

2-5. APPLICATION OBJECT .. 26

2-5-1. Sample tracking ... 26

2-5-2. Persistent variable ... 27

2-5-3. Data unit type .. 27

2-5-4. Global network variables .. 27

2-5-5. Recipe manager ... 28

3. BASIC INSTRUCTIONS .. 29

3-1. BIT LOGIC INSTRUCTIONS .. 29

3-1-1. Basic logic instructions ... 29

3-1-2. Set priority and reset priority trigger instructions ... 29

3-1-3. Data unit type .. 29

3-2. TIMER INSTRUCTIONS.. 30

3-3. COUNTER INSTRUCTIONS .. 30

3-4. DATA PROCESSING INSTRUCTIONS ... 31

3-4-1. Select operation instructions ... 31

3-4-2. Compare instructions .. 31

iv

3-4-3. Shift instruction ... 32

3-5. OPERATION INSTRUCTION ... 32

3-5-1. Assignment instruction .. 32

3-5-2. Arithmetic operation.. 32

3-5-3. Mathematical operation instruction ... 33

3-5-4. Address operation instruction .. 33

3-5-5. Data conversion instruction ... 34

4. SPECIAL FUNCTIONS .. 35

4-1. HIGH SPEED COUNTING ... 35

4-1-1. Function overview ... 35

4-1-2. Function block introduction .. 35

4-1-3. Parameter setting ... 38

4-1-4. Application example.. 38

4-2. EXTERNAL INTERRUPT .. 39

4-2-1. Function overview ... 39

4-2-2. Application example.. 39

4-3. PLC SHELL.. 40

4-3-1. Function overview ... 40

4-3-2. Command list .. 40

4-3-3. Application example.. 40

4-4. CLOCK ... 45

4-4-1. Function overview ... 45

4-4-2. Application example.. 46

5. CODESYS PROJECT EXAMPLES .. 48

5-1. BASIC PROGRAMMING OPERATION .. 48

5-2. I/O MAPPING ... 50

5-3. TASK CONFIGURATION ... 51

5-4. PROGRAM DOWNLOAD/READ .. 54

5-4-1. Compile ... 54

5-4-2. Login download .. 55

5-4-3. Source code download .. 56

5-4-4. Read program .. 56

5-5. PROGRAM DEBUGGING .. 57

5-5-1. Reset .. 57

5-5-2. Program debugging ... 58

5-6. SIMULATION .. 59

5-7. PLC SCRIPT FUNCTION .. 59

6. INDUSTRIAL FIELDBUS TECHNOLOGY .. 61

6-1. MODBUS COMMUNICATION .. 61

6-1-1. MODBUS overview .. 61

6-1-2. Parameter configuration .. 62

6-2. MODBUS TCP ... 65

6-2-1. MODBUS TCP overview .. 65

6-2-2. Parameter configuration .. 66

6-3. OPC UA .. 69

6-3-1. OPC UA communication overview ... 69

6-3-2. Parameter configuration .. 69

6-4. FREE FORMAT .. 71

6-4-1. Free format overview .. 71

v

6-4-2. Parameter setting ... 71

6-4-3. Application .. 72

6-5. TCP/IP .. 73

6-5-1. TCP/IP overview ... 73

6-5-2. Parameter configuration .. 73

6-5-3. Application .. 73

7. COMMON PROBLEMS AND SOLUTIONS ... 75

7-1. PACKAGE ... 75

7-1-1. Package naming rule ... 75

7-1-2. Obtain the Package .. 75

7-1-3. Package installation ... 75

7-2. XS SERIES PLC FIRMWARE UPDATE .. 76

7-2-1. Firmware naming rule ... 76

7-2-2. Obtain the firmware .. 76

7-2-3. Firmware installation and precautions .. 76

7-3. XS SERIES LOCAL EXPANSION MODULE ... 77

7-4. XS SERIES REMOTE EXPANSION MODULE .. 78

7-5. M_TCP ... 81

7-5-1. Upper computer settings ... 81

7-5-2. HMI settings .. 82

7-6. DIAL CODE .. 84

1

1. Codesys overview and installation

1-1. Codesys overview

The Codesys programming platform of German 3S company is selected for the Xinje XS series controller.

Codesys is an industrial information technology, automation programming software and intelligent manufacturing

equipment programming development platform, which provides global users with an open, flexible, stable and

reliable series of advanced industrial information technology, software products and industry solutions. At present,

about 350 control system manufacturers worldwide are Codesys users. The platform fully supports PLCopen

specification and provides all editors defined and supported by IEC international standards for automated

application development.

1-2. Codesys software architecture

Codesys software has powerful functions, high reliability and good openness. It integrates PLC programming,

visual HMI, safety PLC, controller real-time core, fieldbus and motion control. It is a complete automation

software. Codesys software can be divided into three layers in terms of architecture: application development

layer, communication layer and device layer, as shown in the figure:

Editor / compilation

debugger

XS series hardware and

bus configuration

Motion

control
visualization

CODESYS Automation Platform

Development

layer

 (IDE)

CODESYS OPC Server

CODESYS Gateway Server

Communication

layer

Hardware

device layer

(XS series)

CODESYS Runtime System

IEC 61131-3

application
Network service

Equipment target

visualization

2

1-2-1. Development layer

Codesys Development System (It has perfect online and offline programming functions), compiler and its

accessories, visual interface programming components, etc, at the same time, the optional motion control module,

safety module and other components make Codesys more complete and powerful.

◼ Editor

Codesys provides six programming languages defined by IEC61131-3: function block diagram (FBD), ladder

diagram (LD), instruction list (IL), structured text (ST), sequential function diagram (SFC) and continuous

function diagram (CFC).

◼ Compiler

Responsible for converting the application program in Codesys into machine code and optimizing the

performance of the programmable controller. When users input wrong application code, they will immediately

receive syntax error warnings and error messages from the compiler, so that programmers can quickly make

corresponding corrections. Users can use different Codesys based hardware devices (systems) for engineering

development without changing the programming mode.

◼ XS series hardware and bus configuration

For XS series hardware devices and different fieldbus protocols, this part is responsible for setting corresponding

parameters in Codesys.

◼ Visual interface programming

Visual programming (HMI) can be realized in Codesys, and the system has integrated a visual editor.

◼ Motion control module

The motion control function has been integrated into Codesys to form the softmotion (CNC) software package.

The toolkit based on PLCopen can realize single axis and multi-axis motion, electronic cam transmission,

electronic gear transmission, complex multi-axis CNC control, etc.

1-2-2. Communication layer

The communication between the application development layer and the hardware device layer is realized by the

gateway server in Codesys, in which the OPC server is installed.

◼ Codesys gateway server

It functions between the application development layer and the hardware device layer. It can use TCP/IP protocol

or CAN and other bus to realize remote access. It is an integral part of Codesys development kit.

◼ Codesys OPC server

For the Codesys based controller, it does not need to consider the hardware CPU. It has integrated and realized the

multi-client function of OPC v2.0 specification, and can access multiple controllers at the same time.

1-2-3. Device layer

XS series PLC is the hardware equipment layer of the system. Codesys runtime system has been installed, which

can meet the real-time response and accurate control requirements of the industry. At the same time, functional

expansion can also be realized by using optional components of Codesys, such as Codesys target visual

programming module or network visual programming module.

3

1-3. Xinje PLC supported by Codesys

XSDH series, XS3 series, M series and visual industrial computer.

1-4. Codesys installation and uninstallation

1-4-1. System requirements

Hardware and software requirements

◆ windows 8 or windows 10 64-bit OS

◆ Memory 4GB and above

◆ Hard disk space above 12GB

1-4-2. Obtain the Codesys

Download from the official Codesys store, website is http://www.Codesys.cn/.

1-4-3. Codesys installation

1. Basic requirements for hardware and software

Since Codesys v3.5 software is relatively large and has a lot of processing information, it has certain requirements

for PC hardware and software. The required minimum configuration and recommended configuration are shown

in the following table:

Item Minimum configuration Recommended configuration

OS Windows 2000

（Windowns XP/Windows Vista/Windows7）

Windows10

Memory 4GB 4GB

Hard disk 12GB 12GB

CPU Pentium V, Centrino>1.8GHz,

Pentium M >1.0GHz

Pentium V, Centrino>3.0GHz,

Pentium M>1.5GHz

2. Installation

Run Codesys 64 3.5.16.0.exe as an administrator to enter the installation, and the installation assistant will guide

the user to install throughout the installation process.

Note: It is not recommended that users install the software on disk C.

1-4-4. Codesys version management

The upper computer of Codesys supports the installation of multiple versions at the same time. The compiler also

supports the installation of multiple versions. Version 3.5.16.40 is recommended. Using other versions of the

upper computer may cause abnormal use of some functions.

1-4-5. Codesys uninstallation

The Codesys programming software can be uninstalled through the windows control panel. Open control panel - >

Add / remove programs, select Codesys, click the delete button, and complete the uninstallation according to the

prompt.

http://www.codesys.cn/

4

1-5. Codesys help

After opening the Codesys application, users can find the help menu and click "contents" to open the online help.

Users can quickly find the required content according to the index or search keywords, as shown in the figure:

5

2. Codesys structure

2-1. Software model

2-1-1. Software model introduction

The software model of Codesys describes the basic software elements and their relationships, which are expressed

in a hierarchical structure. Each layer contains many characteristics of its underlying layers, and its internal

structure is shown in the following figure. Among them, the software elements include: equipment, application,

task, global variable, access path and application object. They are the software foundation of modern soft PLC.

The software model is consistent with the software model of IEC 61131-3 standard.

Task 1 Task 2

Program P1 Program P2

FB1 FB2

Task 3 Task 4

Program P3 Program P4

FB3 FB4

Global direct address variable

Access path

Communication

function

Devices

The software model describes how to decompose a complex program into several small manageable parts in

principle, and there is a clear and standardized interface method between the decomposed parts. The software

model describes how a programmable controller can run several independent programs at the same time, and how

to fully control the program execution.

◼ Devices

At the top layer of the model is "equipment", which can be equivalent to all the software required by a PLC. For

large and complex application systems, such as the automation of the whole product line, multiple PLCs may be

required for online communication. It is necessary to realize bus communication between one PLC and multiple

other equipment interfaces. At this time, "equipment" can be understood as a specific type of control system,

which includes hardware devices, processing resources, I/O address mapping and system memory storage capacity,

that is, it is equivalent to a PLC.

◼ Application

In the PLC system, the equipment combines all "applications" into groups to provide a means of data exchange for

"applications". In each device, there are one or more "applications", which are located in the second layer of the

software model. "Application" not only provides a support system for running programs, but also reflects the

physical structure of PLC and provides an interface between programs and PLC physical I/O channels.

The application is allocated in the CPU of a PLC, so the application can be understood as a microprocessor unit in

6

a PLC. Global variables defined within an application are valid within the application. The main members of the

application include global variables, tasks, and program organizational units (POU).

◼ Access path

The main function of access path is to link global variables, direct representation variables and input/output

variables of program organization unit to realize information storage. It provides a method to exchange data and

information between different applications. Variables in each application can be accessed through other remote

configurations.

◼ Communication function

Provide communication with other systems, such as other programmable controller systems, robot controllers,

computers and other devices, for program transmission, data file transmission, monitoring, diagnosis, etc.

Generally, communication methods conforming to international standards (such as RS232, RS485) or industrial

field buses such as CANopen, EtherCAT, MODBUS, Ethernet/IP, DeviceNet, etc. are adopted.

2-1-2. Characteristics of software model

The Codesys software model has the following features:

◆ Codesys software model can load, start and execute multiple independent programs in one PLC at the

same time.

◆ Codesys software model can realize full control over program execution. Through the standard task

mechanism, the PLC system can fully control the program execution. The traditional PLC program can

only scan the execution program in sequence, and can not execute a certain program regularly according

to the actual requirements of the user. The task mechanism in the software model allows different parts

of the program to execute in parallel at different times and at different rates, which greatly expands the

application scope of PLC.

◆ Codesys software model is an international standard software model, which can adapt to different PLC

structures. It is not only for specific PLC system, but has strong applicability. It is suitable for both

small PLC systems and large distributed systems.

◆ Codesys software model supports the reusability of program organization unit: software reusability is an

important advantage of Codesys.

◆ Codesys software model supports hierarchical design: a complex software can be decomposed into

manageable program units through layer by layer.

2-2. Device

The device represents a specific target, that is, the hardware object, which is located at the top of the Codesys

software model. The hardware object can be a controller, a fieldbus site, a bus coupler, a driver, an input / output

module or a touch screen. Each device is defined by a "device description" file, which is installed in the Codesys

native system for insertion under the device tree (the "device tree" here represents the tree list in the device

window). The device description document determines the relevant configuration, programmability and

interconnection with other devices. Device is a structural element, which is located at the top level of the software

model. It is a large language element inside the software.

7

2-2-1. Device management

The management of equipment includes the addition of equipment, the management of installation package and

the management of equipment library.

1. Add device

When creating a new project, a dialog box will pop up automatically, as shown in the following figure. You can

select to create an empty project or a standard project in the template option. When selecting a standard project,

you need to select the actual connected hardware device.

Click OK to get the following device tree.

2. Package manager

All "devices" must be installed in the "package manager" in advance. The package manager can be selected in the

"tools" menu, and users can add or delete packages.

Different hardware configuration parameters are required for different hardware devices. The parameters that must

be configured include code generator, memory management, PLC function, I/O module configuration. In addition,

the library, gateway driver, INI files for error messages and relevant information of PLC browser must be linked.

In addition, the package integrates special functions, including corresponding library files, device description files,

etc.

The package manager installation process for this product is as follows:

8

Open "tools" and select "package manager".

Click "Install" and find the corresponding installation package in the directory. This example uses XJ_

XS3.package.

Click OK, the installation is successful, and the "XJ_XS3" icon will be displayed in the package manager, as

shown in the following figure:

3. Device library management

The device library is the operation that the user needs to do when adding or deleting hardware device information.

The device library is the database of the device. All data after installation is imported into the user's local system

for Codesys development. The device library dialog box is shown in the following figure:

9

The device library can be used to add all hardware devices. After importing the corresponding files in this option,

the corresponding data can be generated in the local system for easy calling in the project. The device that can be

added include the supplier's PLC, softmotion motion control equipment (encoder, driver, etc.), fieldbus, special

interface and other equipment.

The device description files that can be added to this product include the device description files of the ontology

and extension modules officially provided by Xinje, the XML files of EtherCAT, the EDS and DCF files of

CANopen, the IODD of IO-Link and the GSD files of Profibus DP, etc.

2-2-2. Device Editor

The device editor is a dialog box for configuring devices. Open by selecting the device icon, right clicking the edit

object command, or double clicking the device object entry in the device window.

The main dialog box is named by the device name according to the device type. This product provides tabs

containing the following sub dialog boxes, as shown in the following table:

Communication

setting

Configuration related to the connection between the target device and other

programmable devices (PLCs)

Application Display the configuration of device parameters respectively

Backup and

restore

Backing up application specific files on the PLC

File Configuration of file transfer between host and PLC

Log Display log file of PLC

PLC setting Application related to I/O operation, I/O status in stop state, configuration of

bus cycle options

PLC command PLC can be configured through shell command

Users and groups User management related to equipment access during operation (not to be

confused with engineering user management)

Access rights Configuration of access rights for running objects and files by special user

groups

IEC object Access to device "objects" through IEC applications

Clock I/O

mapping

Provide real time clock

Task deployment Displays input and output tables and their assignments to defined tasks

Status Detailed status and diagnostic information of equipment

Information Basic information of equipment (name, supplier, version, serial number, etc.)

10

2-3. Application

An application is a collection of objects required to run a program on a hardware device (such as a PLC). These

objects are independent of the hardware device platform, and users can manage them in the program organization

unit (POU). Then instantiate them in the device window and assign them to specific devices. This method accords

with the idea of object-oriented programming.

Application objects include tasks, program organization units, task configurations, global variables, library

managers, and sampling traces. The resource objects in Codesys v3.x can only be managed in the device tree.

After adding objects to the device tree, it is necessary to map with the controlled device according to certain

"rules". The effective range of objects (such as libraries and global variable lists) in the project depends on the

hierarchical relationship between applications and device objects in the device tree. Generally speaking, an object

in an application is also valid for its "sub applications" and can be used.

2-3-1. Task

1. Overview

A program can be written in different programming languages. A typical program is composed of many

interconnected function blocks, which can exchange data with each other. The execution of different parts of a

program is controlled by "tasks". After the "task" is configured, a series of programs or function blocks can be

executed periodically or triggered by a specific event.

There is a task manager tab in the device tree, which can be used in addition to declaring specific PLC_PRG, it

can also control the execution and processing of other subprograms in the project. Task is used to specify the

attributes of the program organization unit at run time. It is an execution control element with the ability to call. In

a task configuration, multiple tasks can be established, and in a task, multiple program organization units can be

called. Once the task is set, it can control program cycle execution or start execution by triggering specific events.

In task configuration, it is defined by name, priority and task startup type. This startup type can be defined by time

(periodic, random) or by internal or external trigger task time, such as using the rising edge of a Boolean global

variable or a specific event in the system. For each task, you can set a series of programs started by the task. If this

task is executed in the current cycle, these programs will be processed within the length of one cycle. The

combination of priority and condition will determine the timing of task execution. The task setting interface is

shown in the following figure:

11

Users should follow the following rules when configuring tasks:

(1) The maximum number of circular tasks is 100

(2) The maximum number of free running tasks is 100

(3) The maximum number of event triggered tasks is 100

(4) According to the target system, PLC_ PRG may be executed as a free program in any case without inserting

into the task configuration

(5) Processing and calling programs are executed from top to bottom in the task editor.

2. PLC program execution process

The following figure describes in detail the complete process of executing the program inside the PLC, which is

mainly composed of three important steps: input sampling, program execution and output refresh.

Read input

Shadow register

Task 1

Task 2

Shadow register

Write output

1. Input

sampling

2.Program

execution

3. Output

refresh

(1) Input sampling

At the beginning of each scanning cycle, PLC detects the status of input devices (switches, buttons, etc.) and

writes the status into the input image area. In the program execution stage, the running system reads data from the

input image area for program solution. The refresh of the input image area only occurs at the beginning of a scan.

During the scan, even if the output state changes, the input state will not change.

(2) Program execution

In the execution program stage of the scanning cycle, the soft PLC reads the status and data from the input image

area or the output image area, and performs logical and arithmetic operations according to the instructions. The

results of the operations are saved in the corresponding units of the output image area. At this stage, only the

contents of the input image register remain unchanged, and the contents of other image registers will change with

the execution of the program.

(3) Output refresh

The output refresh stage is also called the write output stage. The PLC transmits the status and data of the output

image area to the output point, isolates and amplifies the power in a certain way, and drives the external load.

In addition to completing the tasks of the above three stages within a scanning cycle, PLC also completes

auxiliary tasks such as internal diagnosis, communication, public processing and input / output services.

According to the scanning mode of PLC, in order to quickly respond to the changes of input and output data and

complete the control task, the scanning time of PLC is relatively short, and the scanning time of PLC is generally

12

controlled in ms. therefore, it is necessary to develop a stable, reliable and fast response real-time system for the

PLC operation system.

The PLC repeats the above processes (1) to (3), and the time for each repetition is a working cycle (or scanning

cycle).

From the working process of PLC, it can be seen that since PLC adopts the circular working mode, the input

signal will only be refreshed at the beginning of each cycle, and the output will be output intensively at the end of

each cycle. Therefore, the lag between the output signal and the input signal is inevitable.

It takes a period of time from the change of a signal input at the PLC input to the response of the PLC output to

the change of the input signal. Lag time is an important parameter that should be understood when designing PLC

control system.

The lag time is related to the following factors:

◆ The filter time of the input circuit is determined by the time constant of the RC filter circuit. The input

delay time can be adjusted by changing the time constant.

◆ The lag time of output circuit is related to the mode of output circuit. The lag time of relay output mode

is generally about 10ms, and the lag time of transistor output mode is less than 1ms.

◆ The working mode of PLC is cycle scanning.

◆ The arrangement of statements in a user program.

3. Task execution type

There is a "task configuration" at the top of the task configuration tree. The following are the currently defined

tasks, each represented by a task name. The POUs calling for a specific task is not displayed in the task

configuration tree.

For each independent task, you can edit and configure its execution type. It includes cyclic, event, external,

freewheeling and status. See the figure below for details.

(1) Cyclic

According to whether the instructions used in the program are executed or not, the processing time of the program

will be different, so the actual execution time will change differently in each scanning cycle, and the execution

time will vary from long to short. By using the fixed cycle mode, the program can be executed repeatedly for a

certain cycle time. Even if the execution time of the program changes, a certain refresh interval can be maintained.

Here, it is also recommended that you give priority to the fixed cycle task startup mode.

For example, suppose that the task corresponding to the program is set to the fixed cycle mode, and the interval

time is set to 10ms, the sequence diagram of the actual program execution is shown in the following figure:

13

8ms 2ms 6ms 4ms 7ms 3ms 8ms

Actual program execution time

Wait time
END END END END

10ms 10ms 10ms 10ms

Fixed cycle set time

If the actual execution time of the program is completed within the specified fixed cycle setting time, the spare

time is used as waiting. If there are tasks with lower priority in the application that have not been executed, the

remaining waiting time is used to execute tasks with lower priority. See the description of task priority for details.

(2) Freewheeling

The task will be processed as soon as the program starts running. After one running cycle, the task will be

automatically restarted in the next cycle, as shown in the following figure. It is not affected by the program

scanning cycle (interval time). That is to ensure that each time the last instruction of the program is executed, the

next cycle is entered. Otherwise, the program cycle will not end.

8ms 6ms 7ms 3ms 8ms

Actual program execution time

END;0 ENDEND;0 END;0

7ms

END;0 END;0

This execution method has no fixed task time, so the execution time may be different each time. Therefore, the

real-time performance of the program cannot be guaranteed, and this method is rarely used in practical

applications.

(3) Event

If the variable in the event area gets a rising edge, the task starts.

(4) Status

If the variable in the event area is true, the task starts.

The status triggering method is similar to the event triggering function, except that the program will be executed

as long as the trigger variable of status triggering is true, and will not be executed if it is false. The event trigger

only collects the effective signal of the rising edge of the trigger variable.

The following figure compares event triggering and status triggering respectively. The green solid line is the

boolean variable status selected by the two triggering methods. The following table shows the comparison results.

14

1 2 3 4

Different types of tasks showed different responses at sampling points 1-4 (purple). This specific event completes

the condition of the state driven task for true. However, an event driven task requires the event to change from

false to true. If the sampling frequency of the task plan is too low, the rising edge of the event may not be

detected.

Execution point 1 2 3 4

Event Not execute Execute Execute Execute

Status Not execute Execute Not execute Not execute

4. System events

The system events that can be selected by the user depend on the actual target system. The corresponding library

file of the target system provides the corresponding system events. Therefore, the system events corresponding to

different target hardware devices may be different. Common system events include: stop, start, login, change, etc.

In task configuration, you can set system events in task configuration.

The user can select "task configuration" - > "system event" through the mouse to enter the interface shown in the

figure below.

Select the "add event handler" button to add system events. The opened interface is shown in the following figure.

The "event" types that can be selected are shown in the following figure. You must create a new function

name in "function to call" instead of using functions that already exist in the POU. "Implementation

language" is the programming language of the corresponding function. Click "OK" after setting.

15

5. Task priority

Codesys software can set the priority of tasks. There are 32 levels in total (a number between 0 and 31. 0 is the

highest priority and 31 is the lowest priority). When a program is executing, the task with high priority takes

priority over the task with low priority. High priority task 0 can interrupt the execution of the program with lower

priority in the same resource, so that the execution of the program with lower priority is slowed down.

If the task type is "cyclic", it will be executed according to the time cycle in "interval". The specific settings are

shown in the following figure.

6. Watchdog

The watchdog is a kind of controller hardware timing device, which can be enabled through "task

configuration" in Codesys. The watchdog function is not used by default.

The main function of the watchdog is to monitor the exception during program execution or the failure of the

internal clock. For example, when the system crashes or the program enters the dead cycle, the watchdog

timer will send a reset signal to the system or stop the program currently running by the PLC. We can

understand it vividly as a puppy needs its owner to feed it regularly. If it is not fed after the specified time, it

will be hungry immediately. To configure the watchdog, you must define two parameters, time and

sensitivity. The configuration of the watchdog is shown in the following figure.

16

(1) Time

Codesys can configure independent watchdog for each task. If the target hardware supports long watchdog time

setting, the upper and lower limits can be set. The default watchdog time unit is milliseconds (MS). If the program

execution cycle exceeds the watchdog trigger time, the watchdog function will be activated and the current task

will be aborted.

(2) Sensitivity

Sensitivity is used to define the number of task watchdog exceptions that must occur before the controller detects

an application error. The default value is 1. Please refer to the following table.

Sensitivity Multiple of set time exceeded

0,1 1

2 2

…… ……

n n

Final watchdog trigger time = time × sensitivity. If the actual execution time of the program exceeds the watchdog

trigger time, the watchdog is activated. For example, if the time is 10ms and the sensitivity is set to 5, the

watchdog trigger time is 50ms. As long as the task execution time exceeds 50ms, the watchdog will be activated

immediately and the task will be aborted.

7. Task running status monitoring

Each task can be directly enabled or disabled, and the system will automatically configure a task monitor. After

entering the online mode, the user can use the monitor provided by the system to monitor the task execution

related parameters such as the average / maximum / minimum cycle time of the task. As shown in the following

figure:

At the initial stage of the project, the maximum / minimum / average cycle time can be tested, which can be used

to measure the stability of the program and optimize the task cycle time set by the program. See the following

table for the specific definitions of each parameter in the monitoring window:

Parameter Description Parameter Description

Task Task name defined in task configuration Average cycle

time (μs)

Average execution time of

task, unit: μs

Status They have the following states:

Not created: the consistency is not established after

the program is downloaded. This state may occur

when trigger task in the used time

Create: the task has been established in the

real-time system, but has not been officially run

Effective: the task is being executed

Exception: an exception occurred in the task.

Max /min cycle

time (μs)

Task maximum/minimum

execution time, unit: μs

IEC cycle

count

The cumulative count of cycles since the program

started running. '0' means the target system is not

supported.

Jitter (μs) Jitter value measured in

the last cycle, unit: μs

Cycle count

(μs)

Count of cycles that have been run. Depending on

the target system, it can be equal to the IEC cycle

count, or greater. In this case, even if the

Min/max jitter

(μs)

Measured

maximum/minimum jitter

time, unit: μs

17

application is not running, the cycle is also

counted.

Last cycle

time (μs)

Task execution time of the previous cycle, unit: μs

After understanding the definitions of the above times, the following time setting relationship should be followed.

According to this setting method, the program task cycle and watchdog time can be better optimized to ensure the

stability of the program and the real-time performance of the program.

Watchdog trigger time > fixed cycle time > program maximum cycle time

When the cycle time is longer than the fixed cycle time, the CPU will detect that the program has exceeded the

count. At this time, the real-time performance of the program will be affected. If the program cycle time is longer

than the watchdog time setting, the CPU will detect the watchdog fault and stop the execution of the program.

8. Running of multiple subprograms

In actual engineering projects, the program can usually be divided into many subroutines according to the control

flow or according to the object of the equipment. Therefore, designers can program according to each processing

unit. As shown in the figure below, the main program is divided into several subroutines with different processes

by the control process. The purpose of splitting is to make the main program conditioning clearer and facilitate

future debugging.

Control process 1

Control process 2

Control process n

PLC_PRG

After program

splitting

Control process 1
Subprogram

PRG1

Control process 2
Subprogram

PRG2

Control process n
Subprogram

PRGn

The right half of the figure above shows the subprograms PRG1, PRG2..PRGn classified by process, the left half

of the figure is the main program PLC_ PRG, PRG1..PRGn can be called respectively in the main program.

There are two ways to run multiple subroutines. The first is to add subroutines to the task configuration. The

second method is to call subroutines in the main program, which is also a common and flexible way.

2-3-2. Library files

Library files are used to store program organization units (POU) that can be used multiple times in Codesys.

Codesys provides a basic library. Users can construct a new library based on the basic library and reference it in

the program by loading.

Library file is a collection of functions, function blocks and programs, which also contains some specially defined

structures, enumeration types, etc. In terms of function, library files can be divided into system library files,

application library files and manufacturer defined library files. Among them, the system library file is a file that

supports Codesys software system, including support for software structure and syntax writing, as well as support

for standard I/O. Application library file is a file library that supports basic applications, including data operation

18

function, timer, counter, edge detection, etc. The vendor defined library file is a specially made library file

according to the product specifications of different manufacturers.

1. Management of library files

The library manager displays all libraries related to the current project. The POU, data type and global variables of

the library can be like user-defined POU and data class. The library manager is opened through the library

manager command, and relevant information including the library is saved together with the project.

If you need to install the library file on the computer or call the library file provided by the supplier, you need to

use the library file management. Library file management is defined by using the menu command "tools" - >

"library repository". The following figure shows the view of library file management.

The categories of displayed library files include application, communication, controller, device, system, etc.

The use process of library files is as follows:

(1) Installation of library files. Before using a library file, you must first "Install" it in the Library dialog box.

After installation, the library can be called in the project.

(2) Call of library file. After installing the library file, you need to add the library file through the library manager

to realize the call of the project to the library file.

2. Properties of library files

The library file needs to realize the uniqueness and security of access.

(1) Access uniqueness. If several modules or variables in a project have the same name, the paths to access

variables with the same name must be different (that is, "unique access"), otherwise compilation errors will occur.

This rule applies to local projects, libraries, and modules or variables in libraries referenced by other libraries.

Users can achieve unique access by adding a namespace before the module or variable name.

(2) Access security. Codesys provides library file encryption function to protect the source code of developer

library files. By adding permission information to the library file in the project settings and saving it as a

"compiled function library", the user needs to log in with a password to open the library file next time. If the

password is wrong, the library file cannot be used and opened, and a log alarm is triggered.

19

2-3-3. Access path

The access path is used to connect global variables, direct representation variables, input/output of function blocks

and local variables to realize the storage of information. It provides a method to exchange data and information

between different configurations. Many variables with specified names in each configuration can be accessed

through other remote configurations.

The access path function has been integrated into Codesys. Users do not need to operate it. All access operations

will be carried out automatically in the background of Codesys.

2-4. POU

Program organization unit (POU) is the smallest program unit of user program, which is composed of declaration

area and code area. It is the basis for a comprehensive understanding of new language concepts. According to

function, program organization unit (POU) can be divided into function (FUN), function block (FB) and program

(PRG).

Right click “application”, click “add object…” --- “POU”, which will pop up below figure. In the dialog box,

users can choose to add programs, function blocks or functions, and the corresponding programming language can

be selected in the drop-down menu. After adding, you can view the corresponding attributes in the brackets of the

POU in the project device tree on the left. FB is the function block, FUN is the function, and PRG is the program.

The program organization unit has the following characteristics:

◆ User's function block library can be set for each application field, which is convenient for engineering

application. For example, establish a library of motion control function blocks

◆ Function blocks can be tested and recorded

◆ It can provide global library inventory retrieval function

◆ It can be used repeatedly, and the number of times of use is unlimited

◆ The programming can be changed to establish the function block network.

20

2-4-1. POU structure

A complete POU consists of three parts: POU type and naming, variable declaration part and code instruction part

(POU body). The structure diagram is as follows:

Program name
Function block

name
Function name

Interface variables

Local variables

Instructions (POU

main body)

Declaration

area

Code area

Program end flag
Function block end

flag
Function end flag

In the above figure, from the perspective of specific functions, the program (PRG) on the left, the intermediate

function block (FB) and the function (fun) on the right can be formed respectively. From the structure of each

function, it can be divided into declaration part and code part.

All variables declared by the user are ultimately used by the program organization unit. Interface variables and

local variables can be declared in the variable declaration.

1. Declaration area

The variable declaration area is used to specify the name, type and initial value of variables.

The variable declaration editor is used to declare POU variables and data types. The declaration part is usually a

text editor or a table editor. All variables to be used in this POU are declared in the declaration part of the POU,

including input variables, output variables, input / output variables, local variables, added variables and constants.

The declaration format is based on IEC61131-3 standard. The declaration of variables adopts the following

format:

< identifier >{AT<Address>}: <data type>{: =< initialization >}:

Part of {} is optional.

2. Code area

In the code area, Codesys supports two text languages: instruction list (IL) and structured text (ST). Four

graphical languages: function block diagram (FBD), ladder diagram (LD), sequential function diagram (SFC) and

continuous function diagram (SFC). Users can choose one or several languages to program in the main part. The

main editor interface is shown in the figure below, in which ladder diagram (LD) program language is used.

21

2-4-2. Function

For the application of PLC programming language, function (FUN) is also defined as a program organization unit.

Function is a program organization unit that can be assigned parameters but has no static variables. That is, when

a function is called with the same input parameters, the function can always generate the same result as the

function value (return value). An important feature of functions is that they cannot use internal variables to store

values, which is completely different from function blocks.

Function (FUN) is a basic algorithm unit with no internal state (no memory allocation at runtime). In other words,

as long as the same input parameters are given, the calling function must get the same operation result, and there

is absolutely no ambiguity. Various mathematical operation functions we usually use, such as sin (x), sqrt (x), etc.,

are typical function types.

A function is a basic algorithm unit with at least one input variable, no private data, and only one return value.

Standard functions are already pre-existing in the standard library of Codesys.

Functions can be used by functions, function blocks, and programs.

1. Representation and declaration of functions

(1) Representation of custom functions

The internal logic part of the function can use any of the six programming languages. The function name is the

return value of the function, which can also be understood as the output value of the function, as shown in the

following figure:

(2) Declaration of variables in functions

When users customize functions, they should pay attention to the following matters:

22

◆ A function can have many input variables, but only one return value (output variable). However, there is

no restriction on the data type of the return value, so it can be a structure as the return value.

◆ The important feature of functions is that they cannot store values in internal variables, which is

different from function blocks.

◆ The function has no specified memory allocation and does not need to be instantiated like a function

block.

◆ Functions can only call functions, not function blocks.

◆ The argument configured to VAR_INPUT can be empty, constant, variable or function call. When the

function is called, the function is called as the actual argument.

2. Standard functions

Codesys supports all IEC class 8 standard functions. In addition, the following functions not specified in IEC standards

can be used: ANDN, ORN, XORN, INDEXOF, SIZEOF, ADR, BITADR, etc. Codesys supports the following 11

types of functions. The use and description of specific functions will be introduced in detail in Chapter 6.

3. Properties of function

(1) Overloaded property

For a function, if its input is described by generic data type, it is called overloaded function. This means that the

input of this function is not limited to a single data type, but can be used for different data types. All standard

functions of Codesys have overload properties, which can be applied to different data types. If a function is only

applicable to a certain data type, it needs to be declared in the function name, which is called function typing.

For example, if a PLC can recognize INT, DINT and SINT, it supports overload function ADD of generic data

type ANY_INT (including BYTE, WORD, DWORD, SINT, USINT, REAL, etc.). For example, ADD_INT is an

INT addition function limited to data types. It is a typed function. In this way, the overload function is

independent of type. The description of overloaded functions is shown in the following figure:

ADD_INT
INT

INT
INT

ADD_DINT
DINT

DINT
DINT

ADD_SINT
SINT

SINT
SINT

ADD
ANY_INT

ANY_INT
ANY_INT

When using overloaded functions, the system will automatically select the appropriate data type. For example, if

the called ADD argument data type is DINT, the system will call ADD_DINT standard functions.

(2) Scalability

The property that the number of input variables of a function can be extended is called the extensible property of a

function. For example, the input variables of the ADD function can be more than two. It can realize the addition

of multiple input variables. Therefore, the add function can be said to have extensible properties. Not all standard

functions have extensible attributes. The extension limit of this function is subject to the upper limit imposed by

PLC, the height limit of the box in the graphic programming language, or the function definition limit of the

function itself. For example, DIV function has this attribute. Functions with extensible properties can simplify the

program and reduce the required storage space. The following figure is an example of some functions with

extensible properties.

23

(3) EN and ENO

This attribute is valid only in ladder and function block diagram programming languages. EN and ENO are the

input enable and output enable of the function respectively. All functions can enable or disable this property.

The application principles of enable input and enable output are as follows:

◆ When the input function is called, the value of EN is false, then the operation defined by the function

body will not be executed by the program, and the value of ENO is false.

◆ When EN is true, the function is called, the operation defined by the function body is executed, and the

value of ENO is true.

◆ EN and ENO attributes are additional attributes, which can be enabled or disabled according to actual

needs.

The following figure compares the ADD function with EN/ENO with the ordinary ADD function.

2-4-3. Function block

Function block is to convert some program blocks that are used repeatedly into a general component. It can be

called by any programming language in the program and used repeatedly, which not only improves the

development efficiency of the program, but also reduces the errors in programming, thus improving the quality of

the program.

A program organization unit that can generate one or more values when a function block is executed. The function

block retains its own special internal variables, and the controller target execution system must allocate memory to

the internal state variables of the function block, which constitute its own state characteristics.

The execution logic of the function block constitutes its own object behavior characteristics. Therefore, for the

input variable value of the same parameter, there may be different internal state variables, so different calculation

results may be obtained. In the control system, the function block can be some kinds of control algorithm, such as

PID function module is used for closed-loop control, and other function blocks can be used for counters, slopes,

filters, etc.

1. Representation and declaration of function blocks

(1) Representation of custom function blocks

Like functions, the internal logic part of function blocks can use any of the six programming languages. The

function name is the return value of the function, which can also be understood as the output value of the function.

The following figure is the syntax expression of the function block.

24

(2) Declaration of variables in function blocks

Variable declarations in function blocks are similar to those in functions. When writing, you should pay attention

to the following matters:

◆ The internal and output variables of a function block can use the qualified attribute RETAIN to indicate

that the variable has a hold function. Input variables can only be declared with retain properties at the

time of invocation.

◆ It is generally not allowed to assign values to function block input variables. Only when the input is the

calling part of the function block, it is allowed to assign a value to the input variable of the function

block.

◆ Since function blocks can call functions and function blocks, you can also call function block instances

as variables of instances of other function blocks. Such as DB_ FF(S1:=DB_ON.Q, R:=DB_OFF.Q).

◆ The input of function blocks is not assigned, which means that their initial values are maintained.

◆ To ensure that the function block does not depend on hardware, address variables with fixed addresses

(such as %IX1.1, %QD12) are not allowed to be used as local variables in the variable declaration of the

function block, but they can be assigned values when called.

◆ Use VAR_INPUT and VAR_OUTPUT will occupy too much memory. Therefore, VAR_IN_OUT can be

used as much as possible when programming function blocks to reduce the occupation of storage area.

2. Standard function block

Bistable elements, edge detection, timers and other functional blocks have been included in the standard library.

3. Attributes of function blocks

(1) Instantiation

According to IEC61131-3 standard, the type of function block is the definition of abstract structure type, rather

than real data entity. If it is not defined and instantiated, it cannot be called and executed by the program.

Therefore, function blocks need to be instantiated before they can be used.

The instantiated function block is an independent structural variable that has private data, can complete specific

functions according to the established logic, and is completely encapsulated. Thus, the previous abstract type

definition is transformed into a data entity.

(2) Scalability

Codesys supports object-oriented programming, so function blocks can also derive "sub" function blocks. In this

way, the "child" function block has the attribute of the "parent" function block, and can have its own additional

characteristics. It can be visually considered that the "child" function block is an extension of the "parent"

function block. So in this article, we call this "function block extension".

Add the keyword "extends" when declaring the function block to use the extended function. You can also expand

by selecting the "extends" option when adding a function block in the "add object" dialog box.

(3) EN and ENO

25

Function blocks have the subsidiary attributes of EN and ENO, which are similar to the use of EN and ENO in

functions.

(4) Differences between function blocks

To sum up, the obvious differences between functions and function blocks are summarized in the following table:

 Function (FUN) Function block (FB)

Memory allocation No specified memory allocation

address

All data allocated memory address

Input/output

variables

Only one output variable is allowed Multiple output variables or no

output variables

Calling relationship Functions can be called, but function

blocks cannot be called

Callable function block or function

2-4-4. Program

Program is the main core of planning a task. The program has the greatest call right and can call function

blocks and functions.

Generally speaking, it is divided into main program and subroutine. In a broad sense, it also includes

hardware configuration, task configuration, communication configuration and target setting information.

Generally, general global variables, mapped hardware address global variables and local variables are defined

in the program. The application logic is realized by calling between programs.

1. Representation and declaration of program

The program is expressed by the following syntax expression, and the logic part of the program can use any

of the six programming languages.

2. Program performance

(1) A program can contain the configuration of addresses. It is allowed to declare the direct representation

variables that store the physical address of PLC, and the direct representation address configuration is only used

for the declaration of internal variables in the program. Direct representation variables allow hierarchical

addressing mode descriptions, such as the following representations.

You can fill in the program declaration in the following format.

bTest AT %QX10.3:BOOL:=TRUE;

(2) A program organization unit cannot call itself directly or indirectly, that is, a program organization unit cannot

call an instance of a program organization unit with the same type and name

(3) Programs are instantiated only in resources. Declared in the resource. An instance of a program only needs to

combine the program with a task, otherwise it will not be executed. Function blocks can only be instantiated in

programs or other function blocks.

26

3. Program calling relationship

It is allowed to call function block instances, function and other programs in the program, as shown in the

following figure:

Program (PRG)

Function (FUN) Function block (FB) Program (PRG)

Function (FUN)
Function

(FUN)

Function block

(FB)

According to the above figure, functions and function blocks are used to form subroutines, and programs are used

to form user main programs. Therefore, programs are considered global. Program is the largest form of program

organization unit, which can call functions, function blocks and programs.

Function blocks can call other function blocks and functions. Since there are no private variables in the function,

the function can only call other functions, not function block instances.

2-5. Application object

2-5-1. Sample tracking

The function of sampling and tracking is to monitor and track the history of variable values on the controller. The

working mode of sampling tracking is similar to that of digital sampling oscilloscope. It is a very practical and

effective debugging tool in the process of program debugging and diagnosis. The user can add the "tracking

object" and set the "tracking configuration" in the tracking manager to record the command word, status word,

motor speed, position and other parameters used in the execution of the program. The user can understand the

whole process of the program running in the control system by observing these parameters. This function is shown

in the following figure:

27

2-5-2. Persistent variable

The function of persistent variable is to save the data to the storage unit after the system is shut down or abnormal

interruption, and call it out after power on again, and it can continue to be used by the program. In order to adapt

to the on-site working conditions, when designing the PLC control system, it is necessary to consider the storage

and recovery of data after power failure or abnormal interruption. Users can register the data that needs to be

maintained during power failure in the list by adding the persistentvars list, which can realize the continuous

variable function.

2-5-3. Data unit type

The function of data unit type (DUT) is to provide users with a user-defined data type, including structure,

enumeration, alias and union, as shown in the following figure. The use of data unit type plays a role in

standardizing programming process, improving programming efficiency, optimizing programming format, and

realizing object-oriented programming.

2-5-4. Global network variables

The global network variable list (GNVL) is divided into two forms: sender and receiver. The function of the

sender is to declare and list the global variables of the network variable list (receiver) that should be sent to other

devices or network items. The function of the receiver is to list the received network variables and display

information (network, transmission information, sender, etc.). Users can add the global network list of sender and

receiver to the device tree by configuring the global network variable editor to realize the interaction of global

variables in the network.

28

2-5-5. Recipe manager

The function of the recipe manager is to provide a list of user-defined variables (recipe definitions). Users can

configure the storage location, storage method and storage category through the recipe manager, as shown in the

following figure. After the recipe manager is configured successfully, users can upload and download recipe

definitions.

29

3. Basic instructions

3-1. Bit logic instructions

3-1-1. Basic logic instructions

Instruction Command icon Function

AND

Operator AND

OR

Operator OR

NOT

Operator NOT

XOR

Operator XOR

3-1-2. Set priority and reset priority trigger instructions

Instruction Command icon Function

SR

Set priority trigger: set bistable

trigger, set priority

RS

Reset priority trigger: reset bistable

trigger, reset priority

3-1-3. Data unit type

Instruction Command icon Function

R_TRIG

Rising edge trigger

F_TRIG

Falling edge trigger

30

3-2. Timer instructions

Instruction Command icon Function

TP

Pulse timer: once IN becomes TRUE,

Q is true, and the time will start

counting in milliseconds in ET until

its value is equal to PT, then Q is

FALSE

TON

Power on delay timer: once IN

becomes TRUE, the time will start

counting in milliseconds in ET until

its value is equal to PT, then Q is

TRUE

TOF

Power off delay timer: when IN is

FALSE and ET is equal to PT, Q is

FALSE. Otherwise, it is TRUE

RTC

Real time clock: starts at a given time

and returns the date and time

3-3. Counter instructions

Instruction Command icon Function

CTU

Increment counter: if RESET is

TRUE, initialize to 0. The rising edge

of CU always increases by 1. Once

CV > = PV, Q will be set to TRUE

CTD

Minus counter: if LOAD is TRUE,

CV will be set to the starting value

given by PV. The rising edge of CD

always increases by 1, the counter

value (CV) decreases by 1 until 0,

and Q will be set to TRUE

CTUD

Up/down bidirectional counter

31

3-4. Data processing instructions

3-4-1. Select operation instructions

Instruction Command icon Function

SEL

One out of two instruction: when the

selection switch is FALSE, the output

is the first input data; when the

selection switch is TRUE, the output

is the second data

MAX

Take the maximum value

MIN

Take the minimum value

LIMIT

Limit value: if the IN value is higher

than the upper limit of Max, LIMIT

generates Max. If the value of IN is

lower than the lower limit of Min, the

result is Min

MUX

Choose one from many: MUX selects

the Kth value from a group of values.

The first value is K=0. If K is greater

than the number of other inputs (n),

Codesys passes the last value

3-4-2. Compare instructions

Instruction Command icon Function

EQ

Equal to

NE

Not equal to

GT

Greater than

GE

Greater than or equal to

LT

Less than

32

Instruction Command icon Function

LE

Less than or equal to

3-4-3. Shift instruction

Instruction Command icon Function

SHL

Shift left by bit

SHR

Shift right by bit

ROL

Rotate left

ROR

Rotate right

3-5. Operation instruction

3-5-1. Assignment instruction

Instruction Command icon Function

MOVE

Assignment

3-5-2. Arithmetic operation

Instruction Command icon Function

ADD

Addition

SUB

Subtraction

MUL

Multiplication

DIV

Division

33

Instruction Command icon Function

MOD

Residual

3-5-3. Mathematical operation instruction

Instruction Command icon Function

ABS

Absolute value instruction

SQRT

Square root instruction

EXP

Exponent instruction

LN

Natural logarithm instruction

LOG

Common logarithmic instruction

SIN

Sine command

COS

Cosine instruction

ACOS

Arccosine instruction

ASIN

Arcsine command

TAN

Tangent instruction

ATAN

Arctangent instruction

3-5-4. Address operation instruction

Instruction Command icon Function

SIZEOF

Data type size

ADR

Adress operator

BITADR

Bit address operator

34

3-5-5. Data conversion instruction

Instruction Command icon Function

BCD_TO_BYTE

BCD convert to BYTE

BCD_TO_DWORD

BCD convert to DWORD

BCD_TO_INT

BCD convert to INT

BCD_TO_WORD

BCD convert to WORD

BYTE_TO_BCD

BYTE convert to BCD

DWORD_TO_BCD

DWORD convert to BCD

INT_TO_BCD

INT convert to BCD

WORD_TO_BCD

WORD convert to BCD

35

4. Special functions

4-1. High speed counting

4-1-1. Function overview

XS series PLC has high-speed counting function. By selecting different counters, it can measure high-speed input

signals such as measurement sensors and rotary encoders, and its maximum measurement frequency can reach

200kHz.

4-1-2. Function block introduction

1. Command format

Command Name Graphic representation ST performance

XJ_Counter
High speed

counter

XJ_CounterGetValue
Read high

speed counter

XJ_CounterSetValue
Write high

speed counter

2. Related variables

【XJ_Counter】

(1) Input variables

Input

variables

Name Data type Effective

range

Initial

value

Description

Counter Counter COUNTER_REF - - High speed counter, which specifies the

high-speed counting input and initial value

Enable Enable BOOL TRUE,

FALSE

FALSE Normally open enable counting

Mode Counting

mode

Mode AB_Mode,

Single_Mode

FALSE High speed counting mode:

MODE=XJ.AB_Mode, is AB phase high

speed counting

36

MODE=XJ.Single_Mode, is single phase

high speed counting

(2) Output variables

Output

variables

Name Data type Effective range Initial

value

Description

CounterValue Counter value DINT Data type 0 High speed counter value

Error Error flag BOOL TRUE, FALSE FALSE

ErrorID Error type UINT - 0

【XJ_CounterGetValue】

(1) Input variables

Input

variables

Name Data type Effective range Initial

value

Description

Counter Counter COUNTER_REF - - High speed counter, which specifies the

high-speed counting input and initial value

Execute Enable BOOL TRUE, FALSE FALSE Trigger on the rising edge to read the current

high-speed count value

(2) Output variables

Output

variables

Name Data type Effective range Initial

value

Description

GetValue Read value DINT Data range 0 Present counter value

Done Completed flag BOOL TRUE, FALSE FALSE After reading, the flag bit is

TRUE

Error Error flag BOOL TRUE, FALSE FALSE

ErrorID Error type UINT - 0

【XJ_CounterSetValue】

(1) Input variables

Input

variables

Name Data type Effective range Initial

value

Description

Counter Counter COUNTER_REF - - High speed counter, which

specifies the high-speed counting

input and initial value

Execute Enable BOOL TRUE, FALSE FALSE Trigger on rising edge, write

high-speed count value, write the

value of SetValue to

CounterValue

SetValue Write in value DINT Data range 0 Write high speed count setting

value

(2) Output variables

Output

variables

Name Data type Effective range Initial

value

Description

Done Complete flag BOOL TRUE, FALSE FALSE After writing, the flag bit is TRUE

Error Error flag BOOL TRUE, FALSE FALSE

ErrorID Error type UINT - 0

Note: if the displayed value of ErrorID is 2, it is because the range of CounterID is not 0-3.

37

3. Function description

(1) The high-speed counting function has three function blocks: high-speed counting function block, read

high-speed counting function block and write high-speed counting function block. XS3 series high-speed input

can only receive differential signal (DIFF) and cannot receive open collector signal (OC). Please be sure to choose

the encoder of differential signal. XSDH series high-speed input is to receive open collector signal (OC).

(2) Counter is COUNTER_REF data type:

The specific description of COUNTER_REF is as follows:

Member Name Data type Effective range Initial

value

Description

CounterID Counter port INT 0,1,2,3 0 Select high speed counter

input port

CounterValue Counter initial

value

DINT Data range 0 Set the initial value of the

counter

(3) XS3 and XSDH series high-speed counting function has two modes, single phase increasing mode and AB phase

mode respectively.

(a) Incremental mode (Mode= Single_Mode)

In this mode, count the input pulse signal, and the count value increases with the rising edge of each pulse signal.

(b) AB phase mode (Mode=AB_Mode)

In this mode, the high-speed count value incremented or decremented according to the pulse signal (phase A and phase

B) with a phase difference of 90°, and the default counting mode is 4 times frequency.

(4) XS series high speed counter input port

XS3-26T4

 Single phase incremental mode AB phase mode

CounterID 0 1 2 3 0 1 2 3

Max

frequency
200k 200k 200k 200k 200k 200k 200k 200k

X0+ U+ A+

X0- U- A-

X1+ B+

X1- B-

X2

X3+ U+ A+

X3- U- A-

X4+ B+

X4- B-

X5

X6+ U+ A+

X6- U- A-

X7+ B+

X7- B-

X10

X11+ U+ A+

X11- U- A-

X12+ B+

X12- B-

X13

38

XSDH-60A32-E

 Single phase incremental mode AB phase mode

CounterID 0 1 2 3 0 1 2 3

Max

frequency
200k 200k 200k 200k 100k 100k 100k 100k

X0 U A

X1 B

X2

X3 U A

X4 B

X5

X6 U A

X7 B

X10

X11 U A

X12 B

X13

4-1-3. Parameter setting

Add library file:

Add “XinjeCnt” in Library Manager. High speed counting function can be used after adding.

4-1-4. Application example

Example 1: use the first channel of high-speed counter, read the current count value in the counter, and modify the

current high-speed count value.

Program operation:

(1) Install the library to be used according to the steps in section 4-1-3.

(2) Write a high-speed counting program.

Programming: use the function blocks "XJ.XJ_Counter", "XJ.XJ_CounterGetValue", "XJ.XJ_CounterSetValue".

Set the high-speed counting port, high-speed counting mode and high-speed counting value in the program.

39

4-2. External interrupt

4-2-1. Function overview

XS series PLC supports X-terminal interrupt, and the same terminal supports rising edge and falling edge interrupt.

In Codesys, interrupt is used in the form of external events in task type. Such as X2R_TRIG stands for X2 rising

edge interrupt, X2F_TRIG represents the falling edge interrupt. For the number and type of interrupts supported

by each model, see the "external event" option.

4-2-2. Application example

Double click "task" and set it to external event "external" in the pop-up interface - external interrupt uses terminal

X, and you can also set the priority of external interrupt events.

40

4-3. PLC SHELL

4-3-1. Function overview

PLC shell function is a text-based control monitor, which can be used to query the specific information of the

controller, input the specified command in the input window, and receive the response from the controller in the

result window.

4-3-2. Command list

Command name Function

ipaddr / IPADDR Get/set the IP address of PLC

netmask / NETMASK Get/set the subnet mask of PLC

gateway / GATEWAY Get/set the gateway of PLC

dhcp / DHCP Set IP to automatic acquisition

fpga / FPGA Get FPGA version of PLC

version / VERSION Get firmware version of PLC

rtc-get / RTC-GET Get the current UTC time

rtc-set / RTC-SET Set UTC time

4-3-3. Application example

Double click “Device”, input “?” in “PLC Shell”, it will show all the functions. Here you can modify the IP,

obtain the firmware version, set / read the clock information, and so on.

For example, enter "ipaddr" to get the current IP address of PLC.

41

Input “ipaddr 192.168.61.196”, set PLC IP address. If "write to successful" is displayed, the writing is successful.

Input “netmask” can get the current subnet mask of PLC.

Enter "netmask 255.255.254.0" to set the subnet mask of PLC. If "write to successful" is displayed, the writing is

successful.

42

Enter "gateway" to get the current default gateway of PLC.

Enter “gateway 192.168.60.1” to set PLC gateway, if "write to successful" is displayed, the writing is successful.

43

Enter "dhcp" and set the IP acquisition method of PLC to automatic acquisition. If "write to successful" is

displayed, the writing is successful. When the IP acquisition method is automatic, it is necessary to ensure a good

network environment.

Enter "FPGA" to get the current FPGA version of PLC.

44

Enter "version" to get the current firmware version of PLC.

Enter "rtc-get" to get the current UTC time.

45

Enter “rtc-set 2021-10-25T18:24:30” to set UTC time. If “RTC successfully set to 2021-10-25T18:24:30,000Z” is

displayed, the writing is successful. “000Z” display content is not fixed.

4-4. Clock

4-4-1. Function overview

XS series PLC integrates RTC, which is used to record the current system time. The clock is powered by battery,

which can ensure the accuracy of time. At the same time, it also supports users to modify RTC time manually.

46

4-4-2. Application example

How to get events:

1. Double click “Device”, enter “rtc-get” in “PLC Shell” to get the current time.

2. Use clock instruction

(1) Add related library file

Add “Util” in “Library Manager”. After adding, you can use the clock function.

(2) Make the clock program

Obtain the current time by using the function block “Util.GetLocalDateTime”, “Util.SplitDateTime”. There are

other function blocks about clock in this library, which can be viewed in the library "Util".

47

48

5. Codesys project examples

5-1. Basic programming operation

1. Start Codesys

(1) Set administrator permissions

Right click the Codesys v3.5 software, click properties, select “Run as administrator”.

(2) Start Codesys

Double click Codesys software on the desktop.

(3) Create a project

Select the new project in the file menu to create a new project, as shown in the figure.

(4) Select the project

User can build empty project or standard project. And enter the name and path for the project file, then click ok.

49

2. Create PLC program file

The establishment of PLC program file is not only the establishment of operation sequence of operation structure,

but also the establishment of programming mode, and even includes the segmentation of data area. Before

establishing the program file, the operation structure should be divided in detail, the continuous, periodic and

event triggered tasks should be determined, and the priority of periodic and event triggered tasks should be

arranged. After creating a Codesys project, a default continuous task will be automatically generated, under which

there is a default program and PLC_ PRG.

(1) Create a task

First of all, manage tasks in "task configuration". In general project applications, it can be divided into main

logical tasks and communication tasks. Communication will put it at a higher task priority and a shorter cycle time

because it needs to update the data source. In addition, if motion control is involved in the project, it will also be

separated into a task and placed at the highest priority, as shown in the figure:

(2) Create POU

Click “Application”-->right click “add object”, select POU.

(a) Variable declaration

In the device window, the default POU is "PLC_PRG". Double click "PLC_PRG" in the device tree to

automatically open it in the ST language editor in the middle of the Codesys user interface. The language editor

consists of a declaration part (upper part) and an implementation part (lower part), separated by an adjustable

dividing line. The declaration part includes: the line number, POU type and name (such as "PROGRAM

PLC_PRG") displayed, and the variable declaration between the keywords "VAR" and "END_VAR", as shown in

the following figure. In the declaration section of the editor, move the cursor after VAR and click enter. Insert a

new blank line, declare INT variable "Ivar", INT variable "Erg", FB1 variable "Fbinst".

50

(b) Input the program

Enter the following code in the program editing area under the declaration area:

(c) Custom function / function block

In the variable declaration area, you can see that the function block "FB1" is called, but "FB1" is not a standard

function block, so you need to customize the function block. Select the add object command from the Project

menu. Select "POU" on the left side of the "add object" dialog box, enter the name: FB1, and activate the

"function block (b)" option in the type option. Select "structured text (ST)" as the implementation language. Click

the "open" button to confirm the object setting.

The edit window for the new function block FB1 opens. Like the variable declaration of PLC_PRG, the following

variables are declared here:

Enter the following in the program editor implementation section:

The function is to add "2" to the input variable "in" and assign it to the output "out".

5-2. I/O mapping

In Codesys application, when variable mapping with I / O module of programmable logic controller or network

communication with external equipment is required, two methods can be adopted:

① Bind the parameters defined in the POU to the variables

② Use the keyword AT to directly link the variable to the determined address. The direct variable must

comply with the following rules:

 AT<address>:

 < identifier> AT<address>:<data type>{:=< initialize value>};

{}is an optional part.

51

Start with "%", followed by the position prefix symbol and size prefix symbol. If there is a grade, use an integer to

represent the grade, and use the decimal point symbol ".", such as %IX0.0, %QW0. The specific format of direct

variable declaration is shown in the following figure:

identifier AT %I

%Q

%M

X

B

W

D

L

Byte Bit

Byte

Data type

AT address ： Data type ；identifier

5-3. Task configuration

1. Overview

A program can be written in different programming languages. A typical program is composed of many

interconnected functional blocks, which can exchange data with each other. The execution of different parts of a

program is controlled by "tasks". After the "task" is configured, a series of programs or function blocks can be

executed periodically or triggered by a specific event to start executing the program. There is a task manager tab

in the device tree, which can be used to declare a specific PLC_PRG and control the execution of other

subprograms in the project. Task is used to specify the attributes of the program organization unit at runtime. It is

an execution control element with the ability to call. In a task configuration, multiple tasks can be established, and

in a task, multiple program organization units can be called. Once a task is set, it can control program cycle

execution or start execution through specific events.

In task configuration, it is defined by name, priority and start type of task. This startup type can be defined by time

(periodic, random) or by internal or external trigger task time, for example, using the rising edge of a Boolean

global variable or a specific event in the system. For each task, a series of programs started by the task can be set.

If this task is executed in the current cycle, these programs will be processed within the length of one cycle. The

combination of priority and condition will determine the sequence of task execution. The task setting interface is

shown in the following figure:

Since Codesys v3.x has the following attributes during task configuration, programmers should follow the

following rules:

◆ The maximum number of cycle tasks is 100.

◆ The maximum number of free running tasks is 100.

52

◆ The maximum number of event triggered tasks is 100.

◆ According to the target system, PLC_ PRG may be executed as a free program in any case without

inserting into the task configuration.

◆ The processing and calling program are executed according to the top-down sequence in the task editor.

2. Task priority

In Codesys, you can set the priority of tasks. There are 32 levels (a number between 0 and 31, 0 is the highest

priority and 31 is the lowest priority). When a program is executing, the task with high priority takes precedence

over the task with low priority. The high priority task 0 can interrupt the execution of the lower priority program

in the same resource, so that the execution of the lower priority program is slowed down.

Note: when assigning a task priority level, do not assign tasks with the same priority. If there are other task

views that precede tasks with the same priority, the results may be uncertain and unpredictable.

3. Task execution type

Type editing and configuration can be performed for each independent task. Including fixed-cycle cycle, event

trigger, external trigger, free running and state trigger.

(1) Cyclic

According to whether the instructions used in the program are executed or not, the processing time of the program

will be different, so the actual execution time will change differently in each scanning cycle, and the execution

time will vary. By using the fixed cycle mode, the program can be repeatedly executed with a certain cycle time.

Even if the execution time of the program changes, a certain refresh interval can be maintained. Here, we also

recommend that you preferentially choose the fixed cycle task startup mode.

For example, if the task corresponding to the program is set to the fixed cycle mode and the interval time is set to

10ms, the sequence diagram of the actual program execution is shown in the following figure.

8ms 2ms 6ms 4ms 7ms 3ms 8ms

Actual program

execution time
Waiting

time
END END END END

10ms 10ms 10ms 10ms

Fixed cycle set time

If the actual execution time of the program is completed within the specified fixed cycle setting time, the spare

time is used as a waiting time. If there are tasks with lower priority in the application that are not executed, the

remaining waiting time is used to execute tasks with lower priority.

(2) Freewheeling

The task will be processed as soon as the program starts to run. After the end of one running cycle, the task will be

automatically restarted in the next cycle.

It is not affected by the program scanning cycle (interval time). That is, ensure that the next cycle is entered after

the last instruction of the program is executed every time. Otherwise, the program cycle will not be ended.

53

8ms 6ms 7ms 3ms 8ms

Actual program

execution time

END;0 ENDEND;0 END;0

7ms

END;0 END;0

Since there is no fixed task time in this execution mode, the execution time may be different each time. Therefore,

the real-time performance of the program cannot be guaranteed, and this method is rarely used in practical

applications.

(3) Event

If the variable in the event area gets a rising edge, the task starts.

(4) Status

If the variable in the event area is true, the task begins.

In the following figure, the event trigger and status trigger are compared respectively. The green solid line is the

boolean variable status selected by the two trigger methods. The following table is the comparison result.

1 2 3 4

Task input trigger signal

The state triggering mode is similar to the event triggering function, the difference is that the program will be

executed as long as the trigger variable of the state triggering is true, and will not be executed if it is false. While

the event trigger only collects the rising edge effective signal of the trigger variable.

Different types of tasks showed different responses at sampling points 1-4 (purple). This specific event is true to

complete the condition of the state driven task. However, an event driven task requires the event to change from

false to true. If the sampling frequency of the task plan is too low, the rising edge of the event may not be

detected.

Execution point 1 2 3 4

Event Not execute Execute Execute Execute

Status Not execute Execute Not execute Not execute

(5) External interrupt

If the variable in the event area gets the rising edge or falling edge of an external interrupt signal X, the task starts.

The input terminal X can be used as an input of an external interrupt. Each input terminal corresponds to an

external interrupt, and the rising edge or falling edge of the input can trigger an interrupt.

(6) Watchdog

The watchdog is a controller hardware type timing device. It can be enabled by "task configuration" in Codesys.

The watchdog function is not used by default.

The main function of the watchdog is to monitor the abnormality during the execution of the program or the

failure of the internal clock. If the system crashes or the program enters the dead cycle, the watchdog timer will

send a reset signal to the system or stop the program currently running by the PLC. We can vividly understand it

as a puppy needs its owner to feed it regularly. If it is not fed within the specified time, it will be hungry

54

immediately. To configure the watchdog, you must define two parameters, time and sensitivity. The configuration

of the watchdog is shown in the figure.

① Time

Codesys can configure independent watchdog for each task. If the target hardware supports long watchdog time

setting, the upper and lower limits can be set. The default watchdog time unit is milliseconds (ms). If the program

execution cycle exceeds the watchdog trigger time, the watchdog function will be activated and the current task

will be aborted.

② Sensitivity

Sensitivity is used to define the number of task watchdog exceptions that must occur before the controller detects

an application error. The default is 1.

Final watchdog trigger time = time × Sensitivity. If the actual execution time of the program exceeds the

watchdog trigger time, the watchdog is activated. For example, if the time is 10ms and the sensitivity is set to 5,

the watchdog trigger time is 50ms. As long as the task execution time exceeds 50ms, the watchdog will be

activated immediately and the task will be suspended.

5-4. Program download/read

5-4-1. Compile

After the program is written, the program needs to be compiled before downloading. The compile command

checks the syntax of the written program and compiles only the programs added to the task. If the created POU is

not added to the task, the compilation command does not check the syntax of the POU.

The compilation instruction does not generate any code, and only checks the syntax of POU. When the device

login command is directly executed, the system will also execute the compilation command by default (equivalent

to manually executing the compilation command first), and then execute the connection login command after

compiling and checking that there is no syntax error. Similarly, no syntax check is performed on POU that are not

added to the task during compilation. Executing the login command generates code at the same time.

(1) Compile: compile the current application.

(2) Recompile: if you need to recompile the compiled application, you can recompile it.

55

(3) Generate code: after executing this command, the machine code of the current application is generated.

When executing the login command, the generated code is executed by default.

(4) Clear: deletes the compilation information of the current application. You need to regenerate the

compilation information when logging in to the device again.

(5) Clear all: deletes all compilation information in the project.

After executing the compile command, you can see that the " PLC_PRG " added to the task is displayed in blue,

and the " PLC_PRG " not added to the task is displayed in gray. The compilation instruction does not check the

syntax of the gray POU because the program unit is not in the active state. The compilation instruction only

checks the syntax of the POU in the active state. If the program unit that needs to be run is displayed in gray

during the compilation process, you can check whether the program unit has been successfully added to the task

that needs to be run.

After the compilation command is executed, you can see the information generated by compilation in the message

bar, where you can see whether the compiled program has errors or warnings, and the number of errors and

warnings. If there are errors and warnings, you can view and find them in the message window and modify the

program according to the prompt information.

5-4-2. Login download

1. Login

Login enables the application to establish a connection with the target device and enter the online state. The

prerequisite for correct login is to correctly configure the communication settings of the device and the application

must be free of compilation errors.

For login with the current active application, the generated code must be free of errors and the device

communication settings must be configured correctly. After login, the system will automatically select program

download.

2. Download

Download command is valid in online mode. It includes compiling the current application and generating object

code. In addition to syntax checking (compilation processing), application object code is generated and loaded

into PLC.

(1) Login with online change

When the user selects this option, the changed part of the project is loaded into the controller. Use the "login with

online change" operation to prevent the controller from entering the stop state.

Note:

①The user has performed at least complete download once.

56

②The pointer data will update the value of the latest cycle. If the data type of the original variable is

changed, the accuracy of the data cannot be ensured. At this time, the pointer data needs to be reallocated.

(2) Login with download

After selecting login and download, reload the entire project into the controller. The biggest difference from "login

with online change" is that after downloading, the controller will stay in the stop mode and wait for the user to

send the run command or restart the controllerto run the program.

(3) Login without any change

When you log in, you do not change the program that was last loaded into the controller.

5-4-3. Source code download

Codesys does not download the source code automatically by default for the protection of the programmer's

source code. If you need to download the source code, you need to manually set it. Click "online" - > "source

download to connected device". You can also set this attribute in project - > project settings - > source download

- > timing.

5-4-4. Read program

Open a device selection dialog box in the menu "File > source upload". The user selects the network path

connected to the PLC and clicks "OK". If the archive file already exists under the path selected by the user, a

prompt will be given whether to overwrite it.

It should be noted here that before reading the program, it is necessary to ensure that "source download to

connected device" has been done in the previous download process. Otherwise, the data in the controller cannot be

read.

57

5-5. Program debugging

5-5-1. Reset

There are three ways to reset the Codesys program, which can be selected in the "online" menu.

1. Reset warm

After the warm reset, except for the holding type variables (PERSISTENT and RETAIN variables), other

currently applied variables are reinitialized. If the variables with initial values are set, the values of these variables

will be restored to the setting initial values after warm reset. Otherwise, the variables will be set to the standard

initial value 0.

2. Reset cold

Unlike "warm reset", the cold reset command not only sets the value of the common variable to the initial value of

the currently active application, but also sets the value of the holding variable (RETAIN variable) to the initial

value of 0. The persistent variable remains unchanged.

3. Reset origin

When a programmable device is selected in the device tree, this command can be used either offline or online.

Using this command will reset the device to the initial state, that is, any applications, boot projects and remaining

variables in the device will be cleared.

Since all project information has been cleared, it is necessary to "download" the program again and "start" it after

relogin.

58

5-5-2. Program debugging

The view of "debug" menu in Codesys is as shown in the figure. The main operations involve breakpoint setting

and single cycle.

1. Breakpoint

Breakpoint is the function of processing stop in the program. When the program stops, the program R&D

personnel can observe the contents of its variables and I/O and other related variables when the program reaches

the breakpoint position, which is helpful to deeply understand the mechanism of program operation and find and

eliminate program faults.

Breakpoints can be set in all programming languages in Codesys. In the text editor ST language, the breakpoint is

set on the line. Set it on the network number in the FBD and LD editor. While in SFC, it is set at step.

2. Step

After the breakpoint is set, the program can be executed step by step. This function allows the program to run step

by step, which is convenient for programmers to debug and check the logic errors in the program.

(1) Step over

This command will execute the current instruction in the program and stop after execution. When POU is not

called, the step over and step into commands have the same effect. However, if the POU is called, step over will

not enter the POU. Instead, the POU calling is regarded as a complete step and executed at one time. Step into will

enter the POU. If the SFC language is used, step over will treat an action as a complete step and execute it at one

time. If you want to jump to the called POU for single-step debugging, you must use step into.

(2) Step into

When executed, the current instruction position is indicated by a yellow arrow. If the current instruction does not

call POU, using this command has the same effect as using the skip command.

(3) Step out

59

When single-step debugging is performed in a POU, the remaining instructions of the POU will be executed at

one time by using step out, and then the next instruction at the place where the POU is called will be returned.

Therefore, if the POU is called down layer by layer, the step out will return up layer by layer, one layer at a time.

If the program does not contain any POU calls, the step out cannot be returned to the upper layer, and it will return

to the beginning of the program.

3. Single cycle

Select "single cycle" in "debug", so that the program can run step by step. That is, press once to run, and the

program will stop after one cycle and wait for the next run instruction.

5-6. Simulation

Offline simulation

Select "simulation" in the menu "online" to enter the program running process in the simulation mode. After

confirming that the option "simulation" has been marked, compile the program and enter the simulation mode

after there is no error.

5-7. PLC script function

The PLC script is a text-based control monitor (terminal). The command with specific information obtained from

the controller is input in an input line and sent to the controller as a string. The result display of the relevant string

in the browsing window is returned. This function is used for diagnosis and debugging purposes.

Double click the mouse to select "device", find "PLC shell" in the right view, and enter the corresponding

command in the command input box below. Enter ?, Press enter to display all commands supported by the

controller. Refer to section 4-3.

60

Note: to use the script function, you must log in the PLC before using the corresponding command.

61

6. Industrial fieldbus technology

6-1. MODBUS communication

6-1-1. MODBUS overview

XS series programmable controller body supports Modbus protocol communication in the form of master and

slave.

Master station form: when the programmable controller is used as the master station device, it can communicate

with other slave devices using Modbus protocol. Data exchange with other equipment. Example: Xinje XS series

PLC can control the frequency converter through communication.

Slave station form: when the programmable controller is used as the slave station equipment, it can only respond

to the requirements of other master stations.

Master slave concept: in the RS485 network, at a certain time, there can be one master and multiple slaves (as

shown in the figure below). The master station can read and write to any of the slave stations, and the slave

stations cannot directly exchange data. The master station needs to write a communication program to read and

write to one of the slave stations. The slave station does not need to write a communication program, and only

needs to respond to the reading and writing of the master station. (wiring mode: all 485 + are connected together,

and all 485 - are connected together)

master

slave1

slave2

slave3

In the RS232 network (as shown in the figure below), only one-to-one communication is available, and there

is only one master and one slave at a time.

master slave

The reason why there are dotted arrows in the figure (including in RS485 network) is that theoretically, in the

two networks, as long as each PLC does not send data, any PLC in the network can be used as the master station

and other PLCs as the slave station. However, since there is no unified clock reference among multiple PLCs, it is

easy to send data from multiple PLCs at the same time, which will lead to communication conflict failure.

Therefore, it is not recommended to use this method.

62

6-1-2. Parameter configuration

1. Modbus master station configuration

① In the applied project, right-click the device, click "add device", and click "MODBUS com" in the pop-up

dialog box to add.

② After adding successfully, you can see "MODBUS COM" under the device, click "add device", select

"MODBUS master, COM port" in the pop-up dialog box, and click "add device" to add. Select "MODBUS master,

COM port", select "MODBUS slave, COM port" in the pop-up dialog box, and click "add device" to complete the

addition.

63

③ After adding, you can see the addition of the Modbus COM master station in the left device bar. Double click

"modbus_slave_com_port" to configure the reading and writing in the "MODBUS slave channel" on the right.

2. Modbus slave station configuration

① In the applied project, right-click the "device", click "add device", and click "MODBUS COM" in the pop-up

dialog box to add.

64

②After adding successfully, you can see "MODBUS COM" under the device. Right click "add device" and select

"MODBUS serial device" in the pop-up dialog box. As shown in the following figure:

③After adding, you can see the addition of Modbus com slave station in the left device bar. Double click

"MODBUS serial device" to configure registers and coils in "General". After configuration, you can monitor the

reading and writing data of master station to XS slave station in "MODBUS serial device I/O mapping".

65

6-2. MODBUS TCP

6-2-1. MODBUS TCP overview

Modbus TCP uses TCP/IP to transmit MODBUS messages between stations. Modbus TCP combines the TCP/IP

protocol and Modbus protocol as the data representation method of application protocol standard. Modbus TCP

communication messages are encapsulated in Ethernet TCP/IP packets. Compared with the traditional serial port

mode, Modbus TCP inserts a standard MODBUS message into the TCP message without any data parity and

address.

XS series programmable controller supports Modbus TCP protocol communication in the form of master and

slave.

Master station form: when the programmable controller is the master station device, it can communicate with

other slave devices using Modbus TCP protocol. A master station can connect up to 64 slave stations.

Slave station form: when the programmable controller is used as the slave station equipment, it can only respond

to the requirements of other master stations.

66

6-2-2. Parameter configuration

1. Modbus TCP client configuration

① In the applied project, right-click the "device", click "add device", and click "Ethernet" in the pop-up dialog

box, as shown in the figure:

② After adding successfully, you can see "Ethernet" under the device. Right click "Ethernet", click "add device",

select "Modbus TCP master" in the pop-up dialog box, and click "add device" to add. Select "Modbus TCP

master", select "Modbus TCP slave" in the pop-up dialog box, and click "add device" to complete the addition.

67

③ After adding, you can see the addition of Modbus TCP client in the left device bar. Double click

"modbus_tcp_slave" to configure the read/write in the right "MODBUS slave channel".

68

2. Modbus TCP server configuration

① In the applied project, right-click the "device", click "add device", and click "Ethernet" in the pop-up dialog

box, as shown in the figure:

② After adding "Ethernet", right-click "add device" and select "Modbus TCP slave device" in the pop-up dialog

box. As shown in the following figure:

69

③After adding, you can see the addition of Modbus TCP server in the left device bar. Double click

"ModbusTCP_slave_device" to configure registers and coils in "General". After configuration, you can monitor

the reading and writing data of the client to the XS server in "Modbus TCP slave device I/O mapping".

6-3. OPC UA

6-3-1. OPC UA communication overview

OPC UA was released in 2008. It is a platform independent service-oriented architecture that integrates all

functions of various OPC classic specifications into an extensible framework.

In XS series PLC, OPC UA server is integrated, which can support users to access data in PLC through OPC UA

client.

6-3-2. Parameter configuration

① In the applied project, right-click "application", select "add object" - "symbol configuration..", and select

"support OPC UA feature" in the pop-up dialog box to add, then the function of OPCUA will be enabled.

70

② double click “Symbol Configuration”, click "build" in the pop-up interface and select the parameters to be

monitored.

③ After downloading the program, open the software of OPC UA, select "DA client", and enter the "IP" address

of industrial control in the pop-up interface (for example, opc.tcp://192.168.61.196) Or you can enter the address

in "log" and find "programs" in "DeviceSet". There are the parameters just checked. You can right-click the

parameter -- monitor -- to read and write the parameter.

71

6-4. Free format

6-4-1. Free format overview

When Xinje PLC communicates with other equipment, if it is the lower computer, the upper computer must

exchange data with it according to the data format of Modbus RTU. If Xinje PLC is the upper computer, when the

lower computer also supports the Modbus RTU protocol, it can directly use the relevant communication

instructions to communicate, making the program writing simpler and more efficient. If the lower computer does

not directly support the Modbus RTU protocol, it can use free format communication.

The so-called free format means that when the communication protocol of the lower machine does not match the

PLC protocol, the PLC internally defines the data format to send data, so that it can communicate with many

lower machines.

Free format communication is to transmit data in the form of data blocks. Each block can transmit up to 256 bytes.

At the same time, each block can be set with or without a start and end character.

6-4-2. Parameter setting

① Add two libraries in the library manager -- Syscom and Systypes, and add the library version corresponding to

the upper computer version. And the compiler version should also correspond to the upper computer version.

72

6-4-3. Application

Example 1: free format communication between two PLCs and data transmission / reception are realized through

the following program.

Note: when free format communication is used for data reception, either the cycle of the corresponding task needs

to be extended when it is normally on, or the rising edge triggering is used for reception.

Program operation:

(1) Install the library to be used according to the steps in section 6-5-2.

(2) Write a free-form program.

73

6-5. TCP/IP

6-5-1. TCP/IP overview

TCP / IP protocol is a common Ethernet communication protocol. Compared with the open interconnection model

ISO, it adopts a more open way and is widely used in practical projects. TCP / IP protocol can be used on a variety

of channels and underlying protocols (such as T1, X.25 and RS232 serial interface). Specifically, TCP / IP

protocol is a protocol group including TCP protocol, IP protocol, UDP protocol, ICMP protocol and other

protocols.

6-5-2. Parameter configuration

Add the TCP / IP library network in the library manager, and add the network version corresponding to the upper

computer version.

Define relevant variables in POU and write programs.

6-5-3. Application

Example 1: through the following procedure, TCP/IP communication between two PLCs is realized to receive and

send data. The IP address of PLC 1 is 192.168.6.17, and the IP address of PLC 2 is 192.168.6.18.

Note: the server needs to open the connection first and wait for the client to connect. Otherwise, TCP/IP

communication may not be established successfully.

Program operation:

(1) Install the library to be used according to the steps in section 6-6-2.

74

(2) Write TCP/IP programs.

Programming: use the function blocks " NBS.TCP_Server ", " NBS.TCP_Client ", " NBS.TCP_Connection ", "

NBS.TCP_Write ", " NBS.TCP_Read " to set the server, client, sending and receiving parameters of the TCP/IP

used in the program.

75

7. Common problems and solutions

7-1. Package

7-1-1. Package naming rule

Naming format: XSDH-60A32_3.5.15.40_1.0.0_P1_20211027

① ② ③ ④ ⑤

No. Name Note

① XSDH-60A32 PLC model

② 3.5.15.40 Runtime version

③ 1.0.0 Package production version

④ P1 The first online upgrade

package after production

⑤ 20211027 Package update date

7-1-2. Obtain the Package

Please contact us, email sales@xinje.com.

7-1-3. Package installation

Select "tools" - "package manager..", install the package in the pop-up interface, select "Install", and find the

location of the package for installation. For example, to install the package of XSDH-60A32, it is best to uninstall

the previous package before installing a new one.

mailto:sales@xinje.com

76

7-2. XS series PLC firmware update

7-2-1. Firmware naming rule

Naming rule: XSDH-60A32_3.5.15.40_1.0.0_P1_20211027

 ① ② ③ ④ ⑤

No. Name Note

① XSDH-60A32 PLC model

② 3.5.15.40 Runtime version

③ 1.0.0 Firmware production version

④ P1 The first online firmware

upgrade after production

⑤ 20211027 Firmware update date

7-2-2. Obtain the firmware

Please contact us, email sales@xinje.com.

7-2-3. Firmware installation and precautions

Upgrade firmware through newpack package:

Create the equipment standard project, connect the equipment, select the "Files" option in the main equipment

directory, click refresh in the upper right corner, transfer the newpack upgrade package to the runtime, wait for the

transfer to be completed, restart the equipment, the ERR light will be on during the upgrade of the equipment, and

the ERR will be off after the update is completed. At this time, the equipment can be scanned.

mailto:sales@xinje.com

77

7-3. XS series local expansion module

① After connecting the local expansion module with the PLC, right-click device → add device → select

"exmodulemaster".

② The expansion module can be added by scanning or manually adding.

78

③ Testing result.

7-4. XS series remote expansion module

① Connect DC24V power supply with remote module LC3-AP.

② Add LC3-AP description file in the codesys software.

③ Add EtherCAT Master or EtherCAT Master SoftMotion.

79

④ Select the network port for communication.

80

⑤ Scan the devices to add LC3-AP module.

⑥ Copy all devices to project.

81

7-5. M_TCP

Note: the Modbus TCP developed by Xinje only supports ARM series models for the time being, and will support

all Codesys models in the future.

7-5-1. Upper computer settings

① When using this communication function, please check whether the firmware version of the PLC is

3.5.15.40_ 1.0.0_ P1_ 20211028 and above, if it is not this version, please upgrade the firmware first. Refer to

chapter 7-2 for details.

② Right click Device→other item→add Modbus TCP.

82

③ Associated variables.

7-5-2. HMI settings

① Set the IP address of the HMI and the device to be connected (new Ethernet device is required).

83

② Add the required HMI elements, select Codesys for the device, and the station number must be set to 0!

The object type of the button or indicator is 0x (readable and writable) or 1x (read-only). 0x0 and 1x0 correspond

to MB0, and so on.

Select 3x (read-only) or 4x (read-write) as the object type of data input or data display. 3x0 and 4x0 correspond to

MW40000, and so on.

If the data type input or display is DWORD, then 3x0 and 4x0 occupy MW40000 and MW40001 registers, and so

on.

84

③ For the time being, the HMI can only support reading and writing of up to two registers, so floating point

numbers (two registers) can be displayed at most. Double precision floating point numbers can only be converted

in the PLC, and cannot be directly input or displayed on the HMI.

7-6. Dial code

XSDH-60A32-E supports the dial code function, and its specific functions are as follows:

00: Normal startup, no special processing, load user program.

10: Initialize IP.

01: Power on without loading user program.

11: Update the machine, send the SD card data to EMMC.

WUXI XINJE ELECTRIC CO., LTD.

No.816, Jianzhu West Road, Binhu District,

Wuxi City, Jiangsu Province, China

214072

Tel: 400-885-0136

Fax: (510) 85111290

www.xinje.com

