XINJE

XD/XL series PLC
User manual [Instruction]

WUXI XINJE ELECTRIC CO., LTD.

Data No. PDO05 20201022 3.5

XINJE

XD/XL series PLC
User manual [Instruction]

1 Preface

2 Programming summary

3 Soft component functions

4 Basic program instructions

5 Applied instructions

6 High speed counter

7 Pulse output

8 Communication functions

9 PID functions

10 C function block

11 Sequences BLOCK

12 Special function instructions

13 Applications

14 Q&A

15 Appendixes

e Basic explanation
Thank you for purchasing Xinje XD/XL series PLC.
This manual mainly introduces XD/XL series PLC instructions.
Please read this manual carefully before using and wire after understanding the content.
About software and programming instructions, please refer to related manuals.
Please hand this manual over to operation users.

e Notices for users
Only experienced operator can wire the plc. If any problem, please contact our technical
department.
The listed examples are used to help users to understand, so it may not act.
Please conform that PLC specifications and principles are suitable when connect PLC to
other products. Please conform safety of PLC and machines by yourself when use the PLC.
Machines may be damaged by PLC errors.

e Responsibility declaration
The manual content has been checked carefully, however, mistakes may happen.
We often check the manual and will correct the problems in subsequent version. Welcome to
offer advices to us.
Excuse us that we will not inform you if manual is changed.

e Contact information
If you have any problem about products, please contact the agent or Xinje company.
Tel: 0086 510-85134136 85123803
Fax: 0086 510-85111290
Address: Building 7 fourth floor, No.100, Dicui Rd, Wuxi, China.
Code : 214072

@ N

WUXI XINJE ELECTRIC CO., LTD. copyrights

Do not copy or use manual without written permission. Offenders should be
responsible for losses. Please keep all copyrights of our company including practical
modules, designed patents and copyrights mentioned in register.

2015, 5, 12

o /

Catalog

1 PROGRAMMING SUMMARYoooitiiiiiiiiiiiiie ittt sttt st sbe et st nbe e nnees 9
L=1. PLOC FEATURESceitiieiiiet ittt e ettt me et et ame e b e m et e e s s me e nne e nneeneennenneenneenneens 9
1-2. PROGRAMMING LANGUAGEccutiteititerieiiitesietesteseetestestetestestesesbeseesesbessesesbessesestessesessessasessenens 10

J-2-1 TPPC wveosveeeereeeeieeeeeseee et 10
L-2-2. AIEFTALION ...ttt bbbt s st e e s b e e sab e e s b e e nnbe e e 10
1-3. Programming MOGE..............cc.ccuuiuiriuiiieeieiii sttt nreenn e n e nneen 11

2 SOFT COMPONENT FUNCTION.......coooiiiiiiiiiieiie ettt 12
2-1. SUMMARY OF THE SOFT COMPONENTSuciuirireiieesreesneasseanessnesneesseesseessessessssssnsssesssessseensesnns 12
2-2. STRUCTURE OF SOFT COMPONENTScctteutirsresseesmeesreesseasseasessssansesseesseessesssessssssesssesssessseensesnns 15

2-2-1. SHPUCIHUTE O MEMOFY ...ttt n e 15
2-2-2. Structure of Bit SOft COMPONENLS..........ccueoviiiiiiiiiiiieie et 17
2-3. SOFT COMPONENTS LIST ..titiietiitesietistesierestesiesesteseesesteseesesteseesesteseesessessesessessesessessasessessesessensens 18
2-3-1. SOft COMPOREHLS LIStcoueisieiiieiiii ittt sttt n e ne e 18
2-4. INPUT/OUTPUT RELAYS (X, Y) titttttttiituesiiesieestiesieesstesssessseesssessssessssesssssssssessssesssesssnessssensns 35
2-5. AUXILIARY RELAY (M, HM, SM) ..ottt snbaesnne e 37
2-6. STATUS RELAY (S, HS)..iiiiiitiiiiie ittt sttt st st sttt st ssbe e nbeesnbee e 38
g B 1Y 121 S (N = 1) T PP PP UPRPROPRTPR 39
T ©1018) N4 1 21 (L G = [U UPRTPRUPRTPR 43
2-9. DATAREGISTER (D, HD) ..uviiiiiiiiiiiie ettt sttt sttt snbe e beesnbe e 48
2-9-1. WOrd CONSISt Of DILS ..c.vveueiiiiiiie ettt 51
2-9-2. OffS€t QPPIICALIONc.oveeeiriiiiii ittt n e ne e 52
2-10. FLASHREGISTER (FD, SFD, FS) ...uiiiiiiiitiiiiie it s 53
e B B 10\ 3 VN N AT P TP PPRTPROPRPRI 54
2-12. PROGRAMMING PRINCIPLEuttiiuriiiieeisrieatesssreessreesireessseessneessnessineessnesssbeessnesssneesinesssneesanesans 55

3 BASIC PROGRAM INSTRUCTIONScootiiiiiiie ettt naeas 59
3-1. BASIC INSTRUCTIONS LIST....ciiitiiiiiiiiitiiiitiiiiiii sttt 59
3-2.[LD], [LDI], [OUT] weeeeieeieeeeeseeeeeeeeeeee sttt st s st s e ene s 61
33 JAND], [ANI] oottt ettt e st st e e e s e et e e s et ens s 62
324 JOR], [ORI] oottt ettt sttt ettt s et st en s 63
3-5.[LDP], [LDF], [ANDP], [ANDE], [ORP], [ORF].....eocsrsrremreesreseeseeseeseeseesseseeereseesreneesseninns 64
3-6.[LDD], [LDDI], [ANDD], [ANDDI], [ORD], [ORDI], [OUTD] ...ccccecevesrrirrrrreresrrererrererenss 65
327 JORB ettt ettt ettt ettt ettt ettt 66
3o8. [ANB ..ttt ettt et ettt sttt n et 67
IO 1Y (OS] I 1. (©) 3 OO 68
I L0 7N 5 OO 69
I 13 01 R 1525 OO 70
312 [SET], [RSTT covoveeeeveeeeieeseeesis st n st ene e ene e 71
3-13. [CNTI[CNT D] [DCNT] [DCNT D] [RST] FOR THE COUNTERS.ccreurrrerrrrrreeren. 72
3-14. [TMR], [TMR-A] FOR TIMERSutttitttiteeastetasteeantreesiseessseessseessseessseesssesssneesssesssneessnesssneesneesn 74
I TN 125 000) OO 74

RO T (61200101 TE3:30 163 o1 [75

3-17. PROGRAMMING NOTESviuiitiiiiisiiitiiisi st 76
4 APPLIED INSTRUCGTIONS ...ttt nnne s 78
4-1. APPLIED INSTRUCTIONS LISTiiiiiiiiiiiii i s 78
4-2. READING METHOD OF APPLIED INSTRUCTIONSccccviiiiiiiiiiiiiisiisiisis s 82
4-3. PROGRAM FLOW INSTRUCTIONScoiiiiiiiiiiiiiiiiiiiti et 84
4-3-1. Condition JUMP [CJ]c.ccoomiiiiiiiiii ittt sre e sn e nre e 84
4-3-2. Call subroutine [CALL] and Subroutine return [SRET]cc.ccccouvviiniinniiiiniinniieenieeninens 85
4-3-3. Flow [SET], [ST], [STL], [STLE]ceioiiieiieeie et nne e 87
4-3-4. [FOR] and [NEXT] ...occoiiiiiieiieii ettt nne e nn e nne e 92
4-3-5. [FEND] aNd [ENDY]........ccooiiiiiaiiiii ettt nne e sn s nneen 94
4-4. DATA COMPARE FUNCTIONooitiiiiiiiiiiiitiiie ittt st bbb 95
4-4-1. LD COMPATE [LD]oooueiiiiiiiiiitieiiee sttt re e nne e 96
4-4-2. Serial Compare [AND]cccoouiiiiiiiiiii ettt 97
4-4-3. Parallel COmPAre [OR]cccoeiiiiiiiiiiii ittt 98
4-5. DATA MOVE INSTRUCTIONSuuttittieeiiiiuitrereesssasusssesessessasssssssessesssnnsssssesessssamssssesseessansssseeees 101
4-5-1. Data Compare [CMP]cccccuiiiiiiiiiiii et 101
4-5-2. Data zone compare [ZCP]cccccuviiiiiiiiiiiiiiiie et 102
=53 MOV [MOV] oottt ettt ab bbb sre e sre e nneene s 103
4-5-4. Data block Move [BMOV]ccoouiiiiiiiiiiii sttt snee s 105
4-5-5. Data block Move [PMOV]ccccviiiiiiiiiiiiiiiiiit sttt ssee s 106
4-5-6. Fill MOVE [FMOV] ..ccuviieiiiiiieieeeteeeee ettt ne e 107
4-5-7. Floating move [EMOV]ccouaiioiiiiiie ettt 109
4-5-8. FlaShROM Write [FWRT] ...ccoooieiieiieiiee ettt 110
4-5-9. Z0NE S€t [MSET]ooeiiiiee ittt 111
4-5-10. ZONE 1Sl [ZRST]....eeveiiieeieiiie ettt et e n 112
4-5-11. Swap the high and [ow Dyte [SWAP].........cccoviiiiiiiiiitiiiieieee e 113
4-5-12. EXCRANGE [XCH] ...ccoiiiiiiiiiii ettt e 114
4-6. DATA OPERATION INSTRUCTIONSccuiiiiiiiisiiis ittt 116
4-6-1 AItion [ADDY]ccoooiiiiiiiiiieei ettt e 116
4-6-2. SUDIFACHION [SUBJ ..ccoiiiiiiiii ittt ettt sttt sttt b 118
4-6-3. Multiplication [MUL]Jccccooiiiiiimiiie ittt 120
4-6-4. DIVISION [DIV] ..oooiiiiiiiiiiiii ettt nreene e 121
4-6-5. Increment [INC] & Decrement [DEC]cccccouiiiiiiiiiiiiiiiiie e 123
4-60-60. Mean [MEAN]cccooiiiiiiiieeee ettt bbbt sb e s neene e 124
4-6-7. Logic AND [WAND], Logic OR[WOR], Logic Exclusive OR [WXOR]ccccceevveur.e. 125
4-6-8. Logic cOnVerse [CML] ...ttt 127
4-6-9. Negative [INEG]ccooiiiiiiiii ittt ettt 128
4-T7. SHIFT INSTRUCTIONScutiiiiiitiitiiii it sb bbb b 129
4-7-1. Arithmetic shift left [SHL], Arithmetic shift right [SHR]c..cccccccovvnininiiiiniiiiiins 129
4-7-2. Logic shift left [LSL], Logic shift right [LSR]cccccovmviiiiiiiiiiiiiiiiiseeeeeie 131
4-7-3. Rotation shift left [ROL], Rotation shift right [ROR]cc.cccccevivinininiiiiiiiiciciein 132
4-7-4. Bit SHIft Left [SETL] ...ocoueieiiiiieieee ettt bbb sae e 134
4-7-5. Bit SHift VIGRE [SFTR] ..ottt e 135

4-7-6. WOEA SHIft Left [VSFL] coovovveevveeeeoeeeeeeeeeeeeeeseeseeeeeeeeeesessesseseseseeseseessssee e sessesee e 136

4-7-7. Word shift vight [WSFR]ccooieiieiieiee sttt 137
4-8. DATA CONVERT ..ottt bbb bbb bbb b 138
4-8-1. Single word integer converts to double word integer [WTD]cccccoovvviiiiinienieeneenn. 139
4-8-2. 16 bits integer converts to float point [FLT]cccccouvuiiiiiiiiiinienieese e 140
4-8-3. Float point converts t0 integer [INT]ccccuoiiieiiiiiiiiiiienesee e 141
4-8-4. BCD convert to binary [BIN]cccocooiiiiiiiie it 142
4-8-5. Binary convert t0 BCD [BCDY]ccccoooiiiiiiiee ittt 144
4-8-6. Hex converts t0 ASCIT [ASCI]ccoooioiiiiiiiiiiiii sttt 145
4-8-7. ASCII convert to Hex.[HEX]ccccooouuiiiiiiiiiii sttt 146
4-8-8. Coding [DECO]ccooviieiieiiee ettt 147
4-8-9. High bit coding [ENCOY]c.cccooiiiiiiiiiiiiie ettt 150
4-8-10. Low bit cOdiNg [ENCOL]c.covueiiiiiiiiiie ettt 152
4-8-11. Binary to Gray code [GRY] ...ttt 154
4-8-12. Gray code t0 binary [GBIN]........ccccouiiiiiiiiieit et 155
4-9. FLOATING NUMBER OPERATIONcccceiiiiuttieteeessiiiuisseseeeesssistsssessesssinsssssesssessnmssssessessssnssssseses 156
4-9-1. Floating Compare [ECMP]cccccouiieiiiieiiee ittt 157
4-9-2. Floating Zone Compare [EZCP]ccccocuioiiiiiiiiiiiiieiese e 158
4-9-3. Floating Addition [EADDY]ccccouiiiiiiiiiiie ettt 160
4-9-4. Floating Subtraction [ESUB]ccccccuiiiiiiiii ittt 161
4-9-5. Floating Multiplication [EMUL]c.cccoooiiiiiiiiiiiieie e 162
4-9-6. Floating DiviSion [EDIV] ...ttt e 164
4-9-7. Float Square RoOt [ESQOR]ccoveiiiiiiiiie ittt 165
G-9-8. SINE [SIN] c..oorveeiiieie ettt e 166
4-9-9. COSINE [COS] weorueiiiiiii ettt bbbt sre e nre e ne s 167
G-9-10. TAN [TAN] ccooeeieeieeee ettt b bbb sbe b e ne s 168
G-9-11. ASIN [ASIN] ..coueeieiaiiae ettt ettt b ettt nbe e nneen e 169
G-9-12. ACOS [ACOS] ceeeoeiiiit et sae e 170
4-9-13. ATAN [ATAN] ...oooeieeieeeeeee bbb n e 171
4-10. RTC INSTRUCTIONSocuiiiiiiitiiitiiii st sb bbb b 172
4-10-1. Read the clock data [TRD]c..cccocuuviiiiiiiiiiiiiiiiiis e see s 172
4-10-2. Write Clock Dat@ [TWR]coouuiiiiiiiiiiii st sie s sies st stee sttt s sbasssee s 173
4-10-3. Clock compare [TCMP] ..ottt 174

5 HIGH SPEED COUNTER (HSQC)ooiiiiiiiiiieie s 177
5-1. FUNCTIONS SUMMARYooiiiiiiiiiiiiiin ittt bbb sba b 177
522 HSC MODE ... ettt ettt ettt ekttt e b e bttt e b et s bt sb e e s bt e nbe e bt enneenneanrenbeenreen 178
5-3. HSC RANGE ..ottt ettt b bbbt s b e bt e s b e e skt e bt e mn e e nnesnnenbeenneens 179
5-4. HSCINPUT WIRINGooiitiiiiiiiiiiiie i e bbb 180
5-5. HSC PORTS ASSIGNMENTooiuiiiiiiiiii ittt bbb bbb b 180
5-6. AB PHASE COUNTING FREQUENCY DOUBLING SETTING.......c0uvererererereeerererersrererereseressrsremssemmee 186
5-7. HSC INSTRUCTION......0ciitiiiiiiiiiiie it sttt bbb e bbb e sb s b e s ba s e sb e sbe e 187
5-7-1. Single phase HSC [CNT]ccccoooieiiiiiiiiiiiiiiiieee e 187
5-7-2. AB phase HSC [CNT ABJ ...ttt 188
5-7-3. HSC 1St [RST] «.eeeteeeee ettt ettt nae b 189

5-7-4. Read HSC value [DMOV]ccouoiiiiiiiiii ittt 189

5-7-5. Write HSC value [DMOV]ccouuiiiiiiiiiiii sttt st 190
5-7-6. The difference between HSC and normal COURLEFcccuoemiiiveeiieniiiieneeneeneene s 191
5-8. HSC EXAMPLEcuiiiiiiiiiiiiiiiii ittt bbb 192
T & ST O 1 5 8 0 () R 194
5-7-1. Function overview and panel CORfIQUIALIONcccccueciiiiiienieenieeiise e 194
5-9-2. Single phase 100-segment HSC [CNT]ccoooiiiiiiiiiiiiieneneesee e 196
5-9-3. AB phase 100-segment HSC [CNT AB]......ccccouviiiiiiiiiiiiiiieneneeeee e 197
5-9-4. Interruption flag of HSC ..ottt e 198
5-9-5. Setting value meaning in absolute or relative modec.cccuvenviniiiiiiicnieieee, 198
5-9-6. HSC interruption cycle MOcc.couiiiiiiieiiiiiiiiii et 201
5-9-7. CAM function of high speed counter iRterrUPLionccccueerveerieenieniesie e 203
5-9-8. Interruption using notes and parameter Addressccocouerieiieiiniinie e 204
5-9-9. Application of HSC iRIEFTUDLIONccueiuireiieiie ettt 205

6 COMMUNICATION FUNCTION.......cooiiiiiiiiiee s 212
0-1. SUMMARY ..ottt bbb bbbt 212
O-1-1. COM POFE ..ot 212
6-1-2. COMMUNICALION PAVAMECICYSociuvieiiiiiirieiit sttt 220
6-2. MODBUS COMMUNICATIONeeiittiiesireeessirreesatseeesssseeesssssesssssseesssssssesssssesssnsssessssseessassseesane 220
0-2-1. FUNCHON OVEFVICWoeoiuviiiiiiiiiie sttt s s 220
6-2-2. Changing of Modbus iRSTIUCIIONccoiiiieeiieiiee st 221
6-2-3. Modbus communication AAAIESScccoouvueiiiiiiiiiiiie et 222
0-2-4 Modbus data fOFMALcccooeiiiiiiiii it 232
6-2-5. Communication INSTFUCHIONScccoviiiuiiiiiiii i 238
6-2-6. Modbus serial port CONfIGUFALIONc..coueiueiieiiii sttt 248
6-2-7. Modbus Communication appliCAtion..............c.cccoceiiiiiiiiiiiiiiini et 252
0-2-8. ADPIICALION ..ottt b b 253
6-3. FREE COMMUNICATIONuiiuiiuiiieitiiti ittt st st b sttt st st sb e sba st aesae 256
0-3-1. Free COMMUNICALION MOMEc.cccuicuiiiiiiiii ettt 256
0-3-2. Serial pOrt CONfIGUIALIONccccuiiuiiieiiiiii ettt 257
0-3-3. SUTLADIE OCCASTON ...t 258
6-3-4. Free cOMmMuniCAtion INSIFUCHIONcuevcuiiiiiieiiie i 259
0-3-5. Free cOmMmunication eXamplec.ccouveiviiiiiiiiiiiiiie ettt 262
6-4. COMMUNICATION FLAG AND REGISTERcoviiiiiiiiiiiiiiiiisicnis st 268
6-5. READ WRITE SERIAL PORT PARAMETERScoiiiiiiiiiiiiiiiiiicis st 271
6-5-1. Read serial port parameters [CEFGCR]cccoiiiiiiiiiiiiii it 271
6-5-2. Write serial port parameters [CEGCW]c.coooiiiiiiiiiiieiieieese et 272
6-5-3. Serial port parameter nAMe ANd SEHINGcccceviriiiiiiiiiiiieieie i 273

7 PID CONTROL FUNCTIONoooiiiiiiiiiiiie e 275
7-1. PID INTRODUCTIONccuiiiiiitiitiiisti sttt bbb bbb bbb s 275
7-2. INSTRUCTION FORM.....ciiiiiiiiiiiiiiniii s 275
7-3. PARAMETERS SETTINGuviuiiuiiiiiiitiiiiisis sttt bbb bbb bbb s 277
7-3-1. Register and their fUNCIIOMScccuvuiiiiiiiie ettt sttt nbe e 278

7-3-2. Parameters DEeSCHIDIIONcccuivuiiiiiiiiii ittt sttt st sttt 283

T-4. AUTO TUNE MODEccoiitiiiitiiiiieinieesieeaniesssteeasiesssessssesssessssessssesssessssssssssssssssessesssssessessssees 284
7-5. ADVANCED MODE......ccciitttiitititteinieesteeaniesssteeastesssesassessssssssessssesssessssssssssssssssesssesssseesessssees 287
7-6. APPLICATION OUTLINESeiutttiutteitesssteeatessseesssessssessssessssssssesssssssssessssssesssssssssesessnsssesssesssnes 288
T=T. APPLICATION ...ueiiutieiuteesstteiteesstesstessssesatessssesaseessseesbeesbseabesasbeeesbeeebeeenbeeebeeenbeeenbeeenbaeennees 289
8 C LANGUAGE FUNCTION BLOCK ..ottt stee et snen s snae e 294
LR BN 011 1Y 7.8 3 PP PO PPTPPPPPTRRN 294
8-2. INSTRUCTION FORMATccittiiititiiitiesiieesitiesiteesittesiseesiseesssessiseessseessaeesisesssaeessnesssseessnessssesssneesns 294
8-3. OPERATION STEPSutiittteitttesiueesittesseeststesseesistessseessssesssesssseesseessssesssesssseessessseesssessseessseesns 295
8-4. IMPORT AND EXPORT THE FUNCTIONS......cciiuiiiiiieiiieiiiiesneesiiiesneesineesineessaeessnesssseessnesssneessnesses 299
8-5. EDIT THE FUNC BLOCKSveiuviitiiitiestiesteeieeieseesteesteesteeseeasaesssesnsessaessaesseessnassessesssnsssesssesnseanes 300
8-6. PROGRAM EXAMPLEciiiiiiiiiiiiiiiiesiteesitiesite sttt siteestaeesite e sbbeesibeesbbeesaaeesbaeesbbeessbeesnbeesnbeennnee e 302
8-7. INEW FUNCTIONS ...ecutttiittteittessreesistesssesststesssesssstessseessssesssssssssssssesssssesssesssseesssessseessessseesssessns 305
8-8. FUNCTION LIBRARYeeiutiuveiuresteesssesteesseasueassessssssesssessseasssassesssesssesssesssesesssessssssssssesssesssesnns 307
8-8-1. EXport the fUnCtION [IDFATYc.cooviiieiiiiiie ettt 307
8-8-2. Manage the fUnction liDFAFYccccccoiiiiiiiii ittt 310
8-8-3. Use the fUNCtion [IDFATYc.ccoeiieiiiiiiie ittt 312
8-9. APPLICATION NOTEScttiteiuteittestsesteesteasueassessaessessseesseasssassesssesssesssssseessessesssssssssseesseesseanns 313
8-10. Q&A OF CLANGUAGEuecuviitieitiestteteateestestaesteesteesseasssassessseassssseesseesseessesssessesssesssesssesnsennes 316
8-11. FUNCTION TABLE......ccitittitesteesteesteesteasteasaessaesseesseesseasseanseassesssesssesseessesssessssssesssesssesssesnsennes 318
9 SEQUENCE BLOCKooi oottt et s e te e s st ee e e nn e e s st e e e s nnaae e e anre e e e annes 322
9-1. CONCEPT OF THE BLOCKciiiiiiiiiieiee it et sttt e st e ste e te e e te st e s e staesteesteenneansesnsesnsesseensenns 322
0-2. CALLTHE BLOGCKccitiiiiieiie ettt ettt et ta e e te e ae s e e steesteesteenteenneansesnnesreenneens 323
9-2-1. Add the BLOCKccviie e e ct et ese ettt ste e e st e ta e ta e te e aesnaesteesneesneeneenes 323
9-2-2. MOVE the BLOCKcccvcouiiieiiesieseeiese s et ste e ste e et e s e ta e teasaesnaestaesteesaeenreenes 326
9-2-3. Delete the BLOCKcccccuiiueiieiieie e sttt ste e ste e ave e st e ta e ta e teasaesnaestaesteesaeenreenes 327
9-2-4. MOdify the BLOCKccccooiiiiiiiieiese sttt et sne 327
9-3. EDIT THE INSTRUCTION OF THE BLOCKciiiiiiiiiiiiie i 329
9-3-1. COMMANA ILOML........ccuvveiiiee et e e e e e e et e et e e e st e e e s atte e e e streeesnreeee s 329
9-3-20 PUISC TN ..ottt ettt e e st e e et e e e et e e e e e et e e e ataa e e aaeaean 330

L T B 1 {72 TSR 331
9-3-4. Module Read and Write (FROM/TO) iNSIFUCHIONc.coovveveiieieeieeiesiieiieeseeee e 332
9-4. RUNNING FORM OF THE BLOCKcoiiiiiiiiiiiiieiii ettt 333
9-5. BLOCK INSTRUCTION EDITING RULESceiittitteiirieesiureeessitreessineeesssseeesssnressssneessssseesssnsessnnes 335
9-6. BLOCK RELATED INSTRUCTIONSceetuttteiiutreeeaereeesasseeesstnessssseessssseesssssseessnsssessnnseesssnseesanes 337
9-6-1. INSIUCHION EXPIARALION ...t 337
9-6-2. The timing sequence Of the INSITUCIIOMNScccovueieiiiiiceiieiaes et 339
9-7. BLOCK FLAG BIT AND REGISTER......cceiuttteiittiteeairteesiuteeesstressssseessssseessssssesssnsssessssseessssnsessanes 343
10 SPECIAL FUNCTION INSTRUCTIONS ..ottt 344
10-1. PULSE WIDTH MODULATION [PWM]....coiiiiiiiiiiiiie e 344
10-2. FREQUENCY MEASUREMENT [FRQMI ...ttt 347
10-3. PRECISE TIMING [STRIttiiitiiiiieiiie ittt 351

10-4. INTERRUPTION [EI], [DI], [TRETT] ..uttiiiieiiieiiieiiienie sttt 357

10-4-1. EXternal INTeFrPUDIIONcccoouiiu ittt sne e n e 357
10-4-2. TIMING INTERRUPTIONcciuttreieeeeeiiiiturreeesessiiisssssessesssassssssssessssmissssssesssssissssssessesssmsssssssees 363

11 COMMON QUESTIONS AND ANSWERS ...t 365
APPENDIX SPECIAL SOFT COMPONENTS ... 383
APPENDIX 1. SPECIAL AUXILIARY RELAYcttiiiiiiiiiiiiiiieie e ciitreie e e e snibbare e s s e s s nabbrae e e e e s s ennanaeee s 383
APPENDIX 2. SPECIAL DATA REGISTERciiiitttiiiieeiiiiitiiieeeeeesesiibrereesssssstbassesssessssssssesssssssnssnsseesns 389
APPENDIX 3. SPECIAL FLASH REGISTERiitttttiitieeiiiiiitiietee e e s e siibaeeees s s s sstbbasesssessssbssseesessssnnsnssensns 396
APPENDIX 4. PLC RESOURCE CONFLICT TABLE .111eiieeiiiiittiieeeeeesiiiireeeeesesssitbassessssssssssssesssesssssssssenes 399
APPENDIX 5. PLC FUNCTION CONFIGURATION LIST ..vveeeitvieeiisreeessrersessssesessssesesssssesssssssssssssesesssseses 400

1 Programming Summary

XD/XL series PLC accept the signal and execute the program in the controller, to fulfill the
requirements of the users. This chapter introduces the PLC features, two kinds of
programming language and etc.

1-1. PLC Features

Programming Language

XD/XL series PLC support two kinds of program language, instruction and ladder chart, the
two kinds of language can convert to each other.

Security of the Program

To avoid the stolen or wrong modifying of user program, we encrypt the program. When
uploading the encrypted program, it will check in the form of password. This can protect the
user copyright; meanwhile, it limits the downloading, to avoid change program by mistake.
XD/XL series added new register FS. (For different XD/XL models, please check the Data
monitor in XDPpro software for FS register range, common range is FS0~FS47). FS value
can be modified but cannot be read through Modbus instruction. FS cannot be compared to
register but only constant in XDPpro software. The value cannot be read. FS is used to protect
the user’s copyright. The register D, HD... can replace by FS.

Program comments

When the user program is too long, the comments of program and soft components are
necessary in order to change the program easily later.

Offset Function

Add offset appendix (like X3[D100], M10[D100], DO[D100]) after coils, data registers can
make indirect addressing. For example, when D100=9, X3[D100] =X[3+9]=X14;
M10[D100]=M19, DO[D100]=D9

Rich Basic Functions

XD/XL series PLC has enough basic instructions including basic sequential control, data
moving and comparing, arithmetic operation, logic control, data loop and shift etc.
XD/XL series PLC also support interruption, high speed pulse, frequency testing, precise
time, PID control and so on.

C Language Function Block

XD/XL series PLC support C language; users can call the C program in ladder chart. This
function improves the programming efficiency.

9

Stop PLC when reboot

XD/XL series PLC support “Stop PLC when reboot” function. When there is a serious
problem during PLC running, this method can stop all output immediately. Besides, if the
COM port parameters are changed by mistake, this function can help PLC connect to the PC.

Communication Function

XD/ XL series PLC has many communication modes, such as Modbus-RTU, Modbus-ASCI|.
When the COM port parameters are changed, the new parameters will be valid immediately
without restarting the PLC.

Wait time can be added before Modbus instructions.

1-2. Programming Language

1-2-1. Type
XD/XL series PLC support two types of programming language:

Instruction

Make the program with instructions directly, such as “LD”, “AND”, “OUT” etc. This is the
basic input form of the programs, but it’s hard to read and understand;

E.g.: step instruction operand
0 LD X000
1 OR Y005
2 ANI X002
3 ouT Y005

Make sequential control graph with sequential control signal and soft components. This
method is called “Ladder chart”. This method uses coils and contactors to represent sequential
circuit. The ladder chart is easy to understand and can be used to monitor the PLC status
online.

E.g.

X0 X2

Y5

1-2-2. Alternation

The two kinds of programming language can be transformed to each other.

10

Ladder

1-3. Programming mode

Direct Input

The two kinds of programming language can be input directly in the editing window. The
ladder chart window has hint function which improves the programming efficiency greatly.

PLCL - Ladder

4 b X

X10
o =t

T0

L

MBC0o0

o A
T0

— |

X13

i
—WJ

Instruction Configuration

Some instruction is complicated to use, like pulse output, PID etc. XDPPro software has the
configuration window for these special instructions. User just needs to input parameters in the
configuration window without remembering complicated instructions. The following window

is multi section pulse output.

multi section pulse cutput J
Data start address: | DD user params address: D100 System params: | K1 Cutput: | YD
Mode: Start execute section count: | 0 Pulse Config

© Add Delete | Upwards Downwards

frequence pulse count wait condition

walt register

Jump register

used space:

| Read Fom PLC | | Wie To FLC | |

0K

| [canca |

For the details of instruction configuration, please refer to XD/XL series PLC user manual

[software part] .
1

2 Soft Component Function

In chapter 1, we briefly introduce the programming language. However, the most important
element in a program is the operands. These elements include the relays and registers. In this
chapter, we will describe the functions and using methods of these relays and registers.

2-1. Summary of the Soft Components

There are many relays, timers and counters inside PLC. They all have countless NO
(Normally ON) and NC (Normally Closed) contactors. Connect these contactors with the
coils will make a sequential control circuit. Next we will introduce these soft components.

Input Relay (X)

o The functions of input relays
The input relays are used to receive the external ON/OFF signal, the sign is X.

e Address Assignment Principle

» In each basic unit, X address is in the form of octal, such as X0~X7, X10~X17 ...

» The extension module address: module 1 starts from X10000, module 2 starts from
X10100... XD1/XD2/XL1 cannot support extension module. Up to 10 extension modules
can be connected to the XD3/XL3 main unit.
XD5/XDM/XDC/XD5SE/XDME/XDH/XL5/XL5SE/XLME can connect 16 extension
modules.

» Extension BD board: BD 1 starts from X20000; The 24-32 points PLC can connect one
extended BD board and the 48-60 points PLC can connect two extended BD boards. (16-
point PLC does not support extended BD board, XL/XDH series does not support extended
BD board.)

» The address number of the left extended ED module, starting from X30000 according to
octal system, XD/XL series PLC supports a left extended I/O ED module. (XDH cannot
support ED module)

e Using notes

The digital filter is used in the input filter of the input relay. Users can change the filter
parameters by setting the special register SFDO, default value is 10ms, modification range: 0
~1000ms.

There are enough input relays in the PLC. The input relay whose address is more than input
points can be seemed to auxiliary relay.

Output Relay (Y)

e Function of the output relays
Output relays are the interface to drive the external loads, the signis Y;
e Address Assignment Principle
In each basic unit, Y address is in the form of octal, such as YO~Y7, Y10~Y17 ...
The extension module address: module 1 starts from Y10000, module 2 starts from Y10100...

12

XD1/XD2/XL1 does not support extension modules, XD3/XL3 can accept 10 extension
modules, XD5/XDM/XDC/XD5E/XDME/XDH/XL5/XL5E/XLME can accept 16 extension
modules.

Expanding the address number of BD board, starting from X20000 according to octal system,
24-32 points PLC can extend one BD board, 48-60 points PLC can extend two BD boards.
(16-point PLC does not support extended BD board, XL/XDH series does not support
extended BD board.)

The address number of the left extended ED module, starting from Y 30000 according to octal
system, XD/XL series PLC supports a left extended input and output ED module. (XDH
cannot support ED module)

Using notes
There are enough output relays in the PLC. The output relay whose address is more than
output points can be seemed to auxiliary relay.

Auxiliary Relays (M, HM)

e Function of Auxiliary Relays
Auxiliary relays is internal relays of PLC, the sign is M and HM;
e Address assignment principle
In basic units, assign the auxiliary address in decimal form
e Using notes
This type of relays are different from the input/output relays, they can’t drive external load
and receive external signal, but only be used in the program;
Retentive relays can keep its ON/OFF status when PLC power OFF;

Status Relays (S, HS)

e Function of status relays
Used as relays in Ladder, the sign is S, HS.
e Address assignment principle
In basic units, assign the address in decimal form.
e Using notes
If it is not used as operation number, they can be used as auxiliary relays, programming as
normal contactors/coils. Besides, they can be used as signal alarms, for external diagnose.

Timer (T, HT)

e Function of the timers
Timers are used to accumulate the time pulse like 1ms, 10ms, 100ms etc. when reach the set
value, the output contactors acts, represent sign is T and HT.
e Address assignment principle
In basic units, assign the timer address in decimal form. Please refer to chapter 2-2 for details.
e Time pulse

13

There are three timer pulses: 1ms, 10ms, and 100ms. For example, 10ms means accumulate
10ms pulses.

e Accumulation/not accumulation
The timer has two modes: accumulation timer means even the timer drive coil is OFF, the
timer will still keep the current value; while the not accumulation timer means when the
accumulation value reaches the set value, the output acts, the accumulation value reset to 0.

Counter (C, HC)

According to different application purposes, the counters contain different types:
e For internal counting (for general using/power off retentive usage)
16 bits counter: for increment count, the count range is 1~32,767
32 bits counter: for increment count, the count range is 1~2,147,483,647
These counters are for PLC internal signal. The response speed is one scan cycle or longer.
e For High Speed Counting (Power-off retentive)
32 bits counter: the count range is -2,147,483,648~ +2,147,483,647
(Single phase increment count, AB phase count). For special input terminals.
The high speed counter will not be affected by PLC scanning period. For increment mode, it
can count max 80KHz pulses; for AB phase mode, it can count max 50KHz pulses.
e Address assignment principle
In basic units, assign the timer address in decimal form.

Data Register (D, HD)

e Function of Data Registers
Data Registers are used to store data, the sign is D and HD.
e Address assignment principle
The data registers in XD/XL series PLC are 16 bits (the highest bit is sign bit), combine two
data registers together is for 32 bits (the highest bit is sign bit) data processing.
e Using notes
Same to other soft components, data registers also have common type and power-off retentive

type.

FlashROM Register (FD)

e Function of FlashROM registers
FlashROM registers are used to store data, the sign is FD.

e Address assignment principle
In basic units, FlashROM registers address is in form of decimal,

e Using notes
Even the battery powered off, this area can remember the data. So this area can store
important parameters. FlashROM can be writen for about 1,000,000 times, and it takes time
when writing. Frequently writing can cause permanent damage for FD.

14

Special secret Register (FS)

e The Function of Secret Register
A part of the FlashROM register is used to store data in soft components, which are
represented by the symbol FS. The values in the FS register can be written but can not be
read, so they can be used to protect the intellectual property rights of users.

e Address Allocation Principle

In the basic unit, FS registers are addressed in decimal numbers.

¢ Since the number of FS registers of different types of PLC may be different, please refer to
the "PLC Initial Settings" shown in the online PLC software, generally FS0-FS47.

e Attention Points in Use

The storage area can remember data even if the battery is powered down, so it can be used to
store important process parameters. FS can be written about 1,000,000 times, and it takes
more time to write each time. Frequent writing will cause permanent damage to FS, so it is
not recommended that users write frequently. When using MOV instruction to transmit data
to FS, the rising edge is valid.

e The value of the soft element can be set arbitrarily in the FS register, but the value of the
register can not be read (always returned to 0); and it can not be compared with the register
in the PLC software, only with the constant, so the actual value of the register can not be
read.

Constant (B) (K) (H)

B means Binary, K represents Decimal, H represents Hexadecimal. They are used to set
timers and counters value, or operands of application instructions. For example hex FF will
be HFF.

2-2. Structure of Soft Components

2-2-1. Structure of Memory

In XD/XL series PLC, there are many registers. Besides D, HD, FlashROM registers, we can
also combine bit to register.

Data Register D, HD

For common use, 16 bits

For common use, 32 bits (combine two continuous 16-bits registers)

For power off retentive use, cannot modify the retentive range

For special use, occupied by the system, can’t be used to common instruction parameters
For offset use (indirect assignment)

15

Form: Dn[Dm], HDn[Dm], Xn[Dm], Yn[Dm] , Mn[Dm] , etc.
HS'\TA;{ mov | ko | Do |
HMTH mov | ks | Do |

jML—{ MOV ‘D10[D0]‘ D100 ‘

When D0=0, D100=D10, YO is ON.

When M2 turns from OFF to ON, D0=5, then D100=D15, Y5 is ON.

Therein, D10[D0]=D[10+D0], YO[DO0]=Y[0+DO0].

The word offset combined by bit: DXn[Dm] represents DX[n+Dm].

The soft components with offset, the offset can represent by soft component D, HD.

Timer T, HT/Counter C, HC

For common usage, 16 bits, represent the current value of timer/counter;

For common usage, 32 bits, (combine two continuous 16 bits registers)

To represent them, just use the letter+address method, such as T10, C11, HT10, HC11.
E.g.

I N ey K99 | K100
HN%H MOV ‘ T11 ‘ DO ‘

In the above example, MOV T11 DO, T11 represents word register;
LD T11, T11 represents bit register.

FlashROM Register FD

For power off retentive usage, 16 bits
For power off retentive usage, 32 bits, (combine two continuous 16 bits registers)
For special usage, occupied by the system, can’t be used as common instruction parameters

Register combined by bits

For common usage, 16 bits, (combine 16 bits)

The soft components which can be combined to words are: X, Y, M, S, T, C, HM, HS, HT,
HC.

Format: add “D” in front of soft components, like DM10, represents a 16-bits register from
M10~M25

Get 16 bits beginning from DXn, cannot beyond the soft components range;

The word combined by bits cannot do bit addressing;

E.g.

16

HMTH MOV ‘ K21 ‘ DYO ‘
—MHF—{MOV‘ K3 ‘ DO‘

SMO
— MOV ‘DXZ[DO]‘ D10 ‘

When MO changes from OFF to ON, the value in the word which is combined by YO~Y17
equals to 21, i.e. YO, Y2, Y4 become ON.

Before M1 activates, if D0=0, DX2[DQ0] represents a word combined by X2~X21.

If M1 changes from OFF to ON, D0=3, then DX2[D0] represents a word combined by
X5~X24.

2-2-2. Structure of Bit Soft Components

Bit soft components include X, Y, M, S, T, C, HM, HS, HT, HC. Besides, the bit of the
register also can be used as bit sofst component.

Relay

Input Relay X, octal form

Output Relay Y, octal form

Auxiliary Relay M, HM, S, HS; decimal form

Auxiliary Relay T, HT, C, HC, decimal form. The represent method is same to registers, so
we need to judge if it’s word register or bit register according to the instruction.

The Bit of register

Composed by bit of register, support register D

Represent method: Dn.m (0<m<15): for example D10.2 means the second bit of D10
The represent method of bit with offset: Dn[Dm].x

Bit of register can’t compose to word soft component again;

E.g.

D0.4
1 YO

D5[D1].4
= v

D0.4 means when the fourth bit of DO is 1, set YO ON.
D5[D1].4 means bit addressing with offset, if D1=5, then D5[D1] means the fourth bit of D10

17

2-3. Soft Components List

2-3-1. Soft Components List

XD1 series PLC soft components list:

Range Points
Name
16 1/0 321/0 16 32
X Input points X0~X7 X0~X17 8 16
Y Output points YO~Y7 YO~Y17 8 16
X10000~X10077 (#1 expansion
module)
X | Inputpoints™ | ... 640
X11100~X11177 (#10 expansion
module)
Y10000~Y10077 (#1 expansion
module)
Y | Outputpoints™ | ... 640
Y11100~Y11177 (#10 expansion
module)
X20000~X20077 (#1 expansion
., BD)
X INpUtpoints = i 5 0100~X20177 (#2 expansion 128
BD)
'Y20000~Y20077 (#1 expansion
., BDD
Y| Outputpoints =y 50100~Y20177 (#2 expansion 128
BD)
X | Input points*® [X30000~X30077 (#1 expansion ED) 64
Y | Output points “® [Y30000~Y30077 (#1 expansion ED) 64
M M0~M7999 8000
HM | Internal relay HMO0~HM959™* 960
SM Special purpose SM0~SM2047*2 2048
S Flow S0~S1023 _ 1024
HS HS0~HS127*! 128
T TO~T575 576
HT Timer HTO~HT95™! 96
ET Precise timer ETO~ET31 32
C C0~C575 576
HC Counter HCO~HC95™! 96
HSC High speed counter HSCO~HSC31 32
D D0~D7999 8000
HD _ HDO~HD999"! 1000
sp| Dataregister Special purpose SDO~SD2047 2048
HSD Special purpose HSDO~HSD499*? 500
FD FlashROM FDO~FD5119 5120
SFD register Special purpose SFDO~SFD1999*2 2000

18

Special secret

FS . FSO0~FS47 48
register
Main body IDO~ID99 100
ID10000~1D10099 (#1 expansion
module)
Expansion module| ... 1000
ID10900~1D10999 (#10 expansion
ID*6 module) _
ID20000~1D20099 (#1 expansion
. BD)
expansion BD |, 1) 1100~ 1020199 (#2 expansion 200
BD)
expansion ED ID30000~1D30099 (#1 expansion 100
ED)
Main body QD0~QD99 100
QD10000~QD10099 (#1 expansion
module)
Expansion module| ... 1000
QD10900~QD10999 (#10 expansion
QD* module)
! QD20000~QD20099 (#1 expansion
. BD)
expansion BD | 0100~QD20199 (#2 expansion 200
BD)
expansion ED QD30000~QD30099 (#1 expansion 100
ED)
Special coil of
Sequence block
SEM inscgruction WAIT SEMO~SEM31 32
XD2 series PLC soft components list:
Range Points
Name
161/0(241/0 | 321/0 | 481/0 | 601/0 | 16 | 24 | 32 | 48 | 60
X Input points | X0~X7|X0~X15X0~X21)X0~X33X0~X43 8 | 14 | 18 | 28 | 36
Y | Output points |YO~Y7]YO~Y11YO~Y15Y0~Y23YO~Y27 8 | 10 | 14 | 20 | 24
X10000~X10077 (#1 expansion
module)
X | Inputpoints™ | ... 640
X11100~X11177 (#10 expansion
module)
'Y10000~Y10077 (#1 expansion
module)
Y | Output points™ | ... 640
Y11100~Y11177 (#10 expansion
module)
X Input points“ X20000~X20077 (#1 expansion BD) 128

X20100~X20177 (#2 expansion BD)

19

., | Y20000~Y20077 (#1 expansion BD)
Y| OutPUEPOINtS ™= | 0100~ Y20177 (#2 expansion BD) 128
X | Input points™® | X30000~X30077 (#1 expansion ED) 64
Y | Output points™ | Y30000~Y30077 (#1 expansion ED) 64
M M0~M7999 8000
HM| Internal relay HMO0~HM959™* 960
SM Special purpose SM0~SM2047*2 2048
S Flow S0~81023 1024
HS HS0~HS127*! 128
T TO~T575 576
HT Timer HTO~HT95™! 96
ET Precise timer ETO~ET31 32
C C0~C575 576
HC Counter HCO~HC95™* 96
HSC High speed counter HSCO~HSC31 32
D D0~D7999 8000
HD . HDO~HD999*! 1000
sp | Dataregister Special purpose SD0~SD2047 2048
HSD Special purpose HSDO~HSD4992 500
FD FlashROM FDO~FD5119 5120
SFD register Special purpose SFDO~SFD1999*2 2000
Fg [oPecial secret FSO0~FS47 48
register
Main body IDO~1D99 100
ID10000~1D10099 (#1 expansion
Expansion module)
’ module | e 1000
ID*® ID10900~1D10999 (#10 expansion
module)
. ID20000~1D20099 (#1 expansion BD)
expansion BD -, 5 0100~1D20199 (#2 expansion BD) 200
expansion ED |ID30000~1D30099 (#1 expansion ED) 100
Main body QD0~QD99 100
QD10000~QD10099 (#1 expansion
Expansion module)
module | e 1000
QD10900~QD10999 (#10 expansion
QD* module)
! QD20000~QD20099 (#1 expansion
. BD)
expansion BD 5 0100~QD20199 (#2 expansion 200
BD)
expansion ED QD30000~QD30099 (#1 expansion 100
ED)>
Special coil of
Sequence block
SEM ins(zruction WAIT SEMO~SEM31 32

20

XD3 series PLC soft components list:

N Range Points
e [161/0[241/0 [321/0 [481/0 |60 1/0 | 16 | 24 | 32 | 48 | 60
X Input points X0~X7X0~X15X0~X21X0~X33X0~X43] 8 | 14|18 | 28 | 36
Y Output points [YO~Y7)YO~Y11YO~Y15)YO~Y23Y0O~Y27] 8 | 10 | 14 | 20 | 24
X10000~X10077 (#1 expansion
module)
X | Inputpoints™ | ... 640
X11100~X11177 (#10 expansion
module)
Y10000~Y10077 (#1 expansion
module)
Y | Outputpoints™ | ... 640
Y11100~Y11177 (#10 expansion
module)
., [X20000~X20077 (#1 expansion BD)
X | Inputpoints ™= v > 1100~X20177 (#2 expansion BD) 128
. . %, |Y20000~Y20077 (#1 expansion BD)
Y| OUtpUt POINtS = 50100~ v20177 (#2 expansion BD) 128
X | Input points™® [X30000~X30077 (#1 expansion ED) 64
Y | Output points™ [Y30000~Y30077 (#1 expansion ED) 64
M MO0~M7999 8000
HM| Internal relay HMO0~HM959™! 960
SM special purpose SM0~SM204772 2048
S Flow S0~51023 ' 1024
HS HS0~HS127*! 128
T TO~T575 576
HT Timer HTO~HT95™! 96
ET precise timer ETO~ET31 32
C C0~C575 576
HC Counter HCO~HC95™* 96
HSC high speed counter HSCO~HSC31 32
D D0~D7999 8000
HD . HDO~HD999*! 1000
SD Data register special purpose SD0~SD2047 2048
HSD special purpose HSDO~HSD499"2 500
FD FlashROM FDO~FD5119 5120
SFD register special purpose SFDO~SFD1999*2 2000
Fs [oPecial secret FSO~FS47 48
register
Main body IDO~1D99 100
ID10000~1D10099 (#1 expansion
. module)
Expansion
D" odule. | e _ 1000
ID10900~1D10999 (#10 expansion
module)
expansion BD ID20000~1D20099 (#1 expansion BD) 200

ID20100~1D20199 (#2 expansion BD)

21

expansion ED |ID30000~1D30099 (#lexpansion ED) 100
Main body QD0~QD99 100
QD10000~QD10099 (#1 expansion
Expansion module)
module | e _ 1000
QD10900~QD10999 (#10 expansion
QD* module)
! QD20000~QD20099 (#1 expansion
. BD)
expansion BD | 5 0100~0D20199 (#2 expansion 200
BD)
expansion ED QD30000~QD30099 (#1 expansion 100
ED)
Special coil of
Sequence block
SEM ins?ruction WAIT SEMO~SEM31 32
XD5 series PLC soft components list:
Range Points
Name
24 1/0 321/0 | 481/0 | 60 1/0 24 32 48 60
X Input points X0~X15 | X0~X21 |X0~X33| X0~X43| 14 18 28 36
Y Output points | YO~Y11 | YO~Y15 |Y0~Y23|Y0~Y27| 10 14 20 24
X10000~X10077 (#1 expansion
module)
X | Inputpoints™ | ... 1024
X11700~X11777 (#16 expansion
module)
'Y10000~Y10077 (#1 expansion
module)
Y | Outputpoints™ | ... 1024
Y11700~Y11777 (#16 expansion
module)
. w, [X20000~X20077 (#1 expansion BD)
X | Inputpoints =y > 1100~X20177 (#2 expansion BD) 192
. %, |Y20000~Y20077 (#1 expansion BD)
Y| Outputpoints = 0 0100~v20177 (#2 expansion BD) 192
X Input points™ [X30000~X30077 (#1 expansion ED) 64
Y | Output points™ [Y30000~Y30077 (#1 expansion ED) 64
M M0~M69999 70000
HM | Internal relay HMO0~HM11999™* 12000
SM special purpose SM0~SM4999*2 5000
S Flow S0~S7999 . 8000
HS HS0~HS999*1 1000
T T0~T4999 5000
HT Timer HTO~HT1999** 2000
ET precise timer ETO~ET39 40
C Counter C0~C4999 5000
HC HC0~HC1999*! 2000

22

HSC high speed counter HSCO~HSC39 40
D0~D69999 (firmware V3.5.3 and up) 70000
D D0~D59999 (firmware V3.5.2 and 60000
) down)

Hp| Dataregister HDO~HD24999" " 25000
SD special purpose SD0~SD4999 5000
HSD special purpose HSDO~HSD1023*2 1024
FD FlashROM FDO~FD8191 8192
SFD Register special purpose SFDO~SFD5999 "2 6000
Fs [oPecial secret FSO~FS47 48

register
Main body ID0~ID99 100
ID10000~1D10099 (#1 expansion
module)
Expansion module, ... 1600
ID11500~1D11599 (#16 expansion
1D module)
ID20000~1D20099 (#1 expansion
expansion BD BD) 200
ID20100~1D20199 (#2 expansion
BD)
expansion ED ID30000~1D30099 (#1 expansion 100
ED)
Main body QD0~QD99 100
QD10000~QD10099 (#1 expansion
module)
Expansion module, ... 1600
QD11500~QD11599 (#16 expansion
oD module)
QD20000~QD20099 (#1 expansion
. BD)
expansion BD 5 0100~QD20199 (#2 expansion 200
BD)
expansion ED QD30000~QD30099 (#1 expansion 100
ED)>
Special coil of
SEM|Sequence block SEMO~SEM127 128

instruction WAIT

XDM series PLC soft components list:

23

Range Points
Name
241/0 321/0 60 1/0 24 32 60
X Input points X0~X15 X0~X21 X0~X43 14 18 36
Y Output points Y0~Y1l Y0~Y15 YO0~Y27 10 14 24
X10000~X10077 (#1 expansion
module)
X | Inputpoints™ | ... 1024
X11700~X11777 (#16 expansion
module)
'Y10000~Y10077 (#1 expansion
module)
Y | Outputpoints™ | ... 1024
Y11700~Y11777 (#16 expansion
module)
. x, [X20000~X20077 (#1 expansion BD)
X | Inputpoints =1 o 1100~X20177 (#2 expansion BD) 128
. %, [Y20000~Y20077 (#1 expansion BD)
Y| Outputpoints ™= o100~ Y20177 (#2 expansion BD) 128
X Input points™ [X30000~X30077 (#1 expansion ED) 64
Y | Output points™ [Y30000~Y30077 (#1 expansion ED) 64
M M0~M69999 70000
HM | Internal relay HMO0~HM11999* 12000
SM special purpose SM0~SM4999™2 5000
S Flow S0~S7999 ' 8000
HS HS0~HS999™! 1000
T T0~T4999 5000
HT Timer HTO0~HT1999*! 2000
ET precise timer ETO~ET39 40
C C0~C4999 5000
HC Counter HC0~HC1999*! 2000
HSC high speed counter HSCO~HSC39 40
D D0~D69999 70000
HD . HDO~HD24999"* 25000
sp | Dataregister special purpose SD0~SD4999 5000
HSD special purpose HSDO~HSD1023*2 1024
FD FlashROM FDO~FD8191 8192
SFD register special purpose SFDO~SFD5999*2 6000
Fg [Special secret FSO~FS47 48
register
Main body IDO~ID99 100
ID10000~1D10099 (#1 expansion
ID*6 module)
Expansion modulef, ... 1600

module)

ID11500~1D11599 (#16 expansion

24

ID20000~1D20099 (#1 expansion
BD)

expansion BD | 0100~1D20199 (#2 expansion 200
BD)
expansion ED ID30000~1D30099 (#1 expansion 100
ED)>
Main body QD0~QD99 100
QD10000~QD10099 (#1 expansion
module)
Expansion module, ... 1600
QD11500~QD11599 (#16 expansion
oD module) _
QD20000~QD20099 (#1 expansion
. BD)
expansion BD) 0100~QD20199 (#2 expansion 200
BD)
expansion ED QD30000~QD30099 (#1 expansion 100
ED)>
Special coil of
Sequence block
SEM insc'zruction WAIT SEM0~SEM127 128
XDC series PLC soft components list:
Range Points
Name
24 1/0 321/0 481/0 | 601/0 | 24 | 32 | 48 | 60
X Input points X0~X15 | X0~X21 | X0~X33 |[X0~X43| 14 18 | 28 | 36
Y | Outputpoints | YO~Y11 | YO~Y15 | YO~Y23 |YO~Y27| 10 14 | 20 | 24
X10000~X10077 (#1 expansion
module)
X | Inputpoints™ [... 1024
X11700~X11777 (#16 expansion
module)
'Y10000~Y10077 (#1 expansion
module)
Y | Output points™ | ... 1024
Y11700~Y11777 (#16 expansion
module)
., [X20000~X20077 (#1 expansion BD)
X | InPUt poINts = 1 - 1100~X20177 (#2 expansion BD) 128
., [Y20000~Y20077 (#1 expansion BD)
Y| QUEPULPOINS =\ o100~ Y20177 (#2 expansion BD) 128
X | Input points™ [X30000~X30077 (#1 expansion ED) 64
Y | Output points™® [Y30000~Y30077 (#1 expansion ED) 64
M MO0~M69999 70000
HM | Internal relay HMO0~HM11999* 12000
SM special purpose SM0~SM4999™2 5000
S Flow S0~S7999 8000

25

HS HS0~HS999™! 1000
T T0~T4999 5000
HT Timer HT0~HT1999™ 2000
ET precise timer ETO~ET39 40
C C0~C4999 5000
HC Counter HCO0~HC1999** 2000
HSC high speed counter HSCO~HSC39 40
D D0~D69999 70000
HD . HDO0~HD24999™* 25000
SD Data register special purpose SD0~SD4999 5000
HSD special purpose HSDO~HSD1023™2 1024
FD FlashROM FDO~FD8191 8192
SFD register special purpose SFDO~SFD5999*? 6000
Fg [>pecial secret FSO~FS47 48
register
Main body IDO~ID99 100
ID10000~1D10099 (#1 expansion
Expansion module)
' module | e _ 1600
ID*® ID11500~1D11599 (#16 expansion
module)
. ID20000~1D20099 (#1 expansion BD)
expansion BD 55100~ 1020199 (#2 expansion BD) 200
expansion ED [ID30000~1D30099 (#1 expansion ED) 100
Main body QD0~QD99 100
QD10000~QD10099 (#1 expansion
. module)
E’r;p:é‘jl'g” _ 1600
QD11500~QD11599 (#16 expansion
oD module)
QD20000~QD20099 (#1 expansion
. BD)
expansion BD o 0 0100~QD20199 (#2 expansion 200
BD)
expansion ED QD30000~QD30099 (#1 expansion 100
ED)>
Special coil of
sem eguence block SEMO~SEM127 128

instruction WAIT

26

XD5E series PLC soft components list:

Range Points
Name
30 1/0 60 1/0 30 60
X Input points X0~-X17 X0~X43 16 36
Y Output points Y0~Y15 YO0~Y27 14 24
X10000~X10077 (#1 expansion
module)
X | Inputpoints™ | ... 1024
X11700~X11777 (#16 expansion
module)
'Y10000~Y10077 (#1 expansion
module)
Y | Output points™ | ... 1024
Y11700~Y11777 (#16 expansion
module)
. x, [X20000~X20077 (#1 expansion BD)
X | Inputpoints = 1 o 1100~X20177 (#2 expansion BD) 128
.. %, [Y20000~Y20077 (#1 expansion BD)
Y| Outputpoints ™= o 100~Y20177 (#2 expansion BD) 128
X Input points™ [X30000~X30077 (#1 expansion ED) 64
Y | Output points™ [Y30000~Y30077 (#1 expansion ED) 64
M M0~M69999 70000
HM | Internal relay HMO0~HM11999** 12000
SM special purpose SM0~SM4999™2 5000
S Flow S0~S7999 ' 8000
HS HS0~HS999™! 1000
T T0~T4999 5000
HT Timer HTO0~HT1999*! 2000
ET precise timer ETO~ET39 40
C C0~C4999 5000
HC Counter HCO~HC1999™* 2000
HSC high speed counter HSCO~HSC39 40
D D0~D69999 70000
HD . HDO0~HD24999"* 25000
sp | Dataregister special purpose SD0~SD4999 5000
HSD special purpose HSDO~HSD1023*2 1024
FD | FlashROM FDO~FD8191 8192
SFD register special purpose SFDO~SFD5999*2 6000
Fg [Special secret FSO~FS47 48
register
Main body IDO~ID99 100
ID10000~1D10099 (#1 expansion
ID*6 module)
Expansion modulef, ... 1600
ID11500~1D11599 (#16 expansion
module)

27

ID20000~1D20099 (#1 expansion
BD)

expansion BD | 0100~1D20199 (#2 expansion 200
BD)
expansion ED ID30000~1D30099 (#1 expansion 100
ED)>
Main body QD0~QD99 100
QD10000~QD10099 (#1 expansion
module)
Expansion module, ... 1600
QD11500~QD11599 (#16 expansion
oD module) _
QD20000~QD20099 (#1 expansion
. BD)
expansion BD) 0100~QD20199 (#2 expansion 200
BD)
expansion ED QD30000~QD30099 (#1 expansion 100
ED)>
Special coil of
Sequence block
SEM insc'zruction WAIT SEM0~SEM127 128
XDME series PLC soft components list:
Range Points
Name
60 1/0 60
X Input points X0~X43 36
Y Output points YO~Y27 24
X10000~X10077 (#1 expansion
module)
X | Inputpoints™ | ... 1024
X11700~X11777 (#16 expansion
module)
'Y10000~Y10077 (#1 expansion
module)
Y | Outputpoints™ | ... 1024
Y11700~Y11777 (#16 expansion
module)
. x, [X20000~X20077 (#1 expansion BD)
X | Inputpoints =\ o 1100~X20177 (#2 expansion BD) 128
. x, |Y20000~Y20077 (#1 expansion BD)
Y| Outputpoints = o100~ Y20177 (#2 expansion BD) 128
X Input points™ [X30000~X30077 (#1 expansion ED) 64
Y | Output points™ [Y30000~Y30077 (#1 expansion ED) 64
M MO0~M69999 70000
HM | Internal relay HMO0~HM11999** 12000
SM special purpose SM0~SM4999™2 5000

28

S Flow S0~S7999 8000
HS HS0~HS999™! 1000
T T0~T4999 5000
HT Timer HTO~HT1999™ 2000
ET precise timer ETO~ET39 40
C C0~C4999 5000
HC Counter HCO~HC1999™! 2000
HSC high speed counter HSCO~HSC39 40
D D0~D69999 70000
HD) HDO~HD24999"* 25000
sp | Dataregister special purpose SDO~SD4999 5000
HSD special purpose HSDO~HSD1023*2 1024
FD FlashROM FDO~FD8191 8192
SFD register special purpose SFDO~SFD5999*2 6000
Fg [Special secret FSO0~FS47 48
register
Main body IDO~1D99 100
ID10000~1D10099 (#1 expansion
module)
Expansion modulef, ... 1600
ID11500~1D11599 (#16 expansion
ID*6 module)
ID20000~1D20099 (#1 expansion
. BD)
expansion BD 5 5100~1D20199 (#2 expansion 200
BD)
expansion ED ID30000~1D30099 (#1 expansion 100
ED)
Main body QD0~QD99 100
QD10000~QD10099 (#1 expansion
module)
Expansion module;, ... 1600
QD11500~QD11599 (#16 expansion
w7 module)
QD QD20000~QD20099 (#1 expansion
. BD)
expansion BD -l 50100~0QD20199 (#2 expansion 200
BD)
expansion ED QD30000~QD30099 (#1 expansion 100
ED)
Special coil of
sem[>eguence block SEMO~SEM127 128

instruction WAIT

29

XDH series PLC soft components list:

module)

ID11500~1D11599 (#16 expansion

Range Points
Name
60 1/0 60
X Input points X0~X43 36
Y Output points YO0-~-Y27 24
X10000~X10077 (#1 expansion
module)
X | Inputpoints™ | ... 1024
X11700~X11777 (#16 expansion
module)
'Y10000~Y10077 (#1 expansion
module)
Y | Output points™ | ... 1024
Y11700~Y11777 (#16 expansion
module)
. x, [X20000~X20077 (#1 expansion BD)
X | Inputpoints = 1 o 1100~X20177 (#2 expansion BD) 128
.. %, [Y20000~Y20077 (#1 expansion BD)
Y| Outputpoints ™= o 100~Y20177 (#2 expansion BD) 128
X Input points™ [X30000~X30077 (#1 expansion ED) 64
Y | Output points™ [Y30000~Y30077 (#1 expansion ED) 64
M M0~M19999 20000
HM | Internal relay HMO0~HM19999* 20000
SM special purpose SM0~SM49999*2 50000
S Flow S0~519999 . 20000
HS HS0~HS1999** 2000
T T0~T19999 20000
HT Timer HTO0~HT1999*! 2000
ET precise timer ETO~ET39 40
C C0~C19999 20000
HC Counter HCO~HC1999™* 2000
HSC high speed counter HSCO~HSC39 40
D D0~D499999 500000
HD . HDO0~HD49999"* 50000
sp | Dataregister special purpose SD0~SD49999 50000
HSD special purpose HSDO~HSD49999*2 50000
FD | FlashROM FDO~FD65535 65536
SFD register special purpose SFDO~SFD49999*2 50000
Fg [Special secret FSO~FS47 48
register
Main body IDO~ID99 100
ID10000~1D10099 (#1 expansion
ID*6 module)
Expansion modulef, ... 1600

30

ID20000~1D20099 (#1 expansion
BD)

expansion BD | 0100~1D20199 (#2 expansion 200
BD)
expansion ED ID30000~1D30099 (#1 expansion 100
ED)>
Main body QD0~QD99 100
QD10000~QD10099 (#1 expansion
module)
Expansion module, ... 1600
QD11500~QD11599 (#16 expansion
oD module) _
QD20000~QD20099 (#1 expansion
. BD)
expansion BD) 0100~QD20199 (#2 expansion 200
BD)
expansion ED QD30000~QD30099 (#1 expansion 100
ED)>
Special coil of
Sequence block
SEM insc'zruction WAIT SEMO~-SEM31 32
XL1, XL3 series PLC soft components list:
Range Points
Name
16 1/0 16
X Input points X0~X7 8
Y Output points YO~Y7 8
X10000~X10077 (#1 expansion
module)
X | Inputpoints™ | ... 640
X11100~X11177 (#10 expansion
module)
Y10000~Y10077 (#1 expansion
module)
Y | Outputpoints™ | ... 640
Y11100~Y11177 (#10 expansion
module)
., |X20000~X20077 (#1 expansion BD)
X | Inputpoints = |y »100~X20177 (#2 expansion BD) 128
. %, |'Y20000~Y20077 (#1 expansion BD)
Y| Outputpoints = |y o1 00~v20177 (#2 expansion BD) 128
X Input points™ | X30000~X30077 (#1 expansion ED) 64
Y | Output points™ |Y30000~Y30077 (#1 expansion ED) 64
M Internal relay MO~M7999 ~ 8000
HM HM0~HM959** 960

31

SM special purpose SM0~SM204772 2048
S Flow S0~S51023 1024
HS HS0~HS127*! 128
T TO~T575 576
HT Timer HTO~HT95™! 96
ET precise timer ETO~ET31 32
C C0~C575 576
HC Counter HCO~HC95™* 96
HSC high speed counter HSCO~HSC31 32
D D0~D7999 8000
HD . HDO~HD999*! 1000
SD Data register special purpose SD0O~SD2047 2048
HSD special purpose HSDO~HSD499™? 500
FD FlashROM FDO~FD5119 5120
SFD register special purpose SFDO~SFD1999*? 2000
Fg ppecial secret FS0~FS47 48
register
Main body IDO~ID99 100
ID10000~1D10099 (#1 expansion
module)
Expansion modulef, ... 1000
ID10900~1D10999 (#10 expansion
1D module)
ID20000~1D20099 (#1 expansion
. BD)
expansion BD |, > 1100~1D20199 (#2 expansion 200
BD)
expansion ED ID30000~1D30099 (#1 expansion 100
ED)>
Main body QDO0~QD99 100
QD10000~QD10099 (#1 expansion
module)
Expansion modulefy ... 1000
QD10900~QD10999 (#10 expansion
oD module)
QD20000~QD20099 (#1 expansion
. BD)
expansion BD 10 0100~QD20199 (#2 expansion 200
BD)
expansion ED QD30000~QD30099 (#1 expansion 100
ED)>
Special coil of
sEm>eguence block SEMO~SEM31 32

instruction WAIT

XL5, XL5E, XLME series PLC soft components list:

32

Range Points
Name
321/0 32
X Input points X0~X17 16
Y Output points YO0~-Y17 16
X10000~X10077 (#1 expansion
module)
X | Inputpoints™ | ... 1024
X11700~X11777 (#16 expansion
module)
Y10000~Y10077 (#1 expansion
module)
Y | Outputpoints™ | ... 1024
Y11700~Y11777 (#16 expansion
module)
. x| X20000~X20077 (#1 expansion BD)
X | InpUtpoInts = 5 0100~X20177 (#2 expansion BD) 192
. %, | Y20000~Y20077 (#1 expansion BD)
Y| OutpUtPOINtS ™ |y 5 0100~Y20177 (#2 expansion BD) 192
X Input points™ | X30000~X30077 (#1 expansion ED) 64
Y | Output points™ |Y30000~Y30077 (#1 expansion ED) 64
M M0~M69999 70000
HM | Internal relay HMO0~HM11999* 12000
SM special purpose SM0~SM49992 5000
S Flow S0~S7999 ' 8000
HS HS0~HS999*! 1000
T T0~T4999 5000
HT Timer HTO~HT1999** 2000
ET precise timer ETO~ET39 40
C C0~C4999 5000
HC Counter HCO~HC1999™! 2000
HSC high speed counter HSCO~HSC39 40
D D0~D69999 70000
HD . HDO0~HD24999*1 25000
SD Data register special purpose SD0~SD4999 5000
HSD special purpose HSDO~HSD1023*2 1024
FD FlashROM FD0O~FD8191 8192
SFD register special purpose SFDO~SFD5999"2 6000
Fg [Special secret FSO~FS47 48
register
Main body IDO~ID99 100
ID10000~1D10099 (#1 expansion
ID*6 module)
Expansion module, ... 1600

ID11500~1D11599 (#16 expansion
module)

33

ID20000~1D20099 (#1 expansion
. BD)
expansion BD | 51001020199 (#2 expansion 200
BD)
expansion ED ID30000~1D30099 (#1 expansion 100
ED)>
Main body QD0~QD99 100
QD10000~QD10099 (#1 expansion
module)
Expansion module, ... 1600
QD11500~QD11599 (#16 expansion
oD module)
QD20000~QD20099 (#1 expansion
. BD)
expansion BD) 0100~QD20199 (#2 expansion 200
BD)
expansion ED QD30000~QD30099 (#1 expansion 100
ED)>
Special coil of
SEM Sequence block SEMO0~SEM127 128
instruction WAIT

x1: [1 Memory area is the default power outage holding area (Note: XD/XL series PLC
power outage holding area can not be modified).

%2: Special use (non-power-down maintenance) refers to registers for special use occupied
by the system, which can not be used for other purposes. For details, refer to the relevant
sections of the List of Special Soft Components in the appendix of this manual.

%3: 1/0O address assignment (octal) of the extended module, which can be used as
intermediate relay when the extension module is not connected. (XL1/XD1/XD2 does not
support extension modules, XD3/XL3 can expand up to 10 at the same time,
XD5/XDM/XDC/XD5E/XDME/XDH/XL5/XL5E/XLME can expand up to 16 at the same
time)

x4 Extended BD 1/0O address allocation (octal), can be used as intermediate relay when not
connected to BD. (24/32/30 points can be extended up to 1, 48/60 points can be extended up
to 2, 16 points do not support extended BD, XL/XDH series does not support extended BD)
%5; Extended ED 1/O address allocation (octal), can be used as intermediate relay when not
connected to ED. (XD/XL series can extend up to one ED module, XDH cannot support ED
module)

%6: Analog input soft component address, can be used as auxiliary register when not
connected to extended equipment.

%7: Analog output soft component address, can be used as auxiliary registers when not
connected to extended devices.

%8: The range of soft components mentioned above is the valid range of PLC in X-NET
communication mode. In MODBUS communication mode, some relays can not read and
write. The specific usable range is shown in chapter 6-2-3.

34

2-4. Input/output relays (X,Y)

Number List

XD/XL series PLC input/output are all in octal form, each series numbers are listed below:

Series |Name Range Points
16 1/0 321/0 16 32
XD1 X X0~X7 X0~X17 8 16
Y YO~Y7 YO0~Y17 8 16
. Range Points
Series | Name
16 1/0 24 1/0 32 1/0 48 1/0 60 1/0 |16|24|32|48|60
;(gg X | X0~X7 | X0~X15 | X0~X21 | X0~X33 | X0~X43 |8 |14|18(28]36
XD5| Y YO~Y7 | YO~Y1l | YO~Y15 | YO~Y23 | YO~Y27 |8|10|14|20|24
) Range Points
Series | Name
24 1/0 32 1/0 60 I/O0 24 | 32 | 60
XDM X X0~X15 X0~X21 X0~X43 14 | 18 | 36
Y YO0~Y11 YO0~Y15 YO0~Y27 10 | 14 | 24
. Range Points
Series | Name
24 1/0 321/0 48 1/0 60 110 24 | 32 | 48 |60
XDC X X0~X15 X0~X21 X0~X33 X0~X43 |14 |18 | 28 |36
Y YO0~Y11 Y0~Y15 Y0~Y23 YO0~Y27 10 {14 | 20 |24
i Range Points
Series | Name
30 1/0 60 1/0 30 60
X X0~X17 X0~X43 16 36
DR Y Y0~Y15 YO0~Y27 14 24
) Range Points
Series | Name
60 1/0 60
X X0~X43 36
APhulE Y YO0~Y27 24
X X0~X43 36
XDH Y YO0~Y27 24
i Range Points
Series | Name
16 1/0 16
XL1 X X0~X7 8

35

| XL3 | v | YO0~Y7 8
) Range Points
Series | Name
321/0 32
XLS | w X0~X17 16
XL5E
XLME| Y YO~Y17 16
Function
m XD/XL series Y
5 = 2 5
% E PLC . .§ 93_)
g g CPU unit E ((.;,:
= = ! 2
= <t D (@)
X =
g < g

Input Relay X

PLC input terminals are used to recive the external signal. the input relays are optocoupler to
connect PLC and input terminals
The input relays which are not connected with external devices can be seemed to fast internal

relays

Output Relay Y

PLC output terminals can be used to send signals to external loads. Inside PLC, output relay’s
external output contactors (including relay contactors, transistor’s contactors) connect with

output terminals

The output relays which are not connected with external devices can be seemed to fast

internal relays

Execution Order

36

m) m
x = — | XD3 series O O =
& 3 3 = g <
5 S S| PLC g g B
” = S | CPU unit = 3 v
wn @ 3 | =
& —> 3 — & g > o > S
= 3 Program Q 3

2 3 g Ng 5 =
= =3 c?g process Area > s o
2 x 9’ 8 < =l

Input processing

Before PLC executing the program, read every input terminal’s ON/OFF status to the image
area.

When the program is running, even the input changed, the content in the input image area will
not change until the next scanning period coming.

Output processing

After running all the instructions, transfer the ON/OFF status of output Y image area to the
output lock memory area. This will be the actual output of the PLC.

The output contactors will delay the action according to the output soft components reponse.

2-5. Auxiliary Relay (M, HM, SM)

Number List

The auxiliary relays in XD/XL series PLC are all in decimal form, please see the following

table:

Series | Name Range - =
Normal Power-off holding Special
XD1 MO0~M7999 HMO0-HM959 SM0~SM2047
XD2 MO0~M7999 HMO0-HM959 SM0~SM2047
XD3 MO0~M7999 HMO0-HM959 SM0~SM2047
XD5 M0~M69999 HMO0-HM11999 SM0~SM4999
XDM M0~M69999 HMO0-HM11999 SM0~SM4999
XDC M0~M69999 HMO0-HM11999 SM0~SM4999
XD5E M MO0~M69999 HMO0-HM11999 SM0~SM4999
XDME M0~M69999 HMO0-HM11999 SM0~SM4999
XDH M0~M199999 HMO0~HM19999 SM0~SM49999
XL1 MO0~M7999 HMO0-HM959 SM0~SM2047
XL3 MO0~M7999 HMO0-HM959 SM0~SM2047
XL5 M0~M69999 HMO0-HM11999 SM0~SM4999
XL5E MO0~M69999 HMO0-HM11999 SM0~SM4999
XLME M0~M69999 HMO0-HM11999 SM0~SM4999

37

In PLC, auxiliary relays are used frequently. This type of relay’s coil is same to the output
relay. They are driven by soft components in PLC;
Auxiliary relays M and HM have countless normally ON/OFF contactors. They can be used
freely, but this type of contactors can’t drive the external loads.

e For common use
This type of auxiliary relays can be used only as normal auxiliary relays. l.e. if power supply
suddenly shut down during the running, the relays will be off.
Common usage relays can’t be used for power off retentive, but the zone can be modified;

o For Power Off Retentive Use
The auxiliary relays for power off retentive usage, even the PLC is OFF, they can keep the
ON/OFF status.
Power off retentive zone cannot be modified;
Power off retentive relays are usually used to memory the status before stop the power, then
when power the PLC on again, the status can run again;

For Special Usage
Special relays are some relays which are defined with special meanings or functions, start
from SMO.
There are two functions for special relays, first is used to drive the coil, the other type is for
special running.
E.g.: SM2 is the initial pulse, activates only at the moment of start
SM34 is “all output disabled”
Special auxiliary relays can’t be used as normal relay M;

Note: The range of soft components mentioned above is the valid range of PLC in the X-NET

communication mode. In the MODBUS communication mode, some relays can not read and
write. The specific usable range is shown in chapter 6-2-3.

2-6. Status Relay (S, HS)

Address List

Status relays addresses of XD/XL series PLC are in form of decimal, the address are shown
below:

Series | Name Range -
Normal Power-off holding
XD1 S0~S1023 HS0~HS127
XD2 S0~S1023 HS0~HS127
XD3 S0~S1023 HS0~HS127
XD5 S S0~S7999 HS0~HS999
XDM S0~S7999 HS0~HS999
XDC S0~S7999 HS0~HS999
XD5E S0~S7999 HS0~HS999

38

XDME S0~57999 HS0~HS999
XDH S0~519999 HS0~HS1999
XL1 S0~S1023 HS0~HS127
XL3 S0~S1023 HS0~HS127
XL5 S0~S57999 HS0~HS999
XL5E S0~57999 HS0~HS999

XLME S0~57999 HS0~HS999

Function

Status relays S and HS are very import in ladder program; they are used together with
instruction “STL” in the flow. The flow can make the program clear and easy to modify.

e For common use
After shut off the PLC power, S relays will be OFF

e For Power Off Retentive Use
HS relays can keep the ON/OFF status even PLC power is off
The status relays also have countless “normally ON/OFF” contactors. So users can use them
freely in the program.

Note: The range of soft components mentioned above is the valid range of PLC in the X-NET

communication mode. In the MODBUS communication mode, some relays can not read and
write. The specific usable range is shown in chapter 6-2-3.

2-7. Timer (T, HT)

Address List
The timer addresses of XD/XL series PLC are in the form of decimal; please see the
following table:
. Range
Series | Name Normal Power-off holding Precise timer
XD1 TO~T575 HTO~HT95 ETO~ET31
XD2 TO~T575 HTO~HT95 ETO~ET31
XD3 TO~T575 HTO~HT95 ETO~ET31
XD5 T0~T4999 HTO~HT1999 ETO~ET39
XDM T0~T4999 HTO~HT1999 ETO~ET39
XDC T TO~T4999 HTO~HT1999 ETO~ET39
XD5E HT T0~T4999 HT0~HT1999 ETO~ET39
XDME| ET T0~T4999 HT0~HT1999 ETO~ET39
XDH T0~T19999 HTO~HT1999 ETO~ET39
XL1 TO~T575 HTO~HT95 ETO~ET31
XL3 TO~T575 HTO~HT95 ETO~ET31
XL5 TO~T4999 HTO~HT1999 ETO~ET39
XL5E T0~T4999 HTO~HT1999 ETO~ET39
XLME T0~T4999 HTO~HT1999 ETO~ET39

39

Function

The timers accumulate the 1ms, 10ms, 100ms pulse, the output contactor activates when the

accumulation reaches the set value;

TMR instruction is for common timers. The set value can be constant (K) or data register

(D).

Normaltype R | To | K200 | K10

TO YO

()}
[\ U

X0

/ Set
Current _r--—---- < value

YO

#’

e Nt

Accumulation type

XOH TMR_A‘ HTO ‘ K2000 ‘ K10

H'I"O
I

YO0

X
t1 2, t1+t2=20s

%0 ﬁ [—

Current /l:):f:

_value— e

YO0

X2

Appoint the set value

1. Instruction format

40

If X0 is ON, then TO
accumulates 10ms pulse based
on the current value; when the
accumulation value reaches the
set value K200, the timer
output activates. l.e. the output
activates 2s later. If X0 is OFF,
the timer resets, the output
resets;

If X0 is ON, HTO accumulates the
10ms pulse based on the current
value. When the accumulation value
reaches the set value K2000, the
timer output activates.

If X0 is suddenly OFF during timer
working, the timer value will be
retentive. Then X0 is ON again, the
timer will continue working.

When X2 is ON, the timer and
output will be reset.

OHEONC)

- TMR | To | K200 [K10 | (Not accumulation)
(s2) (s3)
—— TMRA | To | K2000 | Ki0 | (Accumulation)

Reset the timer and output:

GO
’—(}—{ RST ‘ TO ‘

S1: timer (TO, HT10)
S2: set time (such as K100)
S3: time unit (K1—1ms, K10—10ms, K100—100ms)

Power-off not retentive, not accumulation
(1) Time unit is 1ms, set time is K100, the real time is 1ms *100=0.1s

|| MOV K100 DO

} TMR TO DO K1

X0
}—{ TMR TO0 K100 K1

Set value is constant K set value is register D
(2) Time unitis 10ms, set time is K10, the real time is 10ms*10=0.1s

X1
—f——— mov Kkio po |
X0 X0
———— TMR TO Ki0 K10 —{F——— TMR To DO Ki0 |

Set value is constant K set value is register D
(3) Time unitis 100ms, set time is K1, the real time is 100ms*1=0.1s

X1
—f———— wmov ki Do |
X0 X0
——— TMR TO Ki K100 —{F———{ TMR To DO K100 |

Set value is constant K set value is register D

Power-off retentive, accumulation
(1) Time unit is 1ms, set time is K100, the real time is 1ms *100=0.1s

X1
—H—{ MOV K100 DO ‘

X0 X0
}_{ TTMRTH—W) - }—‘—TNFRfA—KI:!TO—UO—‘

Set value is constant K set value is register D
(2) Time unitis 10ms, set time is K10, the real time is 10ms*10=0.1s

X1
—H—{ MOV K10 DO ‘

X0 X0
}—i v LNK100 <10 H% TMR_A HTO DO K10 ‘

41

Set value is constant K set value is register D
(3) Time unitis 100ms, set time is K1, the real time is 100ms*1=0.1s

X1
H% MOV K1 DO ‘

X0
#4%{ TMR_A HTO K1 K100 —
K100

Set value is constant K set value is register D

Notes

(1) The timer has cumulative, non-cumulative, 1ms, 10ms and 100ms, so it can be
distinguished by instructions; that is to say, the same timer can be used as either cumulative or
non-cumulative, and its time base unit is also specified by instructions as 1ms, 10ms or
100ms.

(2) The third parameter of instruction can only be based on K1, K10 and K100. Please do not
write other values or registers besides these three parameters. Otherwise, although the
program can be written into the programming software and downloaded to the PLC, the
timing instruction will not be executed.

(3) The setting range of constant K and the actual setting value of timer are shown in the
following table:

Timer K range Actual value

1ms timer 0.001~32.767s

10ms timer 1~32,767 0.01~327.67s

100ms timer 0.1~3276.7s
Time value

The time value is stored in register TD. The working mode of timer TO~T575 and HTO~HT95
are 16-bits linear increasing. The time range is from 0 to 32767. When the time value in TD
reaches 32767, the timer will stop timing and keep the status.

X0

}—{ MOV TO DO ‘
X0

}—{ MOV TDO DO ‘

The two instructions are the same. In the first instruction, TO is seemed to TDO.

Application

Output delay 42

YO

o | |

X0 is ON, output Y0. X0 changes from ON to OFF, delay 2s then cut off YO.

Twinkle

H}—/i/}/—{TMR‘ T1 | K20 | K10 |
T1

4| TMR | T2 | K10 K10 | KTl T2y T1
vo (i

Y0 3
X0 is ON, YO0 begin to twinkle. T1 is YO-OFF time; T2 is YO-ON time.

Note: The range of soft components mentioned above is the valid range of PLC in the X-NET
communication mode. In the MODBUS communication mode, some relays can not read and
write. The specific usable range is shown in chapter 6-2-3.

2-8. Counter (C, HC)

Number list

The counter addresses of XD/XL series PLC are in decimal; please see the following table for
details:

Series | Name Range
Normal Power-off holding High speed counter

XD1 CO0~C575 HCO~HC95 HSCO~HSC31
XD2 C0~C575 HCO~HC95 HSCO~HSC31
XD3 CO0~C575 HCO~HC95 HSCO~HSC31
XD5 C0~C4999 HC0~HC1999 HSCO~HSC39
XDM C0~C4999 HCO0~HC1999 HSCO~HSC39
XDC C C0~C4999 HC0~HC1999 HSCO~HSC39
XD5E HC C0~C4999 HC0~HC1999 HSCO0~HSC39
XDME | HSC C0~C4999 HC0~HC1999 HSCO0~HSC39
XDH C0~C19999 HC0~HC1999 HSCO0~HSC39
XL1 C0~C575 HCO~HC95 HSCO~HSC31
XL3 C0~C575 HCO~HC95 HSCO~HSC31
XL5 C0~C4999 HC0~HC1999 HSCO~HSC39
XL5E C0~C4999 HC0~HC1999 HSCO0~HSC39

43

| XLME | | C0~C4999 | HCO~HC1999 | HSCO~HSC39 |

The counter range:

Counter type Explanation

16/32 bits up/down | CO~C575 HCO~HC95 (32-bits counter occupies two registers, the
counter counter address must be even number)

High speed HSCO~HSC30 (HSCO,HSC2...HSC30) (each counter occupies two
counter registers, the counter address must be even number)

1: Please refer to chapter 5 for details of high speed counter.

2: XD/XL series counters can be 16 or 32 bits count up/down mode. The mode is appointed
by the instruction. Which means the same counter can be used as 16-bit or 32-bit. The
increment/subtraction counting mode is also specified by the instruction mode.

Counter
features
Item 16-bit counter 32-bit counter
Count direction | Count down/up Count up/down
Set value 0~32,767 -2,147,483,648~+2,147,483,647
Set value type Constant K or register Constant K or a couple of registers
The value will not . .
. The value will not change when reaching
Count value change when reaching .
. the max or min value
the max or min value
Output l}f;ep the state for count Reset for count down
Reset Run RST instruction, the counter and output will be reset
Present count 16-bit 39-pit
value register

Function

The soft component will appoint the type of counter: common counter or power-off retentive
counter.

16-bit common counter and power-off retentive counter

The set value range of 16-bit count-up counter is K1~K32,767 (decimal). KO and K1 have
the same function. They mean the counter output will act at the first counting.

If the PLC power supply is cut off, common counter value will be reset. The power-off
retentive counter value will be kept.

44

X10
e
X11
41}—{ CNT ‘ (6{0] ‘ K10 ‘

Cco YO
—)

The counter CO increases one when the X11 drives once. When CO value reaches 10, the
output acts. Then X11 drives again, CO will continue increase one.

If X10 is ON, the CO and output will be reset.

The counter set value can be constant K or register. For example, if D10 is 123, the set value
is equal to K123.

32-bit common counter and power-off retentive counter

The set value range of 32-bit count-up/down counter is K+2,147,483,648~K-2,147,483,647
(decimal). The count direction is set through instruction.
X3

X3

| — }—{ RST HCO

X4 X4

|| — }—{ DCNT_D HCO K-5

co HCO Y0

| [()

| I \ 7/ ‘
Common count up counter power-off retentive count

down counter

If X3 is ON, the counter and output will be reset.

For power-off retentive counter, the present counter value, output state will be kept after
power supply is off.

32-Dbit counter can be seemed to 32-bit register.

Counter set value

The set value contains two conditions: 16-bit and 32-bit. The counter types include common
counter (C) and power-off retentive counter (HC).

Count instruction:

16-bit counter:

(sv) (s2)

- OoNT | co | K200 | countup
(s (s2)
—— cNTD | c1 [K100 |countdown

32-bit counter:

45

s ()
—— DcNT [co | Kkatooo | Countup

- DCNT.D | C2 | K-41100 |Countdown

Reset instruction:
16-bit counter:

Cs1)
’—H—{ RST | co |

32-bit counter:

Csv)
’—H—{ DRST | co |

S1: counter (such as C0O, HC10)
S2: counter set value (such as K100)
The counter is different from XC series. They don’t have 16-bit and 32-bit type. The type is
set through instruction.
16-bit counter (common, count up)
{set value is constant K) {set value is register)

X0
—H—{ MOV K5 DO

X1 X1
’—{ CNT CO KS —H—{ CNT CO DO ‘

16-bit counter (power-off retentive, count up)
{set value is constant K) {set value is register »

X0
—H—{ MOV K5 DO ‘
X1 X1

’—{ CNT HCO K5 ‘ —H—{ CNT HCO DO ‘

16-bit counter (common, count down)
{set value is constant K) {set value is register »

X0
—fF—— Mov ks D0 |
x1 X1

—— cNTD co Ks —H—{ CNT_D CO DO ‘

16-bit counter (power-off retentive, count down)
(set value is constant K) (set value is register »

X0

—fF—— Mov ks D0 |
X1 X1
—— CNTD HCO K5 | —f———— oNTD Heo Do |

32-bit counter (common, count up)

46

{set value is constant K) (set value is register »

X0
—H—{ DMOV K43100 DO ‘

x1 X1
}—{ DCNT €O K43100 4{}—{ DCNT CO DO ‘

32-bit counter (power-off retentive, count up)
{set value is constant K) {set value is register)

X0
—H—{ DMOV K43100 DO ‘

X1 X1
}—{ DCNT HCO K43100 ‘ 4{}—{ DCNT HCO DO ‘

32-bit counter (common, count down)
{set value is constant K) {set value is register)

X0
—H—{ DMOV K-43100 DO ‘

X1 X1
| DCNT D CO K-43100] pontp 0 b0 |

32-bit counter (power-off retentive, count down)
{set value is constant K) {set value is register)

X0
—H—{ DMOV K-43100 DO ‘
X1 X1

}—{ DCNT_D HCO K-43100 DCNT D HCO DO ‘

Note: The setting range and actual setting value of constant K are shown in the following
table:

Counter K setting range Actual setting range

16-hit counter 1~32,767 1~32,767

32-bit counter 1~2,147,483,647 1~2,147,483,647
Count value

The counter counting mode is 16-bit linear incremental mode (0~K32,767). When the
counter's count value CD reaches the maximum value K32,767, the counter will stop counting
and the state of the counter will remain unchanged.

The counter counting mode is a 16-bit linear decreasing mode (-32768-0). When the counter
counting value CD decreases to the minimum value K-32, 768 will stop counting and the state
of the counter remains unchanged.

The counter counting mode is 32-bit linear increase/decrease mode (
-2,147,483,648~+2,147,483,647). When the counter counting value increases to the
maximum value K2,147,483,647, it will become K-2,147,483,648. When the counter

counting value decreases to the minimum value K-2,147,483,648 will become
47

K2,147,483,647, the ON/OFF state of the counter will also change with the change of the
count value.

X0 X0
}H% MOV CO DO }%M MOV CDO DO

The above two instructions are equivalent. In the left instruction, CO is processed as a register,
while in the right instruction, CDO is a data register corresponding to the timer C0. CD and C
are one-to-one correspondences.

X0
M CNT CO K1000

The highest frequency that this instruction can count is related to the selection of filter
parameters and the scanning period of PLC. A high-speed counter is recommended when the
input frequency exceeds 25Hz. High-number counter must use HSC0-HSC30 and
corresponding hardware wiring.

SMO0
}7‘ CNT HSCO KB888888

High-speed counter, when SMO is on, HSCO counts the pulse signal of input terminal XO.
High-speed counter is not affected by the response lag time of input filter and cycle scan time.
Therefore, higher frequency input pulses can be processed. Refer to the details in chapter 5.

Note: The range of soft components mentioned above is the valid range of PLC in the X-NET

communication mode. In the MODBUS communication mode, some relays can not read and
write. The specific usable range is shown in chapter 6-2-3.

2-9. Data register (D, HD)

Address list

The data register of XD/XL series PLC is in decimal format. Please see the following table:

Series | Name Range
Normal Power-off Special Special power-off
holding holding
XD1 D0~D7999 HDO0~HD999 SD0~SD2047 | HSDO~HSD499
XD2 D0~D7999 HDO0~HD999 SD0~SD2047 | HSDO~HSD499
XD3 D0~D7999 HDO0~HD999 SD0~SD2047 | HSDO~HSD499
D D0~D59999
XD5 Or HDO0~HD24999 | SD0~SD4999 | HSD0~HSD1023
D0~D69999
XDM D0~D69999 | HD0O~HD24999 | SD0~SD4999 | HSD0~HSD1023
XDC D0~D69999 | HD0O~HD24999 | SD0~SD4999 | HSD0O~HSD1023

48

XD5E D0~D69999 | HDO~HD24999 | SD0~SD4999 | HSD0~HSD1023
XDME D0~D69999 | HDO~HD24999 | SD0~SD4999 | HSD0~HSD1023
XDH D0~D499999 | HDO0~HD49999 | SD0~SD49999 | HSD0~HSD49999
XL1 D0~D7999 HDO~HD999 SD0~SD2047 | HSDO~HSD499
XL3 D0~D7999 HDO~HD999 SD0~SD2047 | HSDO~HSD499
XL5 D0~D69999 | HDO~HD24999 | SD0~SD4999 | HSD0~HSD1023
XL5E D0~D69999 | HDO~HD24999 | SD0~SD4999 | HSD0~HSD1023
XLME D0~D69999 | HDO~HD24999 | SD0~SD4999 | HSD0~HSD1023

Note: For XD5 firmware version V3.5.3 and above, data register D ranges from DO to
D69999; XD5 firmware version of V3.5.2 and below, and data register D ranges from DO to
D59999.

Structure

Data register is used to store data; it includes 16 bits(the higheset bit is sign bit) and 32 bits.
(32 bits contains two registers, the highest bit is sign bit)

16 bits

16-bits register range is -32,768 ~ +32,767
Read and write the register data through instruction or other device such as HMI.

DO 16-bits
V

0/1/0/0/0/0/1/0/0/1/1/0/0/0/0]0
b15i b0

Sign bit
0: positive 1: negative

32 bits

32 bits value is consisted of two continuous registers. The range is -2147483648 ~
2147483647. For example: (D1 DO) D1 is high 16 bits, DO is low 16 bits.

For 32 bits register, if the low 16-bits are appointed, such as DO, then D1 will be the high 16
bits automatically. The address of low 16-bits register must be even number.

49

D1 16 bits DO 16

High % U %LOW
0/1/0/0/0/0/1/0/0/1/10/0/ 00010000 1001100000
b31] bo
Sign bit

0: positive 1: negative

Function

e Normal type
When write a new value in the register, the former value will be covered.
When PLC changes from RUN to STOP or STOP to RUN, the value in the register will be
cleared.
e Retentive type
When PLC changes from RUN to STOP or power off, the value in the register will be
retained.
The retentive register range cannot be changed.
e Special type
Special register is used to set special data, or occupied by the system.
Some special registers are initialized when PLC is power on.
Please refer to the appendix for the special register address and function.
e Used as offset (indirect appoint)
Data register can be used as offset of soft element.
Format : Dn[Dm], Xn[Dm], Yn[Dm], Mn[Dm].
Word offset: DXn[Dm] means DX[n+Dm].
The offset value only can be set as D register.

—(S'\TA}Z—{ MOV‘ KO \ DO }
M2

—m—{ MOV‘ K5 ‘ DO }

jML—{ MOV ‘D10[D0]‘ D100 }

YO[DO]

()
\ /

When D0=0, D100=D10, YO is ON;
When M2 is from OFF—ON, D0=5, D100=D15, Y5 is ON.
D10[D0]=D[10+DQ], YO[DO]=Y[0+D0].

50

Example

Data register D can deal with many kinds of data.
Data storage

WD
—i— wov | Ko | Do | When MO is ON, write 100 into DO.(16 bits value)

o
—— DMOV | k41100 | D10 | When M1 is ON, write 41100 into D11,D10 (32bits value)

Data transfer

MO
H%{ Mov \ Do \ D10 \ When MO is ON, transfer the value of D10 to DO

Read the timer and counter

MO
H%{ Mov \ c10 \ Do \ When MO is ON, move the value of C10 to DO.

As the set value of timer and counter

X0 When X0 is ON, T10 starts to work, TO will set ON when
}—‘TMR_A‘TO‘DO‘DZ‘)]) o
DO value is equal to timer value, time unit is D2.

X1

CNT ‘HCO‘ D4 ‘

X1 is ON, HCO starts to work, HCO will set ON when D4
value is equal to counter value.

Note: The range of soft components m
communication mode. In the MODBUS communication mode, some relays can not read and
write. The specific usable range is shown in chapter 6-2-3.

2-9-1. Word consist of bits

One of the coils from X0 to X17 is ON, YO will be ON.
Programming method one:

51

X0 Yo

X1
[y—

X2
[y —

X3
(Y —

X4

—~
~

X5
— —

X6
1 —

X7
(NS

X10
e

X11
[—

X12
— —

X13
e

X14
e

X15
]

X16
(S Y

X17
T

Programming method two: (application of word consists of bits)

DX0 KO YO0
— (

2-9-2. Offset application

Application 1:
When MO is ON, the output from Y1 to Y7 will be ON one by one. DO is offset address. If
there are many output points, M can replace Y.

| | MOV K7 D4000 =
MO SM13 YO[DO]
1 Ii (R
| INC DO —
DO D4000
> | | MOV K1 DO I
YO[DO]

()
(S)

52

Application 2:
When MO is ON, read the ID10000 value every second and store in the register starting from
D4000 (amounts is 50 registers). DO is offset address.

MO SM13
— | i | MOV 1D10000 D4000[D0] |-
o INC DO -
DO K50
= } MOV K1 DO %

2-10. Flash register (FD, SFD, FS)

The FLASH registers of XD/XL series PLC are all addressed in decimal system. The serial
numbers are shown in the corresponding table.

e FLASH User Data Register (FD)
Used to store important data of users, can be maintained when the power is off.
This storage area can remember data even if the battery is powered down, so it can be used to
store important process parameters.

e FLASH System Data Register (SFD)

Series | Name Range
FLASH user data FLASH system Password read
register data register protection FLASH
register
XD1 FDO~FD5119 SFD0~SFD1999 FSO0~FS47
XD2 FDO~FD5119 SFD0~SFD1999 FSO0~FS47
XD3 FD0~FD5119 SFD0~SFD1999 FSO0~FS47
XD5 FD0~FD8191 SFD0~SFD5999 FSO~FS47
XDM FDO~FD8191 SFD0~SFD5999 FSO0~FS47
XDC D FDO~FD8191 SFD0~SFD5999 FSO0~FS47
XD5E SFD FDO~FD8191 SFD0~SFD5999 FSO0~FS47
XDME ES FD0~FD8191 SFD0~SFD5999 FSO~FS47
XDH FD0O~FD65535 SFD0~SFD49999 FSO0~FS47
XL1 FDO~FD5119 SFD0~SFD1999 FS0~FS47
XL3 FDO~FD5119 SFD0~SFD1999 FSO0~FS47
XL5 FD0~FD8191 SFD0~SFD5999 FSO~FS47
XL5E FD0~FD8191 SFD0~SFD5999 FSO0~FS47
XLME FD0~FD8191 SFD0~SFD5999 FSO0~FS47
Function

Used to store system parameters and be able to maintain the data when power off.
The storage area is a system parameter block, and users can not modify it at will.

e Password Read Protection FLASH Register (FS)
A part of the FlashROM register is used to store data soft components, which are represented
by the symbol FS. The values in the FS register can be written but can not be read, so they
can be used to protect the intellectual property rights of users.
The value of the soft element can be set arbitrarily in the FS register, but the value of the
register can not be read (always returned to 0); and it can not be compared with the register in
the host computer software, only with the constant, so the actual value of the register can not
be read.
This storage area can remember data even if the battery is powered down, so it can be used to
store important process parameters.

Note:

(1) When using MOV instruction to transmit data to FD, SFD and FS, only the rising edge is
valid, even if the driving condition is normally open/closed coil, the instruction is executed
only once.

(2) Flash registers can be written about 1,000,000 times, and each write is erased for the
whole Flash registers, which is time-consuming. Frequent writing will cause permanent
damage to Flash registers, so it is not recommended that users write frequently. Do not use
oscillating coil (e.g. SM11) as driving condition.

(3) When data is transmitted to the same Flash register several times, if the value in the source
register does not change from the previous transmission, the transmission instruction will not
be executed even if the driving condition is established again. For example, if the value in DO
is transmitted to FD100, the value in DO is 300 when the transmission instruction is executed
for the first time; if the driving condition is established for the second time, the transmission
instruction is not executed if the value in DO is still 300.

(4) In order to prevent the interference of burr signal when transmitting data to Flash
registers, it is not recommended to use coils such as SMO0 and SM2 as direct driving
conditions. It is suggested that the transmission instructions be executed after the PLC power-
on for a period of time.

2-11. Constant

Data process

XD/XL series PLC has the following 5 number systems.
e DEC: DECIMAL NUMBER
The preset number of counter and timer (constant K)
The number of Auxiliary relay M, HM; timer T, HT; counter C, HC; state S, HS; register D,
HD.
Set as the operand value and action of applied instruction (constant K)

54

e HEX: HEXADECIMAL NUMBER
Set as the operand value and action of applied instruction (constant H)

e BIN: BINARY NUMBER
Inside the PLC, all the numbers will be processed in binary. But when monitoring on the
device, all the binary will be transformed into HEX or DEC.

e OCT: OCTAL NUMBER
XD/XL series PLC 1/O relays are in octal. Such as [X0-7, X10-17,....X70-77].

e BCD:BINARY CODE DECIMAL
BCD uses 4 bits binary number to represent decimal number 0-9. BCD can be used in 7
segments LED and BCD output digital switch

e Other numbers (float number)
XD/XL series PLC can calculate high precision float numbers. It is calculated in binary
numbers, and display in decimal numbers.

Display

PLC program should use K, H to process values. K means decimal numbers, H means hex
numbers. Please note the PLC input/output relay use octal address.

e Constant K
K is used to display decimal numbers. K10 means decimal number 10. It is used to set timer
and counter value, operand value of applied instruction.

e Constant H
H is used to display hex numbers. HA means decimal number 10. It is used to set operand
value of applied instruction.

e (Constant B
B is used to display binary numbers. B10 means decimal number 2. It is used to set operand
value of applied instruction.

2-12. Programming principle

SignPand |

P is the program sign for condition and subprogram jump.

| is the program sign for interruption (external interruption, timer interruption, high speed
counter interruption, precise time interruption...).

P and | addresses are in decimal. Please refer to the following table:

55

Series Sign IAddress

XD, XL P P0~P9999
Range
Model | Name E_xj[ernal interruption _ _ _
Input Rising Lo . Timer interruption
. ! . Falling interruption
terminal interruption
XD1-16 X2 10000 10001 There are 20 timer
XD2-16 X3 10100 10101 interruptions. From
XD3-16 | X4 10200 10201 [40%** to [59%*, «**»
XD5-16 X5 10300 10301 means the time of timer
XL1-16 X6 10400 10401 interruption, the unit is
XL3-16 X7 10500 10501 ms.
Range
Model Name Exte_rr_1a| interruption_ _ _ _
Input Rising Falling Timer interruption
terminal |interruption |interruption
XD1-32 X2 10000 10001
XD2-24/32/48/60 X3 10100 10101
XD3-24/32/48/60 X4 10200 10201 :
XD5-24/32/48/60 X5 10300 logo1 | . nereare 20 timer
interruptions. From
XDM X6 10400 10401 ok ik ok
XDC | [40** to [59%**,
XD5E X7 10500 10501 means the timeof timer
DME X10 10600 10601 interruption, the unit is
i X11 10700 10701 ms.
LEE X12 10800 10801
XLME X13 10900 10901
Sign P

P is usually used in flow; it is used together with CJ (condition jump), CALL (call
subprogram), etc.
Condition Jump CJ

M8002

| M If coil X0 is ON, jump to the program
after P1;
If the coil X0 is not ON, do not execute
20000

MO jump action, but run the original

4‘ } DPLSY DO D2 Y0 '7 program;
1000 20000 OFF
M8170
H RST MO

56

Call the subprogram (CALL)

X0
— % CALL P10 |+
‘ ‘ If X0 is ON, jump to the

— @ subprogram

8 If the coil is not ON, run the

FEND original program;

P10 After executing the subprogram,

return to the main program;
— T@
-
:

The subprogram will start from Pn and finish with SRET. CALL Pn is used to call the
subprogram. n is a integer in the range of 0 to 9999.

urey

weJboidgng

Sign |

Tag | is usually used in interruption, including external interruption, time interruption etc. It
often works together with IRET (interruption return), El (enable interruption), DI (disable
interruption);
e External interruption
Accept the input signal from the special input terminals, not affected by the scan cycle.
Activate the input signal, execute the interruption subroutine.
With external interruption, PLC can dispose the signal shorter than scan cycle; So it can be
used as essential priority disposal in sequence control, or used in short time pulse control.
e Time interruption
Execute the interruption subroutine at each specified interruption loop time. Use this
interruption in the control which is different from PLC’s operation cycle;

e Action sequence of input/output relays and response delay
Input
Before PLC executing the program, read all the input terminal’s ON/OFF status to the image
area. In the process of executing the program, even the input changed, the content in the input
image area will not change. However, in the next scan cycle, the changes will be read.

Output

Once all the instructions end, transfers the ON/OFF status of output Y image area to the
output lock memory area. This will be the actual output of the PLC. The output contactors
will act according to the device’s response delay time.

When use batch input/output mode, the drive time and operation cycle of input filter and
output device will also show response delay.

57

e Not accept narrow input pulse signal
PLC’s input ON/OFF time should be longer than its loop time. If consider input filter’s
response delay 10ms, loop time is 10ms, then ON/OFF time needs 20 ms separately. So, up
to 1, 000/(20+20)=25Hz input pulse can’t be processed. But, this condition could be improved
when use PLC’s special function and applied instructions (such as high speed count, input
interruption, input filter adjustment).

e Dual output (Dual coils) action

Input process
X0=ON X1=OFF

As shown in the left map, please
consider the case of using the same coil

_>|<° p= ” YO at many positions:
I E.g. X0=ON, X1=0OFF

Y0 The first YO: X0 is ON, its image area is
—F—— out Y1 ON, output Y1 is also ON.

X1 The second YO0: as input X1 is OFF, the
—{F—— ourt Y0 image area is OFF.

So, the actual output is: YO=OFF,
Output process Y1=ON.

Y0=OFF Y1=0ON

When executing dual output (use dual coil), the after one is act in priority.

58

3 Basic Program Instructions

This chapter introduces the basic instructions and their functions.

3-1. Basic Instructions List

XD, XL series support all the basic instructions:

Mnemonic | Function Format and Device G(Erhapt

LD Initial logical operation MO 3-2
contact type NO mal O—‘
(normally open) ‘

LDD Read the status from the X0 3-6
contact directly 7‘ D|

LDI Initial logical operation Mo 3-2
contact type NC F W
(normally closed)

LDDI Read the normally closed 3-6
contact directly 7}21\(Qﬂ

LDP Initial logical operation- MO 3-5
Rising edge pulse —]

LDF Initial logical operation- MO 3-5
Falling /trailing edge i o
pulse

AND Serial connection of NO MO 3-3
(normally open) contacts | ' O—‘

ANDD Read the status from the 3-6
contact directly 7‘ %r; 4< >

ANI Serial connection of NC MO 3-3
(normally closed) = O—‘
contacts

ANDDI Read the normally closed 3-6
contact directly 7‘ hﬁ

ANDP Serial connection of Mo 3-5
rising edge pulse = ‘

ANDF Serial connection of Mo | 3-5
falling/trailing edge — e
pulse

OR Parallel connection of 3-4

|

NO (normally open) Mﬂ Q
contacts

ORD Read the status fromthe | || 3-6
contact directly %XDO

ORI

Parallel connection of
NC (normally closed)
contacts

ORDI

Read the normally closed
contact directly

3-6

ORP

Parallel connection of
rising edge pulse

3-5

ORF

Parallel connection of
falling/trailing edge
pulse

3-5

ANB

Serial connection of
multiply parallel circuits

3-8

ORB

Parallel connection of
multiply parallel circuits

3-7

ouT

Final logic operation
type coil drive

3-2

OuTD

Output to the contact
directly

3-6

SET

Set a bit device
permanently ON

3-12

RST

Reset a bit device
permanently OFF

3-12

CNT

16-bit non-power-off
retentive incremental
count

[CNT co [K8 |

3-13

CNT_D

16-bit power-off
retentive decremented
count

|CNT_D| HCo | K8 H

3-13

DCNT

32-bit non-power-off
retentive incremental
count

[DCNT]

Co [K8 |

3-13

DCNT D

32-bit power-off
retentive decremented
count

[DCNT_D[HCO | K8 ||

3-13

PLS

Turn on a scan cycle
when rising edge

3-11

PLF

Turn on a scan cycle
when falling edge

3-11

MCS

Connect the public serial
contacts

MCR

Clear the public serial
contacts

60

ALT The status of the

assigned device is F% AT | Mo H
inverted on every
operation of the
instruction

3-10

TMR Non-power-off holding

3-14
timer —{ }—{ TMR ‘ T0 K10 | K100

3-14

TMR_A Power-off holding timer
- g —{ }—{ TMR_A ‘ HTO | K10 | K100

1

END Force the current END 3-15
program scan to end

GROUP Group 3-15

GROUPE | Group End 3-16

GROUPE

3-2. [LD], [LDI], [OUT]

Mnemonic and Function

Mnemonic Function Format and Operands
LD Initial logic operation MO
(positive) contact type NO ’H O—‘
(Normally Open)
Operands:
X,Y,M,HM,SM,S,HS, T, HT,C,HC,Dn.m
LDI Initial logic operation MO
(negative) contact type NC = Q*
(Normally Closed)
Devices:
X, Y ,M,HM,SM,S HS,T,HT,C,HC,Dn.m
ouT Final logic operation type | |1 YO o
(OUT) drive coil
Operands:
X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m
Statement

e Connect the LD and LDI instructions directly to the left bus bar. It can work with ANB and
be used at the branch start.

e OUT instruction can drive the output relays, auxiliary relays, status, timers, and counters.

61

But this instruction can’t be used for the input relays

Program
X0
i a0 >—
X1
TMR TO0 K10 K100
(——
TO
— | Y1

3-3. [AND] , [ANI]

LD X0
OUT Y100
LDI X1
OuUT M1203
TMR TO

LD TO
ouT Y1

K10 K100

Mnemonic and Function
Mnemonic | Function Format and Operands
AND Normal open MO
(and) contactor in series i o
Operand: X,Y,M,HM,SM,S,HS, T ,HT,C,HC,Dn.m
ANI Normal close MO
(and contactor in series b o
reverse)
Operand: X,Y,M,HM ,SM,S,HS, T, HT,C,HC,Dn.m
Statements

e Use AND and ANI to connect the contactors in series. There is no limit for contactors in

series. They can be used for many times.

e Use OUT instruction through other coil is called “follow-on” output (For an example see
the program below: OUT M2 and OUT Y3). Follow-on output can repeat as long as the
output order is correct. There’s no limit for the serial connected contactors and follow-on

output times.

62

Program

X2 M1
— Cv2 o LD X2

Y2 X3

— = M2 AND M1
hl ouUT Y2

LD Y2

ANl X3

ouT M2

AND T1

OuUT Y3

3-4. [OR] , [ORI]

Mnemonic and Function

Mnemonic | Function Format and Operands
OR Parallel connection -
(OR) of NO (Normally | | M° _——

Open) contactors
Operand: X,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m

ORI Parallel connection |
- e

(OR of NC (Normally
reverse) Closed) contactors

Operand: X,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m

Statements

e Use the OR and ORI instructions for parallel connection of contactors. To connect a block
that contains more than one contactor connected in series to another circuit block in parallel,
use ORB instruction, which will be described later;

e OR and ORI start from the instruction step, parallel connect with the LD and LDI
instruction step introduced before. There is no limit for the parallel connect times.

Program

63

T
s

M100

Relationship with ANB

LD ANB LD

! L

—(:]—{H e
4{ }7

R

ALi After ANB
4{}7
OR
b After ANB

LD X5

OR X6
OR M11
ouT Y6
LDl Y6
AND M4
OR M12
ANI X7
OR M13
ouT M100

The parallel connection with OR, ORI
instructions should connect with LD,
LDl instructions in principle. But behind
the ANB instruction, it’s still ok to add a
LD or LDI instruction.

3-5. [LDP], [LDF], [ANDP], [ANDF], [ORP], [ORF]

Mnemonic and Function

Mnemonic Function Format and Operands
LDP Initial logical operation-Rising MO
(LoaD edge pulse I
Pulse)
X,Y,M,HM,SM,S,HS, T, HT,C,HC,Dn.m
LDF Initial logical operation MO
(LoaD Falling/trailing edge pulse ’—H QW
Falling
pulse)
X, Y ,M,HM,SM,S HS T,HT,C,HC,Dn.m
ANDP Serial connection of Rising edge MO
(AND Pulse) | pulse ’—H—H O—‘
X,Y,M,HM,SM,S,HS, T, HT,C,HC,Dn.m
ANDF Serial connection of MO
Falling/trailing edge pulse ’H — Q_‘

64

(AND
Falling X,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m
pulse)
ORP Parallel connection of Rising
(OR Pulse) edge pulse M*ﬂ
I
X,Y,M,HM,SM,S HS, T, HT,C,HC,Dn.m
ORF Parallel connection of
(OR Falling | Falling/trailing edge pulse N@
pulse) I
X,Y,M,HM,SM,S HS, T,HT,C,HC,Dn.m
Statements

LDP, ANDP, ORP will be ON for one scanning period when the signal rising pulse is coming

(OFF>ON)

LDF, ANDF, ORF will be ON for one scanning period when the signal falling pulse is
coming (ON->OFF)

Program

M13

LDP X5
ORP X6
ouT M13
LD M8000
ANDP X7
ouT M15

3-6. [LDD] , [LDDI], [ANDD] , [ANDDI] , [ORD] , [ORDI|, [OUTD]

Mnemonic and Function

Mnemonic Function Format and Operands
LDD Read the status from Xo
the contact directly _| P C
Devices: X
LDDI Read the normally x0
closed contact directly _,l” ©
Devices: X

65

ANDD Read the status from X0
the contact directly _| |_|D’—©
Devices: X
ANDDI Read the normally X0
closed contact directly | [I_,H—Q
Devices: X
ORD Read the status from | >
the contact directly —F’T—
Devices: X
ORDI Read the normally | o
closed contact directly XO:
Devices: X
OuUTD Output to the contact - YDO N
directly ~ P
Devices: Y
Statement

The function of LDD, ANDD, ORD instructions are similar to LD, AND, OR; LDDI,
ANDDI, ORDI instructions are similar to LDI, ANDI, ORI; but if the operand is X, the LDD,
ANDD, ORD commands read the signal from the terminals directly.

OUTD and OUT are output instructions. OUTD will output immediately when the condition
is satisfied, needn't wait for the next scan cycle.

Program
X0) 1
LDD X0
I i { o) LDDI X2
=l ORD X2
17 ANB
OUTD YO
3-7. [ORB]
Mnemonic and Function
Mnemonic Function Format and Devices

ORB Parallel connect the I:n—tl—{“:}—‘
(OR Block) serial circuits =

66

| Devices: none

Statements

Two or more contactors is called "serial block™. If parallel connect the serial block, use LD,
LDl at the branch start point, use ORB at the branch end point;

As the ANB instruction, an ORB instruction is an independent instruction which is not
associated with any soft component.

There are no limits for parallel circuits’ quantity when using ORB for every circuit.

Program

T1o

—i
¥ Serial connect
the block

Recommended good programming method: Non-preferred programming method:

LD X0 D 0
AND X1

AND X1
LD X2 LD X2
AND X3 AND X3
ORB LD X4
LD X4 AND X5
AND X5

ORB
ORB ORB
ouT Y10 oUT Y10

3-8. [ANB]

Mnemonic and Function

[Mnemonic | Function | Format and Devices

67

Use ANB to serial connects two parallel circuits. Use LD, LDI at the brach start point; use

ANB at the branch end point.
There are no limits for ANB instruction using times.

Program

circuit

-
E instruction before ANE
OB instruction after ANE

3-9. [MCS] , [MCR]

™ Parallel

ANB Serial
(And connection of l:m::] |
Block) p_aral!el Devices: none
circuits
Statements

LD X0
OR X1
LD X2
AND X3
LDl X4
AND X5
ORB

OR X6
ANB

OR X7
ouT Y20

Mnemonic and Function

Statements

Mnemonic | Function Format and Devices
MCS The start of
(Master new bus line e
control)

Devices: None
MCR Reset the bus () @ (®
(Master line HL{ 7N ‘ 0 ‘ X ‘ X ‘ X ‘ 0 ‘ vi ‘
control
Reset) Devices: None

68

e After the execution of an MCS instruction, the bus line (LD, LDI) moves to a point after
the MCS instruction. An MCR instruction resets this to the original bus line.
e MCS, MCR instructions should use in pair.
e The bus line can be nesting. Use MCS, MCR instructions between MCS, MCR instructions.
The nesting level increase with the using of MCS instruction. The max nesting level is ten.
When executing MCR instruction, go back to the last level of bus line.
e When use flow program, bus line management could only be used in the same flow. When
the flow ends, it must go back to the main bus line.
Note: The MCS and MCR instructions can not be written directly in the ladder diagram of
XD/XL series PLC programming software. They can be constructed by horizontal and
vertical lines.

Program
x1 p 4] LD X1
i ¥
MCS
‘ 1 R

— T ¥ LD X2
b{fﬂ ouT Y0
- LD M1

MCS
LD M3
ouT Y1
LD M2
ouT Y2
MCR
MCR
3-10. [ALT]
Mnemonic and Function
Mnemonic Function Format and Devices
ALT Alternate the coil |
(Alternate) L AT | Mo
Coil:
X,Y,M,HM,SM,S,HS,T,HT,C,HC,Dn.m

69

Statements

The status of the coil is reversed after using ALT (ON changes to OFF, OFF changes to ON).

Program
M100 ‘ LDP M100
i ALT ‘ MO % ALT MO
LD MO
MO ouT YO
‘ @ LDI MO
MO ouT Y1

3-11. [PLS] , [PLF]

Mnemonic and Function

Mnemonic | Function Format and Devices
PLS Turn on a scan
(Rising cycle when ’ﬁ Ps | vo }—‘

Pulse) Rising edge

Operand:
X,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m

PLF Turn on a scan

(Falling cycle when rﬂ% PLF \ Y0 }—‘

Pulse) Falling edge

Operand:
X,Y,M,HM,SM,S,HS, T, HT,C,HC,Dn.m

Statements

For using PLS instruction: soft component Y and M will act during one scanning period after
the drive is ON.

For using PLF instruction: soft component Y and M will act during one scanning period after
the drive is OFF.

Program
70

X0

———————— s | Mo
Mo

] sET | Y0

P
%
HXF{ PLF ‘ M1 % LD X1
HMF{ RST ‘ YO0 %

3-12. [SET], [RST]

Mnemonic and Function

Mnemonic | Function Format and Devices
SET Set a bit
(Set) device] st | Yo |
permanently perand:
ON X,Y,M,HM,SM,S,HS, T, HT,C,HC,Dn.m
RST Reset a bit
(Reset) device] RsT | Yo |
permanently perand:
OFF ,Y,M,HM,SM,S,HS, T,HT,C,HC,Dn.m
Statements

In the following program, YO will keep ON even X10 turns OFF after turning ON. YO will
not ON even X11 turns OFF after turning ON. This is the same to S and M.

SET and RST can be used for many times for the same soft component. Any order is allowed,
but the last one is effective.

RST can be used to reset the counter, timer and contactor.

When using SET or RST, it cannot use the same soft component with OUT.

71

Program

X1 Y0

— (s)
X1 YO

—t (R)
XA M50

) (s)
X1 M50

— (R)
X1 S0

4 (s)
X1 SO

—4 (R)
X1

—4——{TMR T250 K10 K10]—
X1 T250
‘ (R)

X10

X11

YO0

3-13. [cNT] [CNT D] [DCNT]
counters

Mnemonic and Function

LD X10
SET YO
LD X11
RST YO
LD X12
SET M50
LD X13
RST M50
LD X14
SET SO
LD X15
RST SO
LD X16
TMR T250 K10 K10
LD X17
RST T250

[DCNT_D] [RST] for the

Mnemonic Function Format and devices
CNT 16 bits non power-off retentive |
Output increase count, the drive of count | | A [CNT] Co | K8 H
coil
Operand: K, D
CNT_D 16 bits power-off retentive |
Output decrease count, the drive of | A [CNT_D| HCO | K8 H
count coil
Operand: K, D

72

DCNT 32 bits non power-off retentive ‘ ‘
Output increase count, the drive of count | | A (DCNT| CO | K8 H

coil Operand: K, D
DCNT_D 32 bits power-off reteptive } | [DCNT D] HEO | K8 H
Output decrease count, the drive of

count coil Operand: K, D
RST Reset the output coil, clear the | I
Reset current count value !

Operand: C, HC, HSC

Internal counter
programming

HE

X11

—f F———{cNT | co | k10 |+
Co YO

— | ()

CO0 increase counts the X11 OFF
to ON times. When CO reaches
K10, CO will become OFF to ON.
When X11 becomes OFF to ON,
the CO current value will keep
increasing, and the CO coil will
still be ON. When X10 is ON,
reset the CO coil.

Power-off retentive counter will keep the current value and counter coil status when the

power is off.

High speed counter programming

HSICEI

MO
— ———— CHT [H5CO | K10 |
Y0

i
L

1
4

M1
AT [0 —

Increase count the OFF to ON times of MO.
When the count value reaches set value (value of K or D), the count coil will be ON.
When M1 is ON, the count coil of HSCO reset, the current value becomes 0.

3-14. [TMR], [TMR-A] for timers

Mnemonic and Function

Mnemonic | Function Format and devices

TMR Non power-off retentive 100ms

output timer, the drive of coil }—{ |—| pi i | 0 | sl |KIDDH
operand: K, D

TMR Non power-off retentive 10ms

output timer, the drive of coil —F—— R | 10 | kw0 | K10 |-
operand: K, D

TMR Non power-off retentive 1ms

output timer, the drive of coil — R [o | ko | k1
operand: K, D

TMR_A Power-off retentive 100ms timer,

output the drive of coil }_{ | p— | p— | p— |KIDDH
operand: K, D

TMR_A Power-off retentive 10ms timer,

output the drive of coil —{ }—{ TMR_A ‘ HTO ‘ K10 ‘ K10 }»
operand: K, D

TMR_A Power-off retentive 1ms timer,

output the drive of coil — TMRA ‘ HTO ‘ K10 ‘ K1 %
operand: C, HC, HSC

Internal timer programming

MO
—] }—{ TMR ‘ 0 ‘Klo‘Klo}—
T0

When MO is ON, TO starts to
timing. When TO reaches K10,

@7 TO coil is ON. Then TO

continues timing. When M1 is
RST ON, reset the TO.

Power-off retentive timer will keep the current value and counter coil status when the power

is off.

3-15. [END]

Mnemonic and Function 24

Mnemonic | Function Format and Devices: None
END Force the END
(END) current
program scan .
to end Devices: None
Statements

Input dizposzal

Stepomn
ool
o2

LD]

OUT W
END
" Hop
HOP
HOP

i
HOP

Dutput di spnsa]l.

PLC repeatedly carries on input disposal, program executing and output disposal. If write
END instruction at the end of the program, then the instructions behind END instruction
won’t be executed. If there’s no END instruction in the program, the PLC executes the end
step and then repeats executing the program from step 0.

When debug, insert END in each program segment to check out each program’s action.

Then, after confirm the correction of preceding block’s action, delete END instruction.
Besides, the first execution of RUN begins with END instruction.

When executing END instruction, refresh monitor timer. (Check if scan cycle is a long timer.)

3-16. [GROUP] , [GROUPE]

Mnemonic and Function

75

Mnemonic | Function Format and Device

GROUP GROUP

Devices: None

GROUPE | GROUP END

Devices: None

Statements

GROUP and GROUPE should used in pairs.

GROUP and GROUPE don't have practical meaning; they are used to optimize the program
structure. So, add or delete these instructions doesn't affect the program's running;

The using method of GROUP and GROUPE is similar with flow instructions; enter GROUP
instruction at the beginning of group part; enter GROUPE instruction at the end of group part.

Generally, GROUP and GROUPE
instruction can be programmed according

D

|| m’_ to the group's function. Meantime, the

MED00 — programmed instructions can be FOLDED
| < R > or UNFOLDED. To a redundant project,

these two instructions are quite useful.

3-17. Programming notes

Contactor structure and steps

Even in the sequencial control circuit with the same function, it’s also available to simplify
the program and shorten the program steps according to the contactors’ structure. General
programming principle is: (a) write the circuit with many serial contacts on the top; (b) write
the circuit with many parallel contactors in the left.

Program’s executing sequence
Handle the sequencial control program by [From top to bottom] and [From left to right]
Sequencial control instructions also encode following this procedure.

Dual output dual coil’s activation and the solution
If carry on coil’s dual output (dual coil) in the sequencial control program, then the last action
is prior.

76

Dual output (dual coil) doesn’t go against the input rule. But as the preceding action is very
complicate, please modify the program as in the following example.

v v
S X3 X4
[Y T
X3 X4
Y0 D>

4){(0 X2 -

There are other methods. E.g. jump instructions or flow instructions.

7

4 Applied Instructions

In this chapter, we describe applied instruction’s function of XD, XL series PLC.

4-1. Applied Instructions List

Mnemonic | Function Ladder chart Chapter

Program Flow

CJ Condition jump — % c \ Pn \ 4-3-1

CALL Call subroutine — % CALL \ Pn \ 4-3-2

SRET Subroutine return 4-3-2

STL Flow start 4-3-3

STLE Flow end 4-3-3
Open the assigned flow,

SET close the current flow B ser [s | 4-3-3
Open the assigned flow,

ST not close the current — % ST \ Sn \ 4-3-3
flow

FOR Starta FOR-NEXT loop | —i—— FoR | s | 4-3-4

NEXT E)T)(:)Of a FOR-NEXT 4-3-

FEND Main program END 4-3-5
Program END

END END 4-3-5

Data Compare

LD= I(_SIZ;)actlvates if (S1) = % . ‘ o1 ‘ s ‘ 4-a-1

LD> (LS[;)actlvates if (S1) > % . ‘ = ‘ s ‘ 4-4-1

LD< I(_SIZ;)actlvates if (S1) =< % o= ‘ o1 ‘ o ‘ 4-a-1

LD<> LD activates if (S1) D= o1 o

4-4-1

L o[s []

LD<= I(_SIZ;)actlvates if (S1) < % . ‘ o1 ‘ 2 ‘ 4-4-1

LD>= (LS[;)actlvates if (S1) > % - ‘ o1 ‘ s ‘ 4-4-1

AND= AND activates if (S1)= | |_ AND— s1 52 A
(s2) — | s | s | 4-4-2

AND> gl:)D activates if (S1)> A | s | s 4-2-2

AND< g;l)D activates if (S1)<< i A< | st | s 4-4-2

AND<> (AéI;)D activates if (S1) # Ao | st | s 4-4-2

AND<= | AND activates if (S1) < — A
(s2) ——— aND<= | s1 [2 4-4-2

AND> = (AéI;)D activates if (S1) > ! anp= si | s 4-4-2

OR= gl;)activates if (S1)= [or= | st | s | 4-4-3

OR> E)Slz)activates if (S1)> 4{ OR= ‘ o1 ‘ s ‘ 4-43

OR< E)SFé)activates if (S1)< - [or= | s | s | 4-43
OR activates if (S1

OR< > (Sz)ac ivates if (S1) # % OR= = ‘ o1 ‘ 2 ‘ 4-4.3

= OR activates if (S1
OR< (SZ)aC ivates if (S1) < [or== | st | s2 | 4-4-3
= R acti if (S1

OR> (C;z)actlvatem (S1) = —or>= | s | s2 | 4-4-3

Data Move

CMP Compare the data HH CMmP \ S1 \ S \ D \ 4-5-1
Compare the data in

ZCP certaFn area }HH s ‘ o ‘ > ‘ > ‘ b ‘ 4-5-2

MOV Move HH MOV ‘ S ‘ D ‘ 4-5-3

BMOV | Block move ~—{BMov| s | » | n 4-5-4

PMOV Transfer the Data block HH PMOV ‘ s ‘ b |n 4-5-5

EMOV Multi-points repeat HH FMOV‘ S ‘ b | o 4-5.6
move

EMOV Float number move }%H EMOV\ S \ D \ 4-5-7

FWRT Flash ROM written HH FWRT‘ S ‘ D ‘ 4-5-8

MSET Zone set —i— MSET| s1 | s2 | 4-5-9

ZRST Zone reset b ZRsT | s1 | sz | 4-5-10
Swap the high and low

SWAP | byte o 4-5-11

XCH Exchange two values }HH XCH‘ - ‘ - ‘ 4-5-12

Data Operation

ADD Addition }—H—' aDD [s1 | s2 [p | 4-6-1

SUB Subtraction }—H—' suB | st [s2 | » | 4-6-2

MUL Multiplication }HH MUL‘ 51\ 52 ‘ b ‘ 4-6-3

79

Division

DIV DIV| s1 | S2 | D 4-6-4
—{ow [s s [o]

Increment
INC —i—{ wc | o | 4-6-5
DEC Decrement }H n 4-6-5
MEAN Mean | MEAN| s [D | n | 4-6-6
WAND Word And —i— WAND | 51| s2 | b | 4-6-7
WOR Word OR }—H—' WOR | s1 | s2 | » | 4-6-7
WXOR | Word eXD3lusive OR | —i— WXoR | s1 | s2 | » | 4-6-7
CML Compliment ko | s | b | 4-6-8
NEG Negative }H n 4-6-9
Data Shift
SHL Arithmetic Shift Left }—H—' si. | o | on | 4-7-1
SHR Arithmetic Shift Right | —— s | 0 | | 4-7-1
LSL Logic shift left }HH LSL‘ 5 ‘ . ‘ 4-7-2
LSR Logic shift right }HH LSR‘ 5 ‘] ‘ 4-7-2
ROL Rotation shift left }—H—'ROL‘ S ‘ - ‘ 4-7.3
ROR Rotation shift right }HH ROR‘ S ‘ - ‘ 4-73
SFTL Bit shift left s s o [m | ||474
SFTR Bit shift right o fser] s [o [m | we |47
WSFL Word shift left }—H—' WSFL ‘ S ‘ D ‘ nl ‘ n2 ‘ 4-7-6
WSFR Word shift right }—H—' WSFR ‘ S ‘ D ‘ nl‘ n2 ‘ 4-7-7
Data Convert

Single word integer
WTD converts to double word }%H WTD‘ S ‘ D ‘ 4-8-1

integer

16 bits integer converts
FLT gozfé(_’at_POim }—<H FLT‘ s ‘ D ‘ 4-8-2

its integer converts

DFLT to ftl)oat point }—H—‘ DFLT‘ s ‘ D \ 4-8-2

64 bits integer converts
FLTD to float point }HH FLD | s | D | 4-8-2
INT ::r:ggep;omtconvertsto }HH INT‘ s ‘ 5 ‘ 4-8-3
BIN BCD converts to binary }HH BIN‘ . ‘ > ‘ 4-8-4
BCD Binary converts to BCD }HHBCD‘ 5 ‘ > ‘ 4-8-5

80

ASCI Hex. converts to ASCI|I ASCl| S | D | n 4-8-6
a5 o [0
ASCII converts to Hex.

HEX }HH HEX‘ s ‘ D ‘ n ‘ 4-8-7
DECO Coding }HH DECO‘ s ‘ D ‘ n ‘ 4-8-8
ENCO High bit coding }HH ENCO| s | D | n | 4-8-9
ENcOL | Low bitcoding - [encor s (b [n | 4-8-10
GRY Binary to Gray code }—H—'GRY‘ S ‘ 5 ‘ 4-8-11
GBIN Gray code to binary }—H—‘GBIN‘ S ‘ 5 ‘ 4-8-12
Float Point Operation

ECMP Float compare }—H—{ ECMP‘ s1 \ s2 \ D \ 4-9-1
EZCP Float Zone compare }HH Ezcp | s1| s2 | b1 | D2 | 4-9-2
EADD Float Add }HH EADD‘ s1 ‘ S2 ‘ D ‘ 4-9-3
Esug | FloatSubtract ——{esus [;1] sz | D | 4-9-4
EMUL Float Multiplication }—H—'EMUL‘ 51\ - ‘ 5 ‘ 4-9-5
EDIV Float division i Jeow [si] s [o | 4-9-6
ESOR Float Square Root }HH ESQR‘ S ‘ > ‘ 4-9-7
SIN Sine ——{sn] s [| 4-9-8
COS Cosine }—H—‘ cos| s | b | 4-9-9
TAN Tangent] s [o] 4-9-10
ASIN FIoatSine- HH ASIN‘ s ‘ S ‘ 4-9-11
ACOS Float Cosine }HH ACOS‘ . ‘ 5 ‘ 4-9-12
ATAN Float Tangent —H—'ATAN‘ S ‘ 5 ‘ 4-9-13
Clock Operation

TRD Read RTC data L n 4-10-1
TWR Write RTC data 4-10-2

(w0]

81

4-2. Reading Method of Applied Instructions

In this manual, the applied instructions are described in the following manner.

Summary

ADDITION [ADD]

16 bits ADD 32 bits DADD

Execution Normally ON/OFF, Suitable XD, XL

condition Rising/Falling edge Models

Hardware - Software -

reguirement reguirement

Operands
Operands | Function Data Type
S1 Specify the data or register address 16 bits/32 bits, BIN
S2 Specify the data or register address 16 bits/32 bits, BIN
D Specify the register to store the sum result 16 bits/32 bits, BIN

Suitable Soft Components

Operand System Constant | Module
Word D* | D | 10* | c* | DX | DY | pvi* | Ds* | KH ID| QD

Sl o |o |o ° ° ° ° ° °

S2 o |o |o ° ° ° ° ° °

D e |o |o ° ° ° °

*Note: D includes D, HD. TD includes TD, HTD. CD includes CD, HCD, HSCD, HSD. DM
includes DM, DHM. DS includes DS, DHS. M includes M, HM, SM. S includes S and HS. T
includes T and HT. C includes C and HC.

Description

<16 bits instruction>

CORNCORNCD

X0
ADD ‘ D10 ‘ D12 ‘ D14 ‘

—

(D10) + (D12) — (D14)

<32 bits instruction>

COMCIICY

X0
DADD ‘ D10 ‘ D12 ‘ D14 ‘

—

(D11D10) + (D13D12) — (D15D14)

Two source data make binary addition and the result data store in object address.
The highest bit of each data is positive (0) and negative (1) sign bit. These data will make
addition operation through algebra. Such as 5 + (-8) = -3.

82

If the result of a calculations is “0”, the “0” flag acts. If the result exceeds 323,767(16 bits
operation) or 2,147,483,648 (32 bits operation), the carry flag acts. (refer to the next page). If
the result exceeds -323,768 (16 bits operation) or -2,147,483,648 (32 bits operation), the
borrow flag acts (Refer to the next page).

When carry on 32 bits operation, low 16 bits of 32-bit register are assigned, the register
address close to the low 16 bits register will be assigned to high 16 bits of 32-bit register.
Even number is recommended for the low 16 bits register address.

The source and object can be same register address.

In the above example, when X0 is ON, the addition operation will be excuted in each
scanning period.

Related flag

Flag Name Function
ON: the calculate result is zero

SM20 Zero OFF: the calculate result is not zero
ON: the calculate result is over 32767(16bits) or
2147483647(32bits)

SM21 Borrow | OFF: the calculate result is not over 32767(16bits) or
2147483647(32bits)
ON: the calculate result is over 32767(16bits) or
2147483647(32bits)

SM22 Carry OFF: the calculate result is not over 32767(16bits) or
2147483647(32bits)

Notes

The assignment of the data

The data register of XD, XL series PLC is a single word (16 bit) data register, single word
data only occupy one register which is used to single word instruction. The process range is
decimal —327,68~327,67, or hex 0000~FFFF.

Single word object instruction D(NUM)

|Instruction| D(NUM) | —

Double words (32 bit) occupy two data registers; the two registers’ address is continuous. The
process range is: decimal -214,748,364,8~214,748,364,7 or hex 00000000~FFFFFFFF.

Double word object instruction D(NUM+1) D(NUM)
| Instruction | bvum) | - | Object | Object |

The way to represent 32 bits instruction

Add letter “D” before 16 bits instruction to represent 32 bits instruction.
For example:

ADD D0 D2 D4 16 bits instruction

DADD D10 D12 D14 32 bits instruction
83

»1: It shows the flag bit following the instruction action.
%2 ('s-)Source operand which won’t change with instruction working
%3: Destinate operand which will change with instruction working

24 It introduces the instruction’s basic action, using way, applied example, extend function,

note items and so on.

4-3. Program Flow Instructions

Mnemonic Instruction’s name Chapter
CJ Condition Jump 4-3-1
CALL Call subroutine 4-3-2
SRET Subroutine return 4-3-2
STL Flow start 4-3-3
STLE Flow end 4-3-3
SET Open the assigned flow, close the current flow (flow

jump) 4-3-3
ST Open the assigned flow, not close the current flow 4-33

(Open the new flow)
FOR Start of a FOR-NEXT loop 4-3-4
NEXT End of a FOR-NEXT loop 4-3-4
FEND First End 4-3-5
END Program End 4-3-5

4-3-1. Condition Jump [CJ]

Summary

As the instruction to execute part of the program, CJ shortens the operation cycle and avoids

using the dual coil

Condition Jump [CJ]

16 bits CJ 32 bits -
Execution Normally ON/OFF coil Suitable XD, XL
condition Models

Hardware - Software -
requirement requirement

Operands
Operands | Function Data Type
Pn Jump to the target (with pointer Nr.) P (P0~P9999) Pointer's Nr.

84

Suitable Soft Components

Other Pointer
P I

Description

In the below graph, if X0 is ON, jump from the first step to the next step behind P6 tag. If X0

is OFF, do not execute the jump instruction;

X0
!l CJ P6
X1 Y0
| | ()}
I \ 7
X2 T246
| (R)
X3
——f ——{TMR T246 K1000 K10 |

X4
——fF— MOV K3 DO |

=

0

In the left graph, Y0 becomes to be dual
coil output, but when X0=OFF, X1
activates; when X0=0ON, X5 activates
CJ can’t jump from one STL to another
STL;

After driving timer TO~T575,
HTO~HT795 and HSCO~HSC30, if
executes CJ, continue working, the
output activates.

The Tag must be match when using CJ

3 cJ P7
X5 Y0
| | (\
11 \ /
X6 T246
A (R) «

instruction.

4-3-2. Call subroutine [CALL] and Subroutine return [SRET]

Summary

Call the programs which need to be executed together, decrease the program's steps;

Subroutine Call [CALL]

16 bits CALL 32 bits -
Execution Normally ON/OFF, Suitable Models XD, XL
condition Rising/Falling edge

Hardware - Software -
requirement requirement

Subroutine Return [SRET]

16 bits SRET 32 bits -
Execution - Suitable Models XD, XL
condition

Hardware - Software -

requirement

requirement

85

Operands

Operands | Function Data Type
Pn Jump to the target (with pointer No.) P Pointer's No.
(PO~P9999)

Suitable Soft Components

Others Pointer
P |1
[]

Description

P A | e | -
95-;.

D g
5 5

P10

D 0
<

@D

END

If X0= ON, execute the call instruction and jump to P10. After executing the subroutine,
return the original step via SRET instruction.

Program the tag with FEND instruction (will describe this instruction later)

In the subroutine 9 times call is allowed, so totally there can be 10 nestings.

When calling the subprogram, all the timer, OUT, PLS, PLF of the main program will keep
the status.

All the OUT, PLS, PLF, timer of subprogram will keep the status when subprogram

returning.
Do not write pulse, counter or timer inside the subprogram which cannot be completed in one

scan period.

Subprogram executing diagram:

86

Y—| — CALL P10 —
__/4/’/’

4 FEND —

>y -

Y SRET —
>

If X0=ON, the program executes as the arrow.

|
A f_' @ Subprogram
/%4-—/7

>
- @ Main program
:>

If X0=OFF, the CALL instruction will not work; only the main program works.

The notes to write the subprogram:

Please programming the tag after FEND. Pn is the start of subprogram; SRET is the end of
subprogram. CALL Pn is used to call the subprogram. The range of n is 0 to 9999.
The subprogram calling can simplify the programming. If the program will be used in many

places, make the program in subprogram and call it.

4-3-3. Flow [SET], [ST], [STL], [STLE]

Summary
Instructions to specify the start, end, open, close of a flow;

Open the specified flow, close the local flow [SET]

16 bits SET 32 bits -
Execution Normally ON/OFF, Suitable XD, XL
condition Rising/Falling edge Models

Hardware - Software -
requirement requirement

Open the specified flow, not close the local flow [ST]

16 bits ST 32 bits -
Execution Normally ON/OFF, Suitable XD, XL
condition Rising/Falling edge Models

Hardware - Software -
requirement requirement

Flow starts [STL]

87

16 bits STL 32 bits -
Execution - Suitable XD, XL
condition Models
Hardware - Software -
requirement requirement
Flow ends [STLE]
16 bits STLE 32 bits -
Execution - Suitable XD, XL
condition Models
Hardware - Software -
reguirement reguirement
operands
Operands | Function Data Type
Sn Jump to the target flow S Flow No.

3.Suitable Soft Components

Bit System
Overand TS T s [T | C [bom
Sn °

*Note: M includes M, HM and SM; S includes S, HS; T includes T and HT; C includes C and
HC.

Description

STL and STLE should be used in pairs. STL represents the start of a flow; STLE represents
the end of a flow.

Every flow is independent. They cannot be nesting. There is no need to write the flow as the
order SO, S1, S2... you can make the order. For example, executing S10, then S5, SO.

After executing of SET Sxxx instruction, the flow specified by these instructions is ON.
After executing RST Sxxx instruction, the specified flow is OFF.

In flow SO, SET S1 close the current flow SO, open flow S1.

In flow SO, ST S2 open the flow S2, but don’t close flow SO.

When flow turns from ON to be OFF, reset OUT, PLS, PLF, not accumulate timer etc. in the
flow.

ST instruction is usually used when a program needs to run many flows at the same time.
After executing SET Sxxx instruction and jump to the next flow, the pulse instructions in the
former flow will be closed. (including one-segment, multi-segment, relative or absolute,
return to the origin)

88

ZET 3l

After executing SET S1, close SO,
open S1.

2T o

¢

Example

J

After executing ST S2, open S2,
not close SO.

Example 1: the flows run in branch then merge in one flow.

Program diagram:

SO start

/

~

S10 start S20 start
S11 start S21 start
S12 start S22 start

\/

S30 start

89

11 i ™
110 '«.Sz'
3TL =20
0 510
| {3
320
(S\
3TL =10
310
————{THME TO K50 K100 |-
0 11
| a3l
STLE
STL =11
311
- 1 +—{TME T1 K50 K100 |-
T1 31z
1} {3
STLE
STL 312
312
—— 1 ——{TME T2 K50 K00
T2 L1
| {8
312
(R
STLE
STL 220
320
—— ——— TME T0 K50 K100 |-
Ta 371
Il {3
STLE
STL 321
3321
— TR T1 K50 K100 |-
T1 332
I | {3
STLE
323
- J—[TWME T3 El0 Ei00 M
TS 12
I =
322
[STIE] ‘R
230
NP MY {5
330 Il
|| { R}
M2
——— ——{TMRE T6 K10 Kil00 H
330
Té
|| (R}
STLE

The program explanation:
When SM2 is ON, set ON flow S0. When
MO is ON, set ON flow S10 and S20.

In S10 branch, it runs S10, S11 and S12. Set
on M1 means the S10 branch is finished.

In S20 branch, it runs S20, S21 and S22. Set
on M2 means the S20 branch is finished.

When both branch S10 and S20 end, set on
S30. When S30 end, reset S30.

90

Example 2: flow nesting. When SO is running for a while, S1 and S2 start to run; the running
status of S1 is kept. When SO is running for certain time, closes SO and force close S1 and S2.

'V"O S0
4] (s)

\
| ZRST S0 st F

| M1
\H (s)
SM000
|| } TMR TO K50 K100 %
4{TMR T4 K1000 Kloo\—
T0
H } ST si F
T0 ‘
N | TMR T3 K10 K100 | —
T3
K } ST s2 F

}TMR T1 K200 K100 }

|
| (R)

}TMR T2 K400 K100 P

91

4-3-4. [FOR] and [NEXT]

Summary
Loop execute the program between FOR and NEXT with the specified times;

Loop starts [FOR
16 bits FOR 32 bits -
Execution Rising/Falling edge Suitable Models | XD, XL
condition
Hardware - Software -
requirement requirement
Loop ends [NEXT]
16 bits NEXT 32 bits -
Execution Normally ON/OFF, Suitable Models | XD, XL
condition Rising/Falling edge
Hardware - Software -
reguirement reguirement
Operands
Operands | Function Data Type
S Program’s loop times between FOR and NEXT | 16 bits, BIN

Suitable Soft Components

Operand System Constant | Module
Word D|FD|T|CD|DX|DY|DM|DS| KH ID | QD
S ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

FOR.NEXT instructions must be programmed as a pair. Nesting is allowed, and the nesting
level is 8.

The program after NEXT will not be executed unless the program between FOR and NEXT is
executed for specified times.

Between FOR and NEXT, LDP, LDF instructions are effective for one time. Every time when
MO turns from OFF to ON, and M1 turns from OFF to ON, [A] loop is executed 5>6=30
times.

Every time if MO turns from OFF to ON and M3 is ON, [B] loop is executed 5%7=35 times.

If there are many loop times, the scan cycle will be prolonged. Monitor timer error may occur,
please note this.

If NEXT is before FOR, or no NEXT, or NEXT is behind FEND, END, or FOR and NEXT
number is not equal, an error will occur.

Between FOR~NEXT, CJ nesting is not allowed. FOR~NEXT must be in pairs in one STL.

92

Mo G

i | FoR | K35 |
L“Inl——| FOR | K& |
1 mwc | Do | [4]
E|ﬁ|3—4| FOR | K7 | .
—— wc | p1 | [B]

Example 1: when MO is ON, the FOR NEXT starts to sort the numbers in the range of D1 to
D20 from small to large. D21 is offset value. If there are many sortings in the program,
please use C language to save the programming time and scanning time.

SM2
| “wov | Kis | bo
MO
i
MOV | KO | D21
SMO0
|
D1[D21] D2[D21]
| > XCH | D1[D21][D2[D21]
NEXT
NEXT
LD SM2 /ISM2 is initial ON coil
MOV K19 DO [fthe times of FOR loop
LD MO /IMO to trigger the FOR loop
MCS I
FOR DO /INesting FOR loop, the loop times is DO
MOV KO D21 /the offset starts from O
LD SMO //SMO is always ON coil
MCS 1
FOR DO /Inesting FOR loop, the loop times is DO
LD> D1[D21] D2[D21] /lif the current data is larger than the next, it will be ON
XCH D1[D21] D2[D21] /lexchange the two neighbouring data
LD SMO0 //MB000 is always ON coil

93

INC D21 /lincrease one for D21

MCR 1

NEXT /match the second FOR
MCR 1

NEXT /Imatch the first FOR

4-3-5. [FEND] and [END]

Summary
FEND means the main program ends, while END means program ends;

main program ends [FEND]

Execution - Suitable Models | XD, XL
condition
Hardware - Software -
requirement requirement
program ends [END]
Execution - Suitable Models | XD, XL
condition
Hardware - Software -
requirement requirement
Operands
Operands | Function Data Type
None - -

Suitable Soft Components

None

Description

Even though [FEND] instruction represents the end of the main program, the function is same
to END to process the output/input, monitor the refresh of the timer, return to program step0.

94

T’P'% Main program |— — Main program %"T
|

3% ﬁﬂ cy | P | jﬁ CALL | P21 Pg%
= 1
19 & }
i>< % Main program % % Main program % ><i
|

- L

P20

— Main program [— — Main program [—

END

END

If program the tag of CALL instruction behind FEND instruction, there must be SRET
instruction. If the interrupt pointer program behind FEND instruction, there must be IRET
instruction.

After executing CALL instruction and before executing SRET instruction, if execute FEND
instruction; or execute FEND instruction after executing FOR instruction and before
executing NEXT, an error will occur.

In the condition of using many FEND instructions, please make program or subprogram
between the last FEND instruction and END instruction.

4-4. Data compare function

Mnemonic | Function Chapter
LD= LD activates when (S1)= (S2) 4-4-1
LD> LD activates when (S1)> (S2) 4-4-1
LD< LD activates when (S1)<< (S2) 4-4-1
LD<> LD activates when (S1) # (S2) 4-4-1
LD<= LD activates when (S1) < (S2) 4-4-1
LD>= LD activates when (S1) > (S2) 4-4-1
AND= AND activates when (S1)= (S2) 4-4-2
AND> AND activates when (S1)> (S2) 4-4-2
AND< AND activates when (S1)<< (S2) 4-4-2
AND<> | AND activates when (S1)# (S2) 4-4-2
AND<= | AND activates when (S1)<(S2) 4-4-2
AND>= AND activates when (S1)> (S2) 4-4-2
OR= OR activates when (S1)= (S2) 4-4-3
OR> OR activates when (S1)> (S2) 4-4-3
OR< OR activates when (S1)<< (S2) 4-4-3
OR<> OR activates when (S1)# (S2) 4-4-3

95

OR<= OR activates when (S1)< (S2) 4-4-3
OR>= OR activates when (S1)> (S2) 4-4-3
4-4-1. LD Compare [LD]
1. Summary
LD is the point compare instruction connected with the generatrix.
LD Compare [LD]
16 bits As below 32 bits As below
Execution - Suitable Models | XD, XL
condition
Hardware - Software -
reguirement reguirement
2. Operands
Operands | Function Data Type
S1 Being compared number address 16/32bits, BIN

S2

Comparand address

16/32 bits, BIN

3. Suitable soft components

Word Operand System Constant | Module
or | FD | TD"| CD" | DX | DY | DM" | DS" | KH ID | QD
S1 ° ° ° ° ° ° ° ° °
S2 ° . ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

16 bits instruction | 32 bits Activate Condition | Not Activate Condition
instruction

LD= DLD= (S1)=(S2) (S1) # (S2)

LD> DLD> (S1)> (S2) (S1) <(S2)

LD< DLD< (S1)< (S2) (S1)=(S2)

LD<> DLD<> (S1) #(S2) (S1) = (S2)

LD<= DLD<= (S1)<(S2) (S1) > (S2)

LD>= DLD>= (S1)>(S2) (S1) < (52

96

CONCOR
| = kw0 [co G Yo D
— > | D200 | K30 H(L{ seT | vi |

—{ DLD> ‘K68899‘ C300 } M50

M4
—|

Note Items

When the source data’s highest bit (16 bits: b15, 32 bits: b31) is 1, the data is seemed to a
negative number.

The comparison of 32 bits counter should use 32 bits instruction. If using 16 bits instruction,
the program or operation will be error.

4-4-2. Serial Compare [AND]

Summary
AND: serial connection comparison instruction.

AND Compare [AND]
16 bits As Below 32 bits As Below
Execution Normally ON/OFF coil Suitable XD, XL
condition Models
Hardware - Software -
requirement requirement
Operands
Operands | Function Data Type
S1 Being compared number address 16/32bit, BIN
S2 Comparand address 16/32bit, BIN

suitable soft components

Word Operand System Constant | Module
D'|FD| TD'|CD | DX | DY | DM | DS | KH ID | QD

S1 o | o ° ° ° ° . ° °

S2 o | o ° ° ° ° . ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

97

16 bits instruction | 32 bits Activate Condition Not Activate Condition
instruction

AND= DAND= (S1)= (S2) (S1) #(S2)

AND> DAND> (S1) > (S2) (81)=(S2)

AND< DAND< (S1) < (S2) (S1)=(S2)

AND< > DAND< > (S1) #(S2) (S1)= (82

AND< = DAND< = (81)=(82) (S1) > (S2)

AND>= DAND> = (S1)=(S2) (S1) < (S2)
() (s2)

X0
— AND= | K100 | co

x2
4~ DAND> | kesse9 | D10 | M50 O

M4
—

Note Items

When the source data’s highest bit (16 bits: b15, 32 bits: b31) is 1, it is seemed to negative
number.

The comparison of 32 bits counter should use 32 bits instruction. If using 16 bits instruction,
the program or operation will be error.

4-4-3. Parallel Compare [OR]

1. Summary
OR: parallel connection comparison instruction.

Parallel Compare [OR]

16 bits As below 32 bits As below
Execution - Suitable Models | XD, XL
condition
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S1 Being compared number address 16/32 bit,BIN
S2 Comparand address 16/32 bit,BIN

98

3. Suitable soft components

Operand System Constant | Module
Word D|F|[TD|CD|DX|DY|DM|DS | KH ID| QD

S1 o | o ° ° ° ° ° ° °

S2 o (o ° ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

16 bits instruction 32 bits instruction Activate Condition | Not Activate Condition
OR= DOR= (S1)= (S2) (S1) #(S2)

OR> DOR> (S1) > (S2) (S1) <(S2)

OR< DOR< (S1) < (52) (S1) > (S2)

OR<> DOR< > (S1) # (S2) (S1) = (S2)

OR<= DOR<= (S1) <(S2) (S1) > (52)

OR>= DOR>= (S1) > (S2) (S1) < (S2)

v

—{ DOR> ‘ D10 ‘K68899}7

Note Items

M50

When the source data’s highest bit (16 bits: b15, 32 bits: b31) is 1, it is seemed to negative

number.

The comparison of 32 bits counter should use 32 bits instruction. If using 16 bits instruction,
the program or operation will be error.

Example: forbid the outputs when it reaches the certain time. In the below program, when the
date is June 30™, 2012, all the outputs will be disabled. The password 1234 is stored in
(D4000, D4001). When the password is correct, all the outputs are enabled.

99

S}M}D | ™D Do —
D2 K30 Dl K6 DOKIZ D4000 K1234 3NG4
= ——=—= D | (5)
D |1}I|{? DIle Ilqz
1= 1 1=
D0 K13
=]
D4000 K1234 SM34
D=| {R)
LD SMO /ISMO is always ON coil
TRD DO /lread the RTC (real time clock) value and store in DO~D6
LD>= D2 K30 //RTC date >30
AND>= D1 K6 //RTC month >6
AND>= DO K12 //RTC year >12
LD>= D1 K7 //or RTC month >7
AND>= DO K12 //RTC year > 12
ORB /lor
OR>= DO K13 //RTC year > 13
DAND<> D4000 K1234 //and password #1234
SET SM34 //set ON M34, all the outputs are disabled
DLD= D4000 K1234 IIpassword=1234, correct password
RST SM34 /lreset M34, all the outputs are enabled

100

4-5. Data Move Instructions

Mnemonic Function Chapter
CMP Data compare 4-5-1
ZCP Data zone compare 4-5-2
MOV Move 4-5-3
BMOV Data block move 4-5-4
PMOV Data block move (with faster speed) 4-5-5
FMOV Fill move 4-5-6
EMOV Float number move 4-5-7
FWRT FlashROM written 4-5-8
MSET Zone set 4-5-9
ZRST Zone reset 4-5-10
SWAP The high and low byte of the
. . 4-5-11
destinated devices are exchanged
XCH Exchange two data 4-5-12
4-5-1. Data Compare [CMP]
1. Summary
Compare the two data, output the result.
Data compare [CMP]
16 bits CMP 32 hits DCMP
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S1 Specify the data (to be compared) or soft 16 bit,BIN
component’s address code
S Specify the comparand’s value or soft 16 bit,BIN
component’s address code
D Specify the compare result’s address code bit

3. Suitable soft component

Operand System Constant | Module
Word D]m[m™[co[px[by[pm]Ds | KH D] QD
S1 ° ° ° ° ° ° ° ° °
S ° ° ° ° ° ° ° °
. Operand System
Bit X[Y[M][S]T][C]Dm
D o | e °

101

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.
M includes M, HM, SM; S includes S, HS; T includes T, HT; C includes C, HC.

Description
- D
— CMP ‘ D10 ‘ D20 ‘ MO ‘
MO
— D10 > D20 ON
M1
— D10 = D20 ON
M2
— D10 < D20 ON

T

Even X0=OFF to stop CMP instruction,
MO~M2 will keep the original status

Compare data (s13 and (s-), show the result in three soft components starting from
, +1, +2: the three soft components will show the compare result.

4-5-2. Data zone compare [ZCP]

1. Summary
Compare the current data with the data in the zone, output the result.

Data Zone compare [ZCP]

16 bits ZCP 32 bits DZCP
Execution Normally ON/OFF, Suitable Models | XD, XL
condition rising/falling edge
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S1 The low limit of zone 16 bit, BIN
S2 The high limit of zone 16 bit, BIN
S The current data address 16 bit, BIN
D The compare result bit

102

3. Suitable soft components

Operand System Constant | Module
D'|FD| TD'|CD | DX | DY | DM | DS | KH ID | QD
S1 o | o ° ° ° ° ° ° °
Word S2 o | o ° ° ° ° ° °
S ° ° ° ° ° ° ° ° °
Operand System
Bit X|{Y|M][s|T|C]| Dum
D oo °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.
M includes M, HM, SM; S includes S, HS; T includes T, HT; C includes C, HC.

Description
&)
1 ZCP D20 D30 DO MO
MO
—— D20 |>[DO | MO ON
M1
——— D20 |<[DO |<[D30 | M1ON
M2
— | DO |>[D30 | M2ON

Even X0=OFF stop ZCP instruction, MO~M2
will keep the original status

Compare(s-) with (s1) and (s2), output the three results starting from
, (po+1, (p-)+2:store the three results

4-5-3. MOV [MOV]

1. Summary

Move the specified data to the other soft components

MOV [MOV]

16 bits MOV 32 bits DMOV
Execution Normally ON/OFF, Suitable Models XD, XL
condition rising/falling edge

Hardware - Software -
requirement requirement

103

2. Operands

Operands | Function Data Type

S Specify the source data or register’s address 16 bit/32 bit, BIN
code

D Specify the target soft component’s address 16 bit/32 bit, BIN
code

3. Suitable soft component

Word Operand System Constant | Module
D|M|T|CO|DX| DY) DM | DS | KH D[QD
S o (o | o ° ° ° ° ° ° °
D ° ° ° . ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

Move the source data to the target
When X0 is off, the data will not change

Move K10 to D10
. (s
P% MOV ‘ K10 ‘ D10

<read the counter or timer current value> <indirect set the timer value>

2
—f—— Mov Ko D |
X1 D
% MOV ‘ T0 ‘ D20 ‘
—|)—| TME T20 D20 K100 |

(The current value of TO) — (D20) (K10) (D20)
The same as counter D20=K10

< Move the 32bits data >
Please use DMOV when the value is 32 bits, such as MUL instruction, high speed counter...

% DMOV‘ DO ‘ D10 ‘
% DMOV ‘ HSCO ‘ D20 ‘

(D1, D0) — (D11, D10)
(the current value of HSC0) — (D21, D20)

104

4-5-4. Data block Move [BMOV]

1. Summary
Move the data block to other soft component

Data block move [BMOV]
16 bits BMOV 32 bits -
Execution Normally ON/OFF caoil, Suitable Models | XD, XL
condition rising/falling edge
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Specify the source data block or soft component | 16 bits, BIN; bit
address code
D Specify the target soft components address code | 16 bits, BIN; bit
n Specify the move data’s number 16 bits, BIN;

3. Suitable soft components

Operand System Constant | Module
Word DIm]m™[co[px]by[pv]bs | KH D] QD
S ° ° ° ° ° ° ° °
D ° ° ° ° °
n [] L) L) [] [) []
Operand System
Bit X|{Y[M|S|T|C|Dmm
S o | o | e
D EEREK)

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.
M includes M, HM, SM; S includes S, HS; T includes T and HT; C includes C and HC.

Description

Move the source data block to the target data block. The data quantity is n.

<word move>
§ o n
H% BMOV ‘ D5 ‘ D10 ‘ K3 ‘

D5 - D10
D6 - D11 n=3
D7 - D12

<bit move>

105

y & :
4(}—{ BMOV ‘ Y5 ‘ Y10 ‘ K3 ‘

Y5 - Y10
Y6 - Y11 n=3
Y7 - Y12

As the following picture, when the data address overlapped, the instruction will do from 1 to
3.

X1
—H—{ BMOV ‘ D10 ‘ D9 ‘ K3 ‘
X2
- BMOV ‘ D10 ‘ D11 ‘ K3 ‘
©)
D10 —| D9
D11 N
©)
D12 — D11
D10 © _ [bu
@
D11 — D12
©)
D12 — D13

4-5-5. Data block Move [PMOYV]

1. Summary
Move the specified data block to the other soft components

Data block mov[PMOV]

16 bits PMOV 32 bits -
Execution Normally ON/OFF caoil, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Specify the source data block or soft component | 16 bits, BIN; bit
address
D Specify the target soft components address 16 bits, BIN; bit
n Specify the data guantity 16 bits, BIN;

106

3. Suitable soft components

Operand System Constant | Module
Word D]Im]m™[co[px]by[pv]bs | KH D] oD

S o (o ° ° ° ° °

D ° ° ° ° ° °

n [) [) L) [) [] []
Bit Operand System

X|{Y[M[S|T]|C|Dwm
S oo | e
D o |o | e

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.
M includes M, HM, SM; S includes S, HS; T includes T and HT; C includes C and HC.

Description

Move the source data block to target data block, the data quantity is n

. o :
4“—{ PMOV ‘ D5 ‘ D10 ‘ K3 ‘

D5 — D10
D6 -— D11 n=3
D7 -— D12

The function of PMOV and BMOV is mostly the same, but the PMOV execution speed is
faster.

PMOQV finish in one scan cycle, when executing PMOV, close all the interruptions.
Mistake may happen if the source address and target address are overlapped.

4-5-6. Fill Move [FMOV]

1. Summary
Move the specified data to the other soft components

Fill Move [FMOV]

16 bits FMOV 32 bits DFMOV
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models

Hardware - Software -
requirement requirement

107

2. Operands

Operands | Function Data Type

S Specify the source data or soft component 16/32 hits, BIN;
address

D Specify the target soft components address 16/32 bhits, BIN;

n Specify the move data’s number 16/32 hits, BIN;

3. Suitable soft component

Word Operand System Constant | Module
D'|FD|TD'|CD' | DX | DY | DM | DS | KH ID| QD
S o |o | o ° ° ° ° ° °
D ° ° ° °
n [] L] L] [] [] [] []

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

<16 bits instruction>

X0
}—{ FMOV ‘ KO ‘ DO ‘ K10 ‘

Move KO to D0~D9, copy a single data device to a range of destination device
Move the source data to target data, the target data quantity is n
If the set range exceeds the target range, move to the possible range

<32 bits instruction >

’ ® :
P% DFMOV‘ DO ‘ D10 ‘ K3 ‘

Move D0.D1 to D10.D11:D12.D13:D14.D15.

<16 bits Fill Move >

108

KO

J

KO

O

KO

O

KO

O

KO

W)
=

KO D5

KO

KO

KO

L

o W 2

KO

<32 bits Fill move>

DO D1

D0. D1

J

D1 D1

[

=

DO

D1

I

O
-

DO

D1 D1

N

4-5-7. Floating move [EMOV]

Summary

Move the float number to target address

Floating move [EMOV]

16 bits - 32 bits EMOV
Execution | Normally on/off, edge trigger | Suitable XD, XL
condition models
Hardware - Software -
Operands
Operand | Function Type
S Source soft element address 32 bits, BIN
D Destination soft element address 32 bits, BIN

109

Suitable soft element

Word | Operand System Constant | Module
D[F|TD | CD | DX| DY | DM | DS | KH ID| QD
S o | o ° ° ° ° °
D ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

<32 bits instruction>
Binary floating — binary floating

. o ™
}—H—{ EMOV | D0 | D10 |
(D1, DO) — (D11, D10)

X0 is ON, send the floating number from (D1, DO) to (D11, D10).
X0 is OFF, the instruction doesn’t work

B ®
P% EMOV ‘ K500 ‘ D10

(K500) — (D11, D10)
If constant value K, H is source soft element, they will be converted to floating number.
K500 will be converted to floating value.

4-5-8. FlashROM Write [FWRT]

1. Summary
Write the specified data to FlashRom register.

FlashROM Write [FWRT]

16 bits FWRT 32 bits DFWRT
Execution rising/falling edge Suitable Models | XD, XL
condition
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S The data write in the source or save in the soft 16 bits/32 bits, BIN
element
D target soft element 16 bits/32 bits
D1 target soft element start address 16 bits/32 bits

110

[D2 | Write in data quantity | 16 bits/32 bits, BIN
3. Suitable soft components

Word Operand System Constant | Module
D'|FD|TD'|CD | DX | DY | DM | DS | KH ID | QD
S ° ° ° ° ° ° ° ° °
D
D1 °
D2 ° ° ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

< Written of single word >

N ®
%H—{ FWRT ‘ DO ‘ FDO ‘ Write value from DO to FDO

<Wsritten of double words> <Written of multi-word>

x1 €D ‘o ©
PT% DFWRT‘ DO ‘ FDO ‘ PT% FWRT ‘ DO ‘ FDO ‘ K3 ‘

Write value from DO,D1 to FDO,FD1 Write value from DO, D1, D2 to FDO, FD1, FD2

> 1: FWRT instruction only can write data into FlashRom register. FlashRom can keep the
data even the power supply is off. It can store the important technical parameters.

2 2: Written of FWRT needs a long time, about 150ms, so frequently write-in is not
recommended

»3: The written time of Flashrom is about 1,000,000 times. So we suggest using edge signal
(LDP, LDF etc.) to activate the instruction.

»¢4: Frequently write-in will damage the FlashRom.

4-5-9. Zone set [MSET]

Summary
Set the soft element in certain range

Multi-set [MSET]

16 bits MSET 32 bits -
Execution Normally ON/OFF; falling or Suitable XD, XL
condition rising pulse edge signal Models

Hardware - Software -
reguirement reguirement

111

2. Operands

Operands | Function Data Type
D1 Start soft element address bit
D2 End soft element address bit

3. Suitable soft components

Bit Operand System
X|Y|[M|S|[T|C| Dum
D1 o |o | e KK
D2 o | o | e KK

*Notes: M includes M, HM, SM; Sincludes S and HS; T includes T and HT; C includes
C and HC.

Description

-
——— MSET | M1 | M120 | Set ON M10~M120

Set the coil from M10 to M120

are specified as the same type of soft component, and <
When > , will not run Zone set, but set SM409 SD409 = 2

4-5-10. Zone reset [ZRST]

Summary
Reset the soft element in the certain range

Multi-reset [ZRST]

16 bits ZRST 32 bits -
Execution Normally ON/OFF, falling | Suitable XD, XL
condition or rising pulse edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
D1 Start address of soft element Bit, 16 bits,BIN
D2 End address of soft element Bit, 16 bits,BIN

112

3. Suitable soft components

Operand System Constant | Module
Word | D | TD'| CD"| DX | DY | DM | DS | KH ID| QD

D1 ° ° ° °

D2 ° ° ° ° °
Bit Operand System

Y|M[S[T]|C]| Dum
D1 o | o | e EEEE
D2 BEEEEEREERK

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.
M includes M, HM, SM; S includes S and HS; T includes T and HT; C includes C and HC.

Description
}
- ZRST ‘ M500 ‘ M559

ZRST ‘ DO ‘Dloo‘

Reset M500~M559

Reset D0~D100

Are specified as the same type of soft units, and <
When > , only reset the specified soft unit, and set SM409, SD409 = 2.

Other Reset
Instruction

RST can reset one soft component. The operand can be Y, M, HM, S, HS, T, HT, C, HC, TD,
HTD, CD, HCD, D, HD
FMOV can move 0 to these soft components: DX, DY, DM, DS, T(TD), HT(HTD), C(CD),
HC(HCD), D, HD.

4-5-11. Swap the high and low byte [SWAP]

1. Summary

Swap the high and low byte of specified register

High and low byte swap [SWAP]

16 bits SWAP 32 bits -
Execution Falling or rising pulse edge | Suitable XD, XL
condition Models

Hardware - Software -

requirement

requirement

113

2. Operands

Operands | Function Data Type

S The address of the soft element 16 bits; BIN

3. Suitable soft components

Operand System Constant | Module
Word D'|FD|TD"| CD'| DX | DY | DM | DS' | KH ID | QD
S ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description
o G
SWAP \ D10 \
D10
| High 8-bit | Low 8-bit |
U

Exchange the high 8-bit and low 8-bit of 16-bit register.

If this instruction is activated by normal ON/OFF coil, the instruction will be executed in
every scanning period when X0 is ON. Falling or rising pulse is recommended to activate the
instruction.

4-5-12. Exchange [XCH]

1. Summary
Exchange the data in two soft element

Exchange [XCH]

16 bits XCH 32 hits DXCH

Execution Rising or falling pulse Suitable XD, XL

condition edge Models

Hardware - Software -

requirement requirement

2. Operands
Operands | Function Data Type
D1 The soft element address 16 bits/32 bits, BIN
D2 The soft element address 16 bits/32 bits, BIN

114

3. Suitable soft component

Word Operand System Constant | Module
D'|FD|TD"| CD"| DX | DY | DM | DS | KH ID | QD

D1] [) [) Y

D2 ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

<16 bits instruction>

y
%H—{ XCH ‘ D10 ‘ D11

Before (D10) =100 — After (D10) =101
(D11) =101 (D11) =100

The contents of the two destination devices D1 and D2 are swapped,
When X0 is ON, the instruction will be executed in every scanning period. Falling or rising
pulse is recommended to activate the instruction.

<32 bits instruction >

o
DXCH ‘ D10 ‘ D20
32 bits instruction [DXCH] swaps the dword value D10, D11 and D20, D21.
Before (D10) =100 — after (D10) =200
(D11) =1 (D11D10) =65636 (D11) =10 (D11D10) =655460
(D20) =200 (D20) =100
(D21) =10 (D21D20) =655460 (D21) =1 (D21D20) =65636

115

4-6.

Data Operation Instructions

Mnemonic Function Chapter
ADD Addition 4-6-1
SUB Subtraction 4-6-2
MUL Multiplication 4-6-3
DIV Division 4-6-4
INC Increment 4-6-5
DEC Decrement 4-6-5
MEAN Mean 4-6-6
WAND Logic Word And 4-6-7
WOR Logic Word Or 4-6-7
WXOR Logic Exclusive Or 4-6-7
CML Compliment 4-6-8
NEG Negation 4-6-9
4-6-1 Addition [ADD]
1. Summary
Add two numbers and store the result
Add [ADD]
16 bits ADD 32 bits DADD
Execution Normal ON/OFF/falling or | Suitable Models | XD, XL
condition rising pulse edge
Hardware - Software -
requirement requirement
2. Operands
Operands | Function | Data Type

Three operands

Sl

The add operation data address

16 bit/32 bit, BIN

S2

The add operation data address

16 bit/32bit, BIN

D

The result address

16 bit/32bit, BIN

Two operands

D

Be Added data and result data address

16 bit/32bit, BIN

Sl

Add data address

16 bit/32bit, BIN

116

3. Suitable soft components

Operand System constant | Module
Word D|m|m|co|px|by|bom]|bs | KH ID| QD

Three operands

S1 o [o ° ° ° . ° . °

S2 o [o ° ° ° . ° . °

D ° ° ° . ° °

Two operands

D °

S1 o | o °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

< Three operands>

o G G
%H—{ ADD ‘ D10 ‘ D12 ‘ D14 ‘(D10)+(D12)—>(D14)

Two source data do binary addition and send the result to target address. Each data’s highest
bit is the sign bit, 0 stands for positive, 1 stands for negative. All calculations are algebraic
processed. (5+ (-8) =-3)

If the result of a calculation is “0”, the “0” flag acts. If the result exceeds 323767 (16 bits
limit) or 2147483647 (32 bits limit), the carry flag acts. (refer to the next page). If the result
exceeds —323768 (16 bits limit) or —2147483648 (32 bits limit), the borrow flag acts (refer
to the next page).

When doing 32 bits operation, word device’s low 16 bits are assigned; the device close to the
preceding device’s is the high bits. To avoid ID repetition, we recommend you assign
device’s ID to be even number.

The source and target address can be the same. In the above example, when X0 is ON, the
instruction will be executed in every scanning period.

<Two operands>

X0 D)
H—{ ADD ‘ D10 ‘ D12 ‘

(D10)+ (D12) — (D10)
Two source data do binary addition and send the result to addend data address. Each data’s
highest bit is the sign bit, 0 stands for positive, 1 stands for negative. All calculations are
algebraic processed. (5+ (-8) =-3)
If the result of a calculation is “0”, the “0” flag acts. If the result exceeds 323767 (16 bits
limit) or 2147483647 (32 bits limit), the carry flag acts. (refer to the next page). If the result

117

exceeds —323768 (16 bits limit) or —2147483648 (32 bits limit), the borrow flag acts (refer
to the next page).

When doing 32 bits operation, word device’s low 16 bits are assigned; the device close to the
preceding device’s is the high bits. To avoid ID repetition, we recommend you assign
device’s ID to be even number.

In the above example, when X0 is ON, the instruction will be executed in every scanning
period. The rising or falling pulse edge is recommended to activate the instruction.

i & @

—m—{ ADD ‘ D10 ‘ D12 ‘ D10 ‘
B &

— 5 Ao | b [b1z |

The two instructions are the same.

Related flag
Flag meaning
Flag Name Function
SMO020 Zero ON: the calculate result is zero

OFF: the calculate result is not zero

ON: the calculate result is over -32768(16 bit) or -
2147483648(32bit)

OFF: the calculate result is less than -32768(16 bit) or -
2147483648(32bit)

SM021 Borrow

ON: the calculate result is over 32768(16 bit) or 2147483648(32bit)
SM022 Carry OFF: the calculate result is less than 32768(16 bit) or
2147483648(32bit)

4-6-2. Subtraction [SUB]

1. Summary
Two numbers do subtraction, store the result

Subtraction [SUB]

16 bits SUB 32 bits DSUB

Execution Normally ON/OFF/rising | Suitable XD, XL

condition or falling pulse edge Maodels

Hardware - Software -

reguirement reguirement

Operands
Operands | Function | Data Type
Three operands
S1 The sub operation data address 16 bits /32 bits,BIN
S2 The sub operation data address 16 bits /32 bits,BIN
D The result address 16 bits /32 bits,BIN

118

Two operands

D Be subtracted data and result address 16 bits /32 bits,BIN

S1 Subtract data address 16 bits /32 bits,BIN

Suitable soft component

Operand System Constant | Module
Word D*|FD|TD*|CD*|DX|DY|DM*|DS* KH ID|QD

Three operands

S1 ° ° ° ° ° ° ° ° °

S2 ° ° ° ° ° ° ° ° °

D ° ° ° ° ° °

Two operands

D °

S1 [] [] Y

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

<Three operands>

. & @
P% sus | p10 | D12 | D4 | (D10)— (D12) - (D14)

(s1) appoint the soft unit’s content, subtract the soft unit’s content appointed by (523 in the
format of algebra. The result will be stored in the soft unit appointed by (D) (5-(-8)=13).
The action of each flag, the setting method of 32 bits operation’s soft units are both the same
with the preceding ADD instruction.

The importance is: in the preceding program, if X0 is ON, SUB operation will be executed
every scan cycle.
Refer to chapter 4-6-1 for flag action and functions.

<Two operands>

) ®
Pm—{ suB ‘DlO ‘ DlZ‘

(D10) — (D12) — (D10)

(s13 appoint the soft unit’s content, subtract the soft unit’s content appointed by (s2)in the
format of algebra. The result will be stored in the soft unit appointed by (5-(-8)=13)
The action of each flag, the setting method of 32 bits operation’s soft units are both the same
with the preceding ADD instruction.

The importance is: in the preceding program, if X0 is ON, SUB operation will be executed
every scan cycle. Rising or falling pulse edge is recommended to activate the instruction.
Refer to chapter 4-6-1 for flag action and functions.

119

The relationship of the flag’s action and vale’s positive/negative is shown below:

Zero flag Tero flag EEI;_%’&E
2. -1 32, TR J‘i‘-ﬁ-‘hl_:lw -}1 32, TEr. 0010 2
» m\h—&/}—} a
Borrow flag Data’ = jf ﬂkkh Tata' = Carry flag
highest \ / highest
bit iz 1 bit is 0O
Tero flag Zero flag

-2, -1, 0, -3, 147, 453, adR ,;_‘/F Diﬂﬁii\—, 2, 147, 43, 67, 0.1, 2
L LN

AR

Borrow flag Carry flag

4-6-3. Multiplication [MUL)]

1. Summary
Multiply two numbers, store the result

Multiplication [MUL]

16 bits MUL 32 hits DMUL

Execution Normally ON/OFF / pulse Suitable XD, XL

condition edge Models

Hardware - Software -

requirement requirement

2. Operands
Operands | Function Data Type
S1 The multiplication operation data address 16 bits/32bits,BIN
S2 The multiplication operation data address 16 bits/32bits,BIN
D The result address 16 bits/32bits,BIN

3. Suitable soft component

Word Operand System Constant [Module
D* FD TD* CD* DX | DY DM* DS* KH ID| QD
S1 ° ° ° ° ° ° ° ° °
S2 ° ° ° ° ° ° ° °
D ° ° ° ° . .

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

120

<16 bits Operation>

CONNCD
%0 BIN BIN BIN
P}—{ MUL ‘ DO ‘ D2 ‘ D4 ‘ (D0) x (D2) — (D5, D4)

16 bits 16 bits — 32 bits

The contents of the two source devices are multiplied together and the result is stored at the
destination device in the format of 32 bits. As the above chart: when (D0)=8, (D2)=9, (D5,
D4) =72.

The result’s highest bit is the symbol bit: positive (0), negative (1).

In the above example, when X0 is ON, the instruction will be executed in every scanning
period.

<32 bits Operation >

w1 (s1) (s2) BIN BIN BIN
% DMUL‘ DO ‘ D2 ‘ D4 ‘ (D1, DO) x (D3, D2) — (D7, D6, D5, D4)

32 bits 32 bits — 64 bits

When use 32 bits operation, the result is stored at the
bits.

Even use word device, 64 bits results can’t be monitored.
Please change to floating value operation for this case.

4-6-4. Division [DIV]

1. Summary

Divide two numbers and store the result

Division [DI

16 bits DIV 32 bits DDIV

Execution Normally ON/OFF, Suitable XD, XL

condition rising/falling edge Models

Hardware - Software -

requirement requirement

2. Operands
Operands | Function Data Type
S1 The divide operation data address 16 bits / 32 bits, BIN
S2 The divide operation data address 16 bits /32 bits, BIN
D The result address 16 bits /32 bits, BIN

121

3. Suitable soft components

Operand System Constant | Module
Word D|FD|TD'|CD | DX|DY|DM | DS | KH ID| QD

S1 o (o ° ° ° °

S2 ° ° ° ° ° ° ° ° °

D ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

<16 bits operation >

e

CORNNCORNCD

| o4+ |

Dividend Divisor Result Remainder

BIN BIN BIN BIN
(Do) = (D2) — (D4) --- (D5)
16 bits 16 bits 16 bits 16 bits

(s1) appoints the dividend soft component, (523 appoints the divisor soft component,
and the next address appoint the soft component of the result and the remainder.
In the above example, if input X0 is ON, devision operation is executed every scan cycle.

<32 bits operation >

HM T T 2

Dividend Divisor Result Remainder
BIN BIN BIN BIN
(D1, D0) =+ (D3,D2) (D5, D4)--- (D7, D6)

32 bits 32 bits 32 bits 32 bits

The dividend is composed by the device appointed by @ and the next one. The divisor is
composed by the device appointed by (525 and the next one. The result and the remainder are
stored in the four sequential devices, the first one is appointed by

If the value of the divisor is 0, the instruction will be error.

The highest bit of the result and remainder is the symbol bit (positive:0, negative: 1). When
any of the dividend or the divisor is negative, then the result will be negative. When the
dividend is negative, then the remainder will be negative.

122

4-6-5. Increment [INC] & Decrement [DEC]

1. Summary
Increase or decrease the number

Increase one [INC]

16 bits INC 32 bits DINC
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
Decrease one [DEC]
16 bits DEC 32 bits DDEC
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
D The increase or decrease data address 16 bits / 32bits,BIN

3. Suitable soft components

Word Operand System Constant | Module
D'|FD| T |[CD|DX|DY|DM|DS| KH ID| QD
D ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

< Increment [INC]>

HXTOH{ INC ‘ DO ‘ (D0) +1—(D0)

will increase one when X0 is ON.
For 16 bits operation, when +32767 increase one, it will become -32768; for 32 bits
operation, +2147483647 increases one is -2147483647. The flag bit will act.

<Decrement [DEC]>

"1
Pﬂ—{ DEC ‘ DO ‘ (D0) —1 — (DO)

will decrease one when X1 is ON.

123

-32767 or -2147483647 decrease one, the result will be +32767 or +2147483647. The flag bit

will act.

4-6-6. Mean [MEAN]

1. Summary

Get the mean value of data

Mean [MEAN]

16 bits MEAN 32 bits DMEAN
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S The source data start address 16 bits, BIN
D The mean result address 16 bits, BIN
n The data quantity 16 bits, BIN
3. Suitable soft components
Word Operand System Constant | Module
D | I | TD* | cD* | DX | DY | DM™ | DS™ | KH D[QD
S ° ° ° ° ° ° °
D ° ° ° ° ° °
n [

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

EDNNCORNN.

D0‘D10‘K3‘

X0
}—{ MEAN ‘

(DO) +

(D1) + (D2)
3

——» (D10)
Store the mean value of source data (source sum divide by source quantity n). give the

remainder .
The n cannot larger than soft component quantity, otherwise there will be error.

124

4-6-7. Logic AND [WAND], Logic OR[WOR], Logic Exclusive OR [WXOR]

1. Summary

Do logic AND, OR, XOR for data

Logic AND [WAND]

16 bits WAND 32 bits DWAND

Execution Normally ON/OFF, Suitable XD, XL

condition rising/falling edge Models

Hardware - Software -

requirement requirement

Logic OR[WOR]

16 bits WOR 32 bits DWOR

Execution Normally ON/OFF, Suitable XD, XL

condition rising/falling edge Models

Hardware - Software -

requirement requirement

Logic Exclusive OR [WXOR]

16 bits WXOR 32 bits DWXOR

Execution Normally ON/OFF, Suitable XD, XL

condition rising/falling edge Models

Hardware - Software -

reguirement reguirement

2. Operands
Operands | Function Data Type
S1 The operation data address 16bit/32bit,BIN
S2 The operation data address 16bit/32bit,BIN
D The result address 16bit/32bit,BIN

3. Suitable soft components

Operand System Constant | Module
Word D|FD|TD'|CD | DX|DY|DM | DS | KH ID| QD

S1 o | o ° ° ° ° . ° .

S2 ° ° ° ° °

D ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description
< Logic AND >
o G (2 0&0=0 0&1=0
P% WAND | D10 | D12 | D14 | 1g0=0 1&1=1

125

< Logic OR >

(19 (s2) 00r0=0 0or1=1

\ D10 \ D12 \ D14 \ l1or0=1 lorl=1

HH o

< Logic WXOR >

HH won

If use this instruction along with CML instruction, XOR NOT

executed.

X0
WXOR ‘
CML ‘

Example 1:

CONNCORNCD

‘ D10 ‘ D12 ‘ D14 ‘ 0 xor 0=0 0 xor 1=1

1 xor 0=1 1 xor 1=0

CORNCPINCD

D10 ‘ D12 ‘ D14 ‘

D14 ‘ D14 ‘

The 16 bits data is composed by X0~X7, and store in DO.

MO

MO

Example 2:

——ft————— mov

DXO0

DO‘

Transform the state of X0, X1, X2, X3 to 8421 code and store in DO.

Hﬂ—{ WAND DX0 HOF DO ‘

Combine the low 8 bits of DO and D2 to a word.

Hi

LDP X0
WAND DO
WAND D2
SWAP D12
WOR D10

HFF
HFF

D12

WAND DO HFF D10 |

WAND D2 HFF D12 |

SWAP D12 -

S I

WOR D10 D12 D20 |

D10
D12

D20

/IX0 rising edge

//Logic and, take the low 8 bits of DO and save in D10

/I Logic and, take the low 8 bits of D2 and save in D12
/Iswap the low 8 bits and high 8 bits of D12

/lcombine the low 8 bits of D10 and high 8 bits of D12,
and save in D20

4-6-8. Logic converse [CML]

1. Summary
Logic converse the data

Converse [CML]

16 bits CML 32 bits DCML

Execution Normally ON/OFF, Suitable XD, XL

condition rising/falling edge Models

Hardware - Software -

requirement requirement

2. Operands
Operands | Function Data Type
S Source data address 16 bits/32 bits, BIN
D Result address 16 bits/32 bits, BIN

3. Suitable soft components

Word Operand System Constant | Module
| FD| TD°| CD° | DX | DY | DM" | DS" | KH ID| QD
S ° ° ° ° ° ° ° ° °
D ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

MO)
Pr% cML | po | Dvo |

DO‘O‘l‘0‘1‘0‘1‘0‘1‘0‘1‘0‘1‘0‘1‘0‘1‘
Sign (0=positive,
bit I=negative)

HOBEBOE

o[1]o[s]o]r]ofs]o]

Y17 Y7 Y6 Y5 Y4

Each data bit in the source device is reversed (1—0, 0—1) and sent to the destination device.
If use constant K in the source device, it can be auto convert to be binary.
This instruction is fit for PLC logical converse output.

< Read the converse input >

127

o
X1
D
The sequential control

X2 . . .
@ @@ooo v ‘ - ‘ v ‘ instruction in the left could be

denoted by the following

X3 . .
L L) CML instruction.
5

X17 @

4-6-9. Negative [NEG]

1. Summary
Get the negative data

Negative [NEG]
16 bits NEG 32 bits DNEG
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
D The source data address 16 bits/ 32 bits, BIN

3. Suitable soft components

Word Operand System Constant | Module
D|M|TD|CO|DX| DY | DV | DS [KH ID | QD
D ° . . ° ° [

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

MO
PT% NEG ‘ D10 ‘ (D10) +1 —» (D10)

Converse each bit of source data (1—0, 0—1), then plus one and store the result in the source
data address.

For example, the source data D10 is 20, when MO rising edge is coming, D10 become -20.
The following two instructions are the same.

128

MO

NEG D10

f

MO

f

SUB KO D10 D10

4-7. Shift Instructions

Mnemonic | Function Chapter
SHL Arithmetic shift left 4-7-1
SHR Arithmetic shift right 4-7-1
LSL Logic shift left 4-7-2
LSR Logic shift right 4-7-2
ROL Rotation left 4-7-3
ROR Rotation right 4-7-3
SFTL Bit shift left 4-7-4
SFTR Bit shift right 4-7-5
WSFL Word shift left 4-7-6
WSFR Word shift right 4-7-7
4-7-1. Arithmetic shift left [SHL], Arithmetic shift right [SHR]
1. Summary

Do arithmetic shift left/right for the numbers

Arithmetic shift left [SHL]

16 bits SHL 32 bits DSHL
Execution Normally ON/OFF, Suitable Models | XD, XL
condition rising/falling edge
Hardware - Software -
requirement requirement
Arithmetic shift right [SHR]
16 bits SHR 32 hits DSHR
Execution Normally ON/OFF, Suitable Models | XD, XL
condition rising/falling edge
Hardware - Software -
reguirement reguirement
2. Operands
Operands | Function Data Type
D The source data address 16bit/32bit,BIN
n Shift left or right times 16bit/32bit,BIN

129

3. Suitable soft components

Word Operand System Constant | Module
D|FD|TD'|CD | DX|DY|DM | DS | KH ID| QD
[] [] [] [] [] []
n °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

After executing SHL once, the lowest bit is filled with 0, the last bit is stored in carry flag.
After executing SHR once, the highest bit is the same; the last bit is stored in carry flag.

< Arithmetic shift left >

Vo n
}—mi SHL DO K4
Highest I\/II;J;t/e Lowest
bit P — bit
— 4l 1[a[1] a[1] 1] 1[o[of o[o] o] 0] 0] 0
i Bitn
L—» SM22 i
SRR — @ Execute once
Highest Lowest
bit bit
"a[1[1] 1] o[o[o of o[o o[o] o] o] 0] 0]

- 1 SM22

< Arithmetic shift right >

130

M1 n
}—mi SHR DO K4

Move
right

Lowest
bit bit

(af 1l af af 2] 1[1] 1] o[o] o] o] 0] 0] o 0}T
¥ %

Bitn i J
| SM22
|
Execute

Highest once Lowest

Highest

bit bit
L[1l af o[[af o[1] a[[1 2] o[o] 0] 0]

4-7-2. Logic shift left [LSL], Logic shift right [LSR]

1. Summary
Do logic shift right/left for the data

Logic shift left [LSL]

16 bits LSL 32 bits DLSL

Execution Normally ON/OFF, Suitable XD, XL

condition rising/falling edge Models

Hardware - Software -

requirement requirement

Logic shift right [LSR]

16 bits LSR 32 hits DLSR

Execution Normally ON/OFF, Suitable XD, XL

condition rising/falling edge Models

Hardware - Software -

requirement requirement

2. Operands
Operands | Function Data Type
D Source data address 16 bits/32 bits, BIN
n Arithmetic shift left/right times 16 bits/32bits, BIN

3. Suitable soft components

Word Operand System Constant | Module
D|P|TD|CD|DX|DY| DM | DS | KH ID| QD
[] [] [] [) [] [)
n °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

131

Description

After executing LSL once, the lowest bit is filled with O; the last bit is stored in carry flag.
LSL meaning and operation are the same to SHL.
After executing LSR once, the highest bit is filled with O; the last bit is stored in carry flag.
LSR and SHR are different, LSR add 0 in the highest bit when moving, SHR all bits are

moved.

< Logic shift left >

MO 4
A LsL | DO K4
Highest Lowest
git Move left bit
—ta[1]1]1]1[1][1][1]ofololol0f0l0]0]
N bits
L > SM22
After
Highest executing | owest
bit once it
'1[1[1]1]olololofofo[ofololol0]0]

-1 SM22

< Logic shift right >

.

Y
\;E// n

LSR DO K4

Highest . Lowest
bit Move right bit
‘1laf1][1]1]a][1]1]of0l0l0l0[0l0]0}—

N bits
SM22 =
@ After

Highest executing Lowest

bit once bit

‘olofololaf[1][1]a]a[1][1][1]0[0]0]0]

SM22 0 |=

4-7-3. Rotation shift left [ROL], Rotation shift right [ROR]

1. Summary
Cycle shift left or right

Rotation shift left [ROL]

16 bits ROL 32 hits DROL

Execution rising/falling edge Suitable XD, XL

condition Models

Hardware - Software -

requirement requirement

Rotation shift right [ROR]

16 bits ROR 32 hits DROR

Execution rising/falling edge Suitable XD, XL

condition Models

Hardware - Software -

requirement requirement

2. Operands
Operands | Function Data Type
D Source data address 16 bits/32 bits, BIN
n Shift right or left times 16 bits/32 bits, BIN

132

3. Suitable soft components

Operand System Constant | Module
Word D'|FD|TD"| CD'| DX | DY | DM | DS' | KH ID| QD
° ° ° [] [] []
n °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

When X0 changes from OFF to ON, the value will be cycle moved left or right, the last bit is
stored in carry flag.

< Cycle shift left >

TN

X0 E\E/\" n
}—{ﬂi ROL DO K4
Highest Lowest

bit Cycle move left bit
—1]1[1]1][1]171[1]0lol0]0]0l0]0]0]
% ;
N bits
L»| SM22
@ After
fighest executing Lowest
bit once bit
1]/1]1][1]ofofolofolo0fol0f1]1]1]1]

- 1 SM22

< Cycle shift right >

133

a0
. n

X0
A—— ROR DO K4

Highest Lowest
bit Cycle move right bit
(1[1]1[1]1/1]1]1][ololof0l0l0]0l0}
4 pd
N bits
SM22 =
@ After
Highest executing Lowest
bit once bit
Lolofolo[1f[1]1]a][1[1][1]2]0[0]0]0]
SM22 0 -
4-7-4. Bit shift left [SFTL]
1. Summary
Bit shift left
Bit shift left [SFTL]
16 bits SFTL 32 bits DSFTL
Execution rising/falling edge Suitable XD, XL
condition Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Types
S Source soft element head address bit
D Target soft element head address bit
nl Source data guantity 16 bits /32 bits, BIN
n2 Shift left times 16 bits/32 bits, BIN
3. Suitable soft components
Operand System Constant | Module
Word D|m|mm|co|[bpx|by|bv]| DS | KH D[QD
nl ° ° ° ° ° . ° .
n2 ° ° ° ° ° ° ° °
Bit Operand System
X{Y[m[s]|T[C]| Dum
S o | o | e o | o | e
D o | e o | o (e

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

134

M includes M, HM, SM; S includes S, HS; T includes T, HT; C includes C, HC.

Description

Move n2 bits left for the object which contains n1 bits.
When X0 changes from OFF to ON, the instruction will move n2 bits for the object.
For example, if n2 is 1, the object will move 1 bit left when the instruction executes once.

M15~M12—Overflow
M11~M 8—>M15~M 12

S I nl il
| M 7~M 4—M11~M8
F =

— SFTL MD | Ki6 | K4 M 3M 0 MI-Md

X 3~X 0—M3~MO0

|:-:3|:-:2|1-:1|:-m

nZ bitz shift left
-_-— @
¥ ¥ ¥ ¥
EEHE S I N I I I A S EA N ED
[S L S
@ @)

4-7-5. Bit shift right [SFTR]

1. Summary
Bit shift right
Bit shift right [SFTR]
16 bits SFTR 32 hits DSFTR
Execution rising/falling edge Suitable XD, XL
condition Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Source soft element head address bit
D Target soft element head address bit
nl Source data guantity 16 bits/32 bits, BIN
n2 Shift right times 16 bits/32 bits, BIN

135

3. Suitable soft components

Operand System Constant | Module
Word D'|FD|TD"| CD'| DX | DY | DM | DS' | KH ID| QD
nl ° . . ° °
n2 ° ° ° ° ° . ° .
Operand System
M|S|[T|C | Dnm
Bit S o (oo 0|0 | e
D o (e o | o (e

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.
M includes M, HM, SM; Sincludes S, HS; T includes T, HT; C includes C, HC.

Description

Move n2 bits right for the object which contains nl bits.
When X0 changes from OFF to ON, the instruction will move n2 bits for the object.
For example, if n2 is 1, the object will move 1 bit right when the instruction executes once.

M 3~M 0—Overflow
M 7~M 4—-M3~M0
M11~M §—M7~M4
M15~M12—-M11~M8
X 3~X 0—-M15~M12

— SFTRE Eld k4

Fm O @® = =
0 | Wi

|1-a3 |:-:2 |1-:1 |1-:n |
nZ bits shift right
@(

—

|I1':;5|I1'[14|I\'[13 |I1';;2|I\'[11|I1'[1I:I| I |I-.te |1-.1:? |I'|'[|5 |I-.15 |M4 |M3|m |1-.{1 |I-.m|

e A R A
@ @

4-7-6. Word shift left [WSFL]

1. Summary
Word shift left

Word shift left [[WSFL]

16 bits WSFL 32 bits -
Execution rising/falling edge Suitable XD, XL
condition Models

Hardware - Software -
requirement requirement

136

2. Operands

Operands | Function Data Type
S Source soft element head address 16 bits, BIN
D Target soft element head address 16 bits, BIN
nl Source data guantity 16 bits, BIN
n2 Word shift left times 16 bits, BIN
3. Suitable soft components

Operand System Constant | Module
Word D|m|m™|co|Dbx|Dby|bw|Ds | KH D | QD

S o | o ° ° ° ° ° °

D ° ° ° ° ° °

nl ° ° ° ° ° ° °

n2 ° ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

Move n2 words left for the object which contains n1 words.
When X0 changes from OFF to ON, the instruction will move n2 words for the object.

D25~D22—0Overflow
D21~D18—D25~D22
D17~D14—D21~D18
D13~D10—D17~D14
D 3~D 0—D13~D10

- @ nl n2
}4}—{ WSFL‘ DO ‘DIO ‘ K16 ‘ K4 ‘

[D3 [D2 [D1 [Do |

n2 words
left shift ®
——— h 4 h J h 4 h J
|D25 |D24 |D23 |D22 |D21 |Dzn |D19 |D18 |D1? |D16 |D15 |D14 |D13 |D12 |D11 |DID |
o P e e~
@ @ @ @
4-7-7. Word shift right [WSFR]
1. Summary
Word shift right
Word shift right [WSFR]
16 bits WSFR 32 bits -
Execution rising/falling edge Suitable XD, XL
condition Models
Hardware - Software -
reguirement reguirement

2. Operands

137

Operands | Function Data Type

S Source soft element head address 16 bits, BIN
D Target soft element head address 16 bits, BIN
nl Source data guantity 16 bits, BIN
n2 Shift right times 16 bits, BIN

3. Suitable soft components

Word Operand System Constant | Module
D|FD|TD'|CD| DX | DY | DM | DS | KH ID | QD
S o | o ° ° ° ° ° °
D ° ° ° ° ° °
nl ° ° ° ° ° ° °
n2 ° ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

Move n2 words right for the object which contains n1 words.
When X0 changes from OFF to ON, the instruction will move n2 words for the object.

3 D nl n2
X0 O Q D13~D10—Overflow
»—{WSFR‘DO ‘DlO‘KIﬁ‘KﬁI ‘
D17~-D14—D13~D10
D21~D18—D17~D14
D3 [D2 D1 [D0 | o ooias right D25~D22—D21~D18
® shift D 3~D 0—D25~D22

| h 4 ¥ ¥

[D2s D24 [D23 [D2z [pat [D20 [D19 [Dig [D17 [D16 [D1s [D14 [D13 [Diz [DLt D10]

R R S A
@ @ @ @

4-8. Data Convert

Mnemonic | Function Chapter
WTD Single word integer converts to
- 4-8-1
double word integer
FLT 16 bits integer converts to float
) 4-8-2
point
DFLT 32 bits integer converts to float 4-8-2
point
FLTD 64 bits integer converts to float 4-8-2
point
INT Float point converts to integer 4-8-3

138

BIN BCD convert to binary 4-8-4
BCD Binary converts to BCD 4-8-5
ASCI Hex. converts to ASCI|I 4-8-6
HEX ASCII converts to Hex. 4-8-7
DECO Coding 4-8-8
ENCO High bit coding 4-8-9
ENCOL Low bit coding 4-8-10
GRY Binary converts to gray code 4-8-11
GBIN Gray code converts to binary 4-8-12

4-8-1. Single word integer converts to double word integer [WTD]

1. Summary
Single word integer converts to double word integer [WTD]
16 bits WTD 32 hits -
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Source soft element address 16 bits, BIN
D Target soft element address 32 bits, BIN
3. Suitable soft components
Operand System Constant | Module
Word D|FD|TD|CD|[DX|DY|DM|DsV|KH D[QD
S ° ° ° ° ° ° ° °
D ° ° ° ° ° .

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description
X0 @
— WTD ‘ DO ‘ D10 ‘ (|_30)—>(D11, D10)
Single Word Double Word
Oorl
J/ /
D11 D10

High bits’ Low bits

139

When single word DO is positive integer, after executing this instruction, the high bit of

double word D10 is 0.

When single word DO is negative integer, after executing this instruction, the high bit of

double word D10 is 1.
the high bit 0 and 1 is binary value.

4-8-2. 16 bits integer converts to float point [FLT]

1. Summary

16 bits integer converts to float point [FLT]

16 bits FLT | 32 bits DFLT 64 bits | FLTD
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Source soft element address 16 bits/32 bits/64 bits,BIN
D Target soft element address 32 bits/64 bits,BIN

3. Suitable soft components

Word Operand System Constant | Module
D|FD|ED|[TD'|CD'| DX| DY | DM | DS [KH ID | QD
S o [o °
D o

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;

DM includes DM, DHM; DS includes DS, DHS.

Description

<16 bits>

%0 @ (D10) — (D13,D12)
P FLT ‘ D10 ‘ D12 ‘ BIN integer Binary float point

<32 hits >

X0 @ (D11,D10) — (D13,D12)
DFLT ‘ b10 ‘ b1z ‘ BIN integer Binary float point

140

<64 bits>
X0 @ (D13,D12,D11,D10) — (D15,D14)
}—{ FLTD ‘ D10 ‘ D14 ‘ BIN integer Binary float point

Convert BIN integer to binary floating point. As the constant K, H will auto convert by the
floating operation instruction, so this FLT instruction can’t be used.

The inverse transformation instruction is INT.

FLTD can change the 64 bits integer to 32 bits floating value.

X0
i FLT DO D10

DO is integer 20, after executing the instruction, D10 is floating value 20.

Note: Before using floating number operation instructions such as EADD, ESUB, EMUL,
EDIV, EMOV and ECMP, make sure that all operation parameters are floating number.

4-8-3. Float point converts to integer [INT]

1. Summary
Floating point converts to integer [INT]
16 bits INT 32 bits DINT
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Source soft element address 16 bits/32 bits, BIN
D Target soft element address 16 bits/32 bits, BIN
3. Suitable soft components
Operand System Constant | Module
Word D|m|T|c>|[Dbx|Dy| DM]| DS | KH ID [QD
S o | o
D °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS; the word combined by bits.

141

Description

<16 bits>
X0 @
%H—{ INT ‘ D10 ‘ D20 ‘
<32 bits>
(s)
DINT ‘ D10 ‘ D20 ‘

-

(D11,D10) — (D20)
Binary Float BIN integer

Give up the data after the decimal dot

(D11,D10) — (D20,D21)
Binary Float BIN integer

Give up the data after the decimal dot

The binary source number is converted into a BIN integer and stored at the destination device.

Abandon the value behind the decimal point.

The inverse instruction is FLT.

When the resul

When converting, less than 1 and abandon it, zero flag is ON.

tis 0, the flag bit is ON.

The result is over below data, the carry flag is ON.
16 bits operation: -32,768~32,767
32 bits operation: -2,147,483,648~2,147,483,647

‘xo

INT DO D10

| f

|

For example, if DO is floating value 130.2, after executing INT, D10 value is integer 130.

4-8-4. BCD convert to binary [BIN]
1. Summary
BCD convert to binary [BIN]
16 bits BIN 32 bits -
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Source soft element address BCD
D Target soft element address 16 bits/32 bits, BIN

142

3. Suitable soft components

Word Operand System Constant | Module
D|FD|TD|(CD|DX|[DY| DM | DS | KH ID| QD

S o [o ° ° ° ° ° °

D ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

Source (BCD) — destination (BIN)

X0 @
P}—{ BIN ‘ D10 ‘ DO ‘

If source data is not BCD code, SM409 will be ON (Operation error), SD409=4 (error

occurs).

As constant K automatically converts to binary, so it’s not suitable for this instruction.

For example: all the information stored in the clock information register SD13~SD19 of PLC
is BCD code, but we are used to using decimal value. The time information can be converted
from BCD code information to binary:

143

SI\|/IO

| BIN SD13 DO —
Normally on
coil SD13: second 0~59
— BIN SD14 D1 —

SD14: minute 0~59

— BIN SD15 D2
SD15: hour 0~23

— BIN SD16 D3
SD16: day 1~31

— BIN SD17 D4

SD17: month 1~12

— BIN SD18 D5
SD18: year 00~99

— BIN SD19 D6 [
SD19: week Sunday~6

4-8-5. Binary convert to BCD [BCD]

1. Summary
Convert binary data to BCD code

Binary convert to BCD [BCD]

16 bits BCD 32 bits -

Execution Normally ON/OFF, Suitable XD, XL

condition rising/falling edge Models

Hardware - Software -

requirement requirement

2. Operands
Operands | Function Data Type
S Source soft element address 16 bits, BIN
D Target soft element address BCD code

3. Suitable soft components

Word Operand System Constant | Module
or D[]][CD|DX|DY]|DM]DS | KH D | QD
S o | o ° ° ° ° ° °
D ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

144

Description

source (BIN)—destination (BCD)

X0 &
P% BCD ‘DlO ‘ DO ‘

This instruction can change the binary value to BCD code.

4-8-6. Hex converts to ASCII [ASCI]

1. Summary
Hex. convert to ASCII [ASCI]
16 bits ASCI 32 bits -
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Source soft element address 2 bits, HEX
D Target soft element address ASCII code
n Transform character quantity 16 bits, BIN
3. Suitable soft components
Word Operand System Constant | Module
D[F| | cD|DX|DY|DM|DS | KH ID| QD
S ° ° ° ° ° °
D ° ° ° ° ° °
n [] L) L) [] []

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

(s n
X0
- ASCI ‘DlOO ‘ DZOO‘ K4 ‘

Transform the source Hex data to ASCII code, and store in (D -), The transformation chacters
aren.
Will store one ASCII code.

145

The convert process is this

Assign start device:

[0]=30H [1]=31H
(D100)=0ABCH [5]=35H [A]=41H
[7]1=37H [C]=43H
[4]=34H [8]=38H
D Kl |K2 | K3 |K4 | K5 | K6 | K7 | K8 | K9
D200 down | [C] | [B] [[A] | [O] |[[4] [[3]1 [[2] |[1] |I[8]
D200 up [CI|[B] |[A][IO] [[4] |31 |[2] |[1]
D201 down [C]1B]|[ATl[0] |1[4]1 |31 |I2]
D201 up [C] | [B] | [A] |[O] |[4] |I3]
D202 down [C]1[B] |[A]]|I[O] |[4]
D202 up [C] |[B] |[A] | I[0]
D203 down [C] | [B] | [A]
D203 up [C] | [B]
D204 down [C]
4-8-7. ASCII convert to Hex.[HEX]
1. Summary
ASCII converts to Hex. [HEX]
16 bits HEX 32 hits -
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Function Date type
Operands
S Source soft element address ASCII
D Target soft element address 2 bits, HEX
n ASCII Character guantity 16 bits, BIN
3. Suitable soft components
Operand System Constant | Module
Word D|m|m™|co|DbXx|Dy|Dbw|DS|KH ID
S ° ° ° ° ° ° °
D ° ° ° ° ° °
n [

146

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;

DM includes DM, DHM; DS includes DS, DHS.

Description

3 ONCEE.

—H—{ HEX ‘ D200 ‘ D100 ‘ K4 ‘

Convert the high 8 bits and low 8 bits in source (s-) to HEX data. Move 4 bits every time
to destination . The convert character number is assigned by n.

The convert process is the following:

(SH ASCII HEX
Code Sl n D102 | D101 D100
D200 down 30H 0 1 --OH
D200 up 41H A 2 -0AH
D201 down | 42H B 3 Not change to be — B
D201 up 43H C 4 0 0ABC
D202 down 31H 1 H
D202 up 32H 2 5 --9H ABC1
D203 down 33H 3 H
D203 up 34H 4 6 -0AH | BC12H
D204 down 35H 5 7 OABH | C123H
8 0ABC | 1234H
H
9 --0H | ABC1H | 2345H
n=k4
D200[of[1JoJoJoJoJoJ1JoJo[1J1JoJoJo]Jo]
| 41H? [A] | 30H? [0] |
p201{of1]ofoJoJoft1J1]ofr1JoJr]ofof1]o]
| 43H? [C] | 42H7? [B] |
Dioo[oJoJoJoJ1JoJ1JoJ1JoJ1J1[1J1Jo]Jo]
| 0 A | B | ¢ |
4-8-8. Coding [DECO]
Summary
Change any data or bit to 1.
Coding [DECO
16 bits DECO 32 bits -
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement

147

2. Operands

Operands | Function Data Type

S The source data address 16 bits, BIN
D The decode result head address 16 bits, BIN
n The decoding soft element bit quantity 16 bits, BIN

3. Suitable soft components

Operand System Constant | Module
Word D|m|m™|co|bx|by|bw|Ds | KH D | QD
S o | o ° ° ° ° ° °
n °
Bit Operand System
X|{Y|M[S|T|C]|Dwm
D oo | e o (o | @

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.
M includes M, HM, SM; Sincludes S, HS; T includes T and HT; C includes C and HC.

Description

< When is bit unit > n<16

10 (s n
P% DECO ‘ DX0 ‘ M10 ‘ K3 ‘

X1

X2 X0
[[0 [1]
//4 : 1\
7654/3210
(o[o[s [o[oo [o[o]

M17 M16 M15 M14 M13 M12 M1l MI10

N = 3, so the decoding object is the lower three bits in DXO0, which are X2 ~ X0.

N = 3, so the decoding results need to be expressed by 22 = 8 bits, which are M17 ~ M10.
When X2 =1, X1 =0, X0 =1, the value it represents is 4 + 1 = 5, so M15 in the fifth place
from M10 changes to 1; when X2 ~ X0 is all zero, the value is 0, so M10 is 1 (M10 is the Oth
place).

If n =0, the instruction will not be executed. If n is the value out of 0 ~ 16, the instruction
will not be executed.

When n = 16, if the decoding command is a bit soft component, the number of points is
2" 16 = 65536.

When the driver input is OFF, the instruction is not executed, and the decoding output of the
action is maintained.

148

< When is word device > n<4

(s) (o) n
X0
P%{ DECO \ DO \ D1 \ K3 \

DO

bitl5 bito
[oJoJoJoJoJoJoJoJoJoJoJoJo[1]1]0]
Ignore high 8-bit, all to 4 2 1

Abe 0
15 14 13 12 11 10 9 8 7 65 4 3 2 1
[o]ofofoJofofofofoft]ofofofofofo]
bit15 D1 bit0

The low n-bit (n < 4) of the source address is decoded to the target address. When n < 3, the
high 8-bit of the target turns to 0.

If n =0, the instruction will not be executed. If n is out of 0 ~ 4, the instruction will not be
executed.

N = 3, so the decoding object in DO is bit2-bit0, and the maximum value it represents is 4 + 2
+1=7.

N = 3, so in D1, 2% = 8 bits are needed to represent the decoding result, that is, bit7 ~ bit0.
When bit2 and bit1 are both 1 and bitO are 0, the value is 4+2=6, so bit6 in D1 is ON.

< is word soft component > n<<4

0 G () o
P}—{DECODOD1K4

bit15 o bit0

(ofofofofofofofojojojojofufofif1]
8 4 2 1
%/—/

15 14 13 12 11m 1 0

(ofojofofsfofofofofofofofofofo]o]
bit15 D1 bit0

The low n-bit (n <4) of the source address is decoded to the target address. When n << 3, the
high 8-bit of the target turns to 0.

If n =0, the instruction will not be executed. If n is out of 0 ~ 4, the instruction will not be
executed.

N = 4, so the object of decoding in DO is bit3 ~ bit0, which represents the maximum value of
8+4+2+1=15.

N =4, so in D1, 2* = 16 bits are needed to represent the decoding result, that is, bit15 ~ bitO.
When bit3, bitl and bit0 are all 1 and bit2 is 0, the numerical value is 8+2+1=11, so bitll in
D1 is ON.

149

4-8-9. High bit coding [ENCO]
1. Summary
Find the highest bit which is 1.

High bit coding [ENCO]

16 bits ENCO 32 hits -
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Coding data address 16 bits, BIN
D Coding result address 16 bits, BIN
n The bit quantity of coding result 16 bits, BIN
3. Suitable soft components
Operand System Constant | Module
Word D [|™ |c> |[DX | DY |Dw DS | KH ID | QD
S ° ° ° ° ° °
D ° ° ° ° ° °
n °
Bit Operand System
X |y [mM]|s |T [C [Dum
S ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.
M includes M, HM, SM; Sincludes S, HS; T includes T and HT; C includes C and HC.

Description
<When (s-) is bit device > n<16
G n
X0
PH—{ ENCO ‘ M10 ‘ D10 K3 ‘
M17 M16 Mi15 M14 M13 Mi12 M1l M10
Lo lofofofJitJol]s] o]
7 6 5 4 3 2 1 0

\ Ignore the 1 of M11
D10 4

271
oloJoflo]ofo]o]ofo]ofo]ofo]o]1]1]
hit15

bit0

Allto be 0

150

If the number of bits in the source address is 1, the low side is ignored, and if the source
address is 0, the instruction will not be executed.

When the driving condition is OFF, the instruction is not executed and the coding output is
unchanged.

When n = 16, if the encoding instruction is a bit element, its point number is 2 * 16 = 65536.
N = 3, the encoded object has 22 = 8 bits, which are M17 ~ M10, and the encoding results are
stored in the lower three bits of D10, which are bit2 ~ bit0.

M13 and M11 are both 1. Ignoring M11, M13 is coded, bit2-bitO represent 3, while bit0 and
bitl are 1.

<When (s-) isword device n<4

X1
}—{ENCO‘DO‘Dl‘KS‘

bit15 DO bit0
[ojtfoftjofafofifofofifofof1ifofo]
- /7 6 5 4 3 2 1 0

High 8-bit are
ignored Ignore the 1 of bit 2
D1 1
(ofofoJofofofofofofofofofofifof1]
|bit15 | bit0
All to be 0

If multiple bits in the source address is 1, the low side is ignored, and if the source address is
0, the instruction will not be executed.

When the driver input is OFF, the instruction is not executed and the coding output is
unchanged.

When n < 3, the high 8 bits in DO are neglected.

When n=3, the encoding object has 2® = 8 bits, that is, bit7 ~ bit0 in DO. The encoding result
is stored in the lower 3 bits in D1, that is, bit2 ~ bit0.

When bit5 and bit2 in DO are both 1, bit2 is ignored, and bit5 is coded, bit2-bit0 represent 5,
bit2 and bit0 are 1.

< (’s-) is word soft component > n<4

y & n
%}—{ ENCO ‘ DO ‘ D1 ‘ K4 ‘

151

bit15 DO bit0
(ofsfofufofrfofajofofrfofofajofo]

15 14 13 1211 10 9 8 7 6 5 4 3 2 1 0 Ignore the 1 in bit2,
bit5, bit8, bit10, bit12
D1 8 4 2 1
[ofofofojofofofofofofofofs[1[s]0]
|bit15 | bit0
Alltobe 0

If the number of bits in the source address is 1, the low side is ignored, and if the source
address is 0, the instruction will not be executed.

When the driver input is OFF, the instruction is not executed and the coding output is
unchanged.

N = 4, the encoded object has 24 = 16 bits, that is, bit15 ~ bit0 in DO. The encoding result is
stored in the lower 4 bits in D1, that is, bit3 ~ bit0.

The highest bit of 1 in DO is bit14, ignoring all low bits 1, and encoding bit14, bit3-bit0
represent 14, bit3, bit2 and bitl are 1.

4-8-10. Low bit coding [ENCOL]

1. Summary
Find the position where the low bit is ON.

Low bit coding [ENCOL]

16 bits ENCOL 32 bits -

Execution Normally ON/OFF, Suitable XD, XL

condition rising/falling edge Models

Hardware - Software -

requirement requirement

2. Operands
Operands | Function Data Type
S Soft element address need coding 16bit,BIN
D Soft element address to save coding result 16bit,BIN
n The bit quantity of coding result 16bit,BIN

3. Suitable soft components

Operand System Constant | Module
Word DD | |TD | CD | DX | Dy |Dw DS" | KH D | QD

S ° ° ° ° ° ° ° °

D ° ° ° ° ° °

n °
Bit Operand System

X |Y | M S | T | C | Dum
S ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

152

M includes M, HM, SM; Sincludes S, HS; T includes T and HT; C includes C and HC.

Description

<if (’s-) isbit device >n<16

N ® :
P% ENCOL‘ M10 ‘ D10 ‘ K3

M17 M16 M15 M4 M13 M12 M1l MI10

o[1 Jofofo] 1] of o]
7 6 5 4 3 2 1 0
\ lanore the 1 of M16
D10 472 1
ofofo]o]ofofo]lo]oJo]ofofo]o]1]o0]
hit15 bit0
Allto be 0

If the number of bits in the source address is 1, the high bit side is ignored, and if the source
address is 0, the instruction will not be executed.

When the driving condition is OFF, the instruction is not executed and the coding output is
unchanged.

When n =16, ifthe (s-) of encoding instruction is a bit element, its point is 2~ 16 =
65536.

N = 3, the encoded object has 22 = 8 bits, which are M17 ~ M10, and the encoding results are
stored in the lower three bits of D10, which are bit2 ~ bit0.

M12 and M16 are both 1. Ignoring M16, M12 is coded, bit2-bitO represent 2, while bitl is 1.

<if (s-) is word device> n<4

X1
}—{ENCOL‘ DO ‘ D1 ‘ K3 ‘

bitl5 DO bit0
’°|1|0|1|0|1|0|/1|1|0|°|1|0|0|0|°\
High'6-bit is N Ignore the 1 of b7

ignored
D1 4 2

(ofoJofofojofofofofofojofofi]o]o]
|bit15 | bit0
All to be 0

153

If multiple bits in the source address is 1, the high bit side is ignored, and if the source address
is 0, the instruction will not be executed.

When the driver input is OFF, the instruction is not executed and the coding output is
unchanged.

When n <3, the high 8 bits in DO are neglected.

The encoding object has 22 = 8 bits, that is, bit7 ~ bit0 in DO. The encoding result is stored in
the lower 3 bits in D1, that is, bit2 ~ bit0.

When bit7 and bit4 in DO are both 1, bit7 is ignored and bit4 is coded. Bit 2 is 1 when bit2-
bit0 is expressed as 4.

< (’s-) isword soft component > n<<4

y o :
PH—{ ENCOL ‘ DO ‘ D1 ‘ K4 ‘

bit15 DO bit0
(ofsfofsfofsjofajojofijofofofofo]
1514 131211 10 9 8 7 6 5 4 3 2 1 0

Ignore the 1 in bit14,
bit12, bit10, bit8

D1 8 74 2
(ofofoJofofofofofofofofofofifof1]
|bit15 | bit0

All to be 0

If multiple bits in the source address is 1, the high bit side is ignored, and if the source address
is 0, the instruction will not be executed.

When the driver input is OFF, the instruction is not executed and the coding output is
unchanged.

N = 4, the encoded object has 2* = 16 bits, that is, bit15 ~ bit0 in DO. The encoding result is
stored in the lower 4 bits in D1, that is, bit3 ~ bit0.

The lowest bit of 1 in DO is bit5, ignoring all high bits 1, and encoding bit5 with bit3-bit0 as
5, bit2 and bit0 as 1.

4-8-11. Binary to Gray code [GRY]

1. Summary
Transform the binary data to gray code.

Binary to gray [GRY]

16 bits GRY 32 bits DGRY
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models

Hardware - Software -
requirement requirement

154

2. Operands

Operands | Function Data Type
S Soft element address need coding 16bits/32bits, BIN
D Soft element address to save coding result 16bits/32bits, BIN

3. Suitable soft components

Operand System Constant | Module
Word D[] D] CD|DX]|DY]| DV | DS | KH D] QD

S o | o ° ° ° ° ° ° °

D ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

Source (BIN) — target (GRY)

o ©
% GRY ‘ D10 ‘ D100 ‘
b15 D10 b0
[oJoJoJoJoJ1]ofo[r[o[1]ofoJo]1]1] Each bitof D10 will XOR with the bit on
H its left side. As the related gray code, the
left bit will not change (the left bit is 0);

[ofJoJofoJoJ1[1]of1[1[1]1[ofo]1]o0] the transformation result is stored in

b15 D100 b0 D100

Transform the binary value to gray code.
GRY has 32 bits mode DGRY, which can transform 32 bits gray code.
@ Range is 0~32,767 (16 bits instruction); 0~2,147,483,647 (32 bits instruction).

4-8-12. Gray code to binary [GBIN]

1. Summary
Transform the gray code to binary data.

Gray code to binary [GBIN]

16 bits GBIN 32 bits DGBIN
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models

Hardware - Software -
requirement requirement

2. Operands

155

Operands | Function Data Type
S Soft element address need coding 16bits/32bits, BIN
D Soft element address to save coding result 16bits/32bits, BIN

3. Suitable soft components

Operand System Constant | Module
Word D[] D] CD|DX]|DY]| DV | DS | KH D] QD

S o | o ° ° ° ° ° ° °

D ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;

DM includes DM, DHM; DS includes DS, DHS.

Description

Source (GRY) — target (BIN)

- ©
P% GBIN \ D10 \moo

b15 D10 bo
[ofofofofoft]t1foft1]t1]1][1]ofof1]0]

|

[ofofojofof1fofofr]ofr]ofofof1]1]
b15 D100 b0

Transform the gray code to binary value.

From the left second bit of D10, XOR
each bit with the value after decoding,
as the bit value after decoding (the left
bit will not change). The
transformation value will be stored in
D100.

GBIN has 32 bits mode DBIN, which can transform 32 bits binary value.
('s-) Range is 0~32,767 (16 bits instruction); 0~2,147,483,647 (32 bits instruction).

4-9. Floating number Operation

Mnemonic | Function Chapter
ECMP Floating Compare 4-9-1
EZCP Floating Zone Compare 4-9-2
EADD Floating Add 4-9-3
ESUB Floating Subtract 4-9-4
EMUL Floating Multiplication 4-9-5
EDIV Floating Division 4-9-6
ESQR Floating Square Root 4-9-7

156

SIN Sine 4-9-8
COoS Cosine 4-9-9
TAN Tangent 4-9-10
ASIN ASIN 4-9-11
ACOS ACOS 4-9-12
ATAN ATAN 4-9-13

4-9-1. Floating Compare [ECMP]

1. Summary
Floating Compare [ECMP]
16 bits - 32 bits ECMP
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
Sl Soft element address need compare 32 bits, BIN
S2 Soft element address need compare 32 bits, BIN
D Compare result bit
3. Suitable soft components
Operand System Constant | Module
Word D|[F|T|co|DX|DY|DM | DS | KH ID| QD
S1 ° ° ° ° ° ° °
S2 ° ° ° ° ° ° °
Operand System
Bit X|Y|[M[S[T]|C]|Dum
D o e .

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.
M includes M, HM, SM; S includes S and HS; C includes C and HC.

Description

(D11, D10) : (D21, D20) —» MOM1,M2
Binary Floating Binary Floating

157

CONNCORNCD

HXL% ECMP ‘ D10 ‘ D20 MO ‘
MO
— (D11,D10) > (D21<D20)
Binary Floating Binary Floating
| Mt (D11,D10) = (D21<D20)
Binary Floating Binary Floating
H'V'L (D11,D10) < (D21<D20)
T Binary Floating Binary Floating

When X0 is OFF, even ECMP doesn’t run, MO~M2 will keep the
status before X0 is OFF.

The instruction will compare the two source data S1 and S2. The result is stored in three bits
from D.
If a constant K or H used as source data, the value is converted to floating value.

X0
ECMP ‘ K500 ‘ D100 ‘ M10 ‘

(K500) : (D101, D100) ->M10,M11,M12
Binary converts Binary floating
to floating

Note: Before the instruction is executed, the comparison data must be all floating numbers (if
it is an integer, it can be converted by FLT instructions); otherwise, the execution result will
be wrong.

4-9-2. Floating Zone Compare [EZCP]

1. Summary

Floating Zone Compare [EZCP]

16 bits - 32 bits EZCP

Execution Normally ON/OFF, Suitable XD, XL

condition rising/falling edge Models

Hardware - Software -

requirement requirement

2. Operands
Operands | Function Data Type
S1 Soft element address need compare 32 bits, BIN
S2 Upper limit of compare data 32 bits, BIN
S3 Lower limit of compare data 32 bits, BIN

158

[D | The compare result soft element address | bit

3. Suitable soft components

Operand System Constant | Module
Word D|FD|TD'|CD | DX|DY|DM | DS | KH ID | QD
S1 ° ° ° ° ° ° °
S2 ° ° °
S3 o | o ° ° ° ° °
. Operand System
Bit X|Y|M][S|T]|C| Dum
D o e °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.
M includes M, HM, SM; S includes S and HS; C includes C and HC.

Description

Compare the source data with the range

y CONONC
~F——| EzcP | pto | p20 | po | M3 |
M3
i (D1, DO) < (D11, D10) ON
4 Binary Floating Binary Floating
i (D11,D10) < (D1,D0) <(D21,D20) ON
M5 Binary Floating Binary Floating Binary Floating
I (D1,D0) > (D21, D20) ON
T Binary Floating Binary Floating

When X0 is OFF, even EZCP doesn’t run, M3~M5 will keep
the status before X0 is OFF.

Compare the source data S3 to the upper and lower limit value of the range S1~S2.
The result will store in three coils starting from D.
Constant K and H will transform to binary floating value when they are source data.

X0
}—{ EZCP ‘ K10 ‘KZSOO‘ D5 ‘ MO ‘

(K10): [D6,D5] : (K2800) —» MO, M1, M2
Binary converts Binary Floating Binary converts
to Floating to Floating

Please set S1< S2, when S2< S1, make S2 as the same value to S1.

Note: the compare value must be floating numbers, otherwise the result will be error.

4-9-3. Floating Addition [EADD]

1. Summary
Floating Add [EADD]
16 bits - 32 bits EADD
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S1 Addition operation data address 32 bits, BIN
S2 Addition operation data address 32 bits, BIN
D Result address 32 bits, BIN
3. Suitable soft components
Operand System Constant | Module
Word D[F|TD|[cD|DX|DY|DM | DS | KH ID| QD
S1 ° ° ° ° ° ° °
S2 o | o ° . ° °
D ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

GO & @

HXOH{ EADD ‘ D10 ‘ D20 ‘ D50 ‘

(D11, D10) + (D21,D20) — (D51, D50)

The two binary floating source data do addition operation, the result will be stored in target
address.

If a constant K or H used as source data, the value is converted to floating point before the
addition operation.

HH EADD ‘ D100 ‘K1234‘ D110 ‘

(K1234) + (D101, D100) — (D111, D110)
Binary converts to Floating Binary Floating Binary Floating

The source data and result address can be the same. Please note that when X0 is ON, the
instruction will be executed in every scanning period.

Note: the add value must be floating numbers, otherwise the result will be error.

4-9-4. Floating Subtraction [ESUB]

1. Summary
Floating Sub [ESUB]
16 bits - 32 bits ESUB
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S1 Subtraction operation data address 32 bits, BIN
S2 Subtraction operation data address 32 bits, BIN
D Result address 32 bits, BIN
3. Suitable soft components
Operand System Constant | Module
Word D|FD|TD|CD| DX|DY|DM | DS | KH ID| QD
S1 ° ° °
S2 o | o ° ° . ° .
D ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

‘ D10 ‘ D20 ‘ D50 ‘

%% @ @

(D11,D10) — (D21,D20) — (D51,D50)
Binary Floating Binary Floating Binary Floating

The binary floating value S1 subtract S2, the result is stored in the target address.

161

If a constant K or H used as source data, the value is converted to floating point before the
subtraction operation.

X1
PH—{ ESUB ‘K1234‘ D100 ‘ D110 ‘

(K1234) — (D101, D100) — (D111, D110)
Binary converts to Floating Binary Floating Binary Floating

The source data and result address can be the same. Please note that when X0 is ON, the
instruction will be executed in every scanning period.
Note: the operand value must be floating numbers, otherwise the result will be error.

4-9-5. Floating Multiplication [EMUL]

1. Summary
Floating Multiply [EMUL]
16 bits - 32 bits EMUL
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S1 Multiplication operation data address 32 bits, BIN
S2 Multiplication operation data address 32 bits, BIN
D Result address 32 bits, BIN
3. Suitable soft components
Operand System Constant | Module
Word D|FD|TD|CD|DX|DY|DM | DS | KH ID| QD
S1 ° ° °
S2 ° ° °
D ° ° . °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

PO - CONNCD

‘ D10 ‘ D20 ‘ D50 ‘

(D11, D10) = (D21, D20) — (D51, D50)
Binary Floating Binary Floating Binary Floating

The floating value of S1 is multiplied with the floating value point value of S2. The result of
the multiplication is stored at D as a floating value.

If a constant K or H used as source data, the value is converted to floating point before the
multiplication operation.

X1
}—{ EMUL ‘ K100 ‘ D100 ‘ D110 ‘

(K100) = (D101, D100) — (D111, D110)
Binary converts to Floating Binary Floating Binary Floating

Note: the operand value must be floating numbers, otherwise the result will be error.

163

4-9-6. Floating Division [EDIV]

1. Summary
Floating Divide [EDIV]
16 bits - 32 bits EDIV
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
Sl Division operation data address 32 bits, BIN
S2 Division operation data address 32 hits, BIN
D Result address 32 bits, BIN
3. Suitable soft components
Operand System Constant | Module
Word D|FD|TD|CD| DX | DY | DM | DS | KH ID| QD
S1 ° ° ° ° ° ° °
S2 ° ° °
D ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description
B @ @
— EDIV ‘ D10 ‘ D20 ‘ D50 ‘

(D11, D10) =+ (D21, D20) — (D51, D50)
Binary Floating Binary Floating Binary Floating

The floating point value of S1 is divided by the floating point value of S2. The result of the
division is stored in D as a floating point value.

If a constant K or H used as source data, the value is converted to floating point before the
division operation.

X1
}—{ EDIV ‘ D100 ‘ K100 ‘ D110 ‘

(D101, D100) = (K100) — (D111, D110)
Binary converts to Floating Binary Floating Binary Floating

The source data S2 is 0, the calculation will be error. The instruction will not work.
Note: the operand value must be floating numbers, otherwise the result will be error.

164

4-9-7. Float Square Root [ESQR]

1. Summary
Floating Square Root [ESQR]
16 bits - 32 bits ESQR
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S The soft element address need to do square root | 32 bits, BIN
D The result address 32 bits, BIN
3. Suitable soft components
Operand System Constant | Module
Word D|[F| | cD|DX|DY|DM | DS | KH ID| QD
S ° ° ° ° °
D ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description
X0 : - (D11, D10) — (D21, D20)
— ESQR ‘ D10 ‘ D20 ‘
Binary Floating Binary Floating

A square root is performed on the floating point value S; the result is stored in D
If a constant K or H used as source data, the value is converted to floating point before the
operation.

HL{ esoR | ka4 | puo | (K102 — (D111,D110)

Binary converts to Floating Binary Floating

When the result is zero, zero flag activates.

Only when the source data is positive will the operation be effective. If S is negative then an
error occurs and error flag SM409 is set ON, SD409=7, the instruction can’t be executed.
Note: the operand value must be floating numbers, otherwise the result will be error.

165

4-9-8. Sine [SIN]

1. Summary
Floating Sine[SIN]
16 bits - 32 bits SIN
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S The soft element address need to do sine 32 bits, BIN
D The result address 32 bits, BIN
3. Suitable soft components
Operand System Constant | Module
Word D|m|m™|co|Dbx|Dy|bw|Ds | KH D| QD
S ° ° ° ° °
D ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description
” ®
— SIN ‘ D50 ‘ D60 ‘

(D51, D50) — (D61, D60) SIN
Binary Floating Binary Floating

This instruction performs the mathematical SIN operation on the floating point value in S
(angle RAD). The result is stored in D.

®| 551 | D50] RAD value (anglex/180)
Assign the binary floating value

I 5er T oo] SIN value
Binary Floating

Note: the operand value must be floating numbers, otherwise the result will be error.

166

4-9-9. Cosine [COS]

1. Summary
Floating Cosine [COS]
16 bits - 32 bits COS
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Soft element address need to do cos 32 bits, BIN
D Result address 32 bits, BIN
3. Suitable soft components
Operand System Constant | Module
Word D|[F| | cD|DX|DY|DM | DS | KH ID| QD
S ° ° ° ° °
D ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description
» ®
— cos ‘ D50 ‘ D60 ‘

(D51,D50) RAD — (D61,D60) COS
Binary Floating Binary Floating

This instruction performs the mathematical COS operation on the floating point value in S
(angle RAD). The result is stored in D.

@ RAD value (anglexn/180)
| D51 | D50 | . . .
Assign the binary floating value
COS value
Binary Floating
| D61 | D60 |

Note: Before the instruction is executed, the data in parameter S must be floating number;
otherwise, the execution result will be wrong.

167

4-9-10. TAN [TAN]

1. Summary
TAN [TAN]
16 bits - 32 bits TAN
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware - Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Soft element address need to do tan 32bit,BIN
D Result address 32bit,BIN
3. Suitable soft components
Word Operand System Constant | Module
D|[F|TD|cD|DX|DY|DM | DS | KH ID| QD
S ° ° ° ° ° ° °
D ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

PM e

D50 ‘ D60 ‘

(D51,D50) RAD — (D61,D60) TAN
Binary Floating Binary Floating

This instruction performs the mathematical TAN operation on the floating point value in S.
The result is stored in D.

@ CE ECECE RAD value (anglexm/180)
Assign the binary floating value
TAN value

o [oer | Dpeo | Binary Floating

Note: Before the instruction is executed, the data in parameter S must be floating number;
otherwise, the execution result will be wrong.

168

4-9-11. ASIN [ASIN]

1. Summary
ASIN [ASIN]
16 bits - 32 bits ASIN
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Soft element address need to do arcsin 32 bits, BIN
D Result address 32 bits, BIN
3. Suitable soft components
Word Operand System Constant | Module
D|[F|TD|cD|DX|DY|DM | DS | KH ID| QD
S ° ° ° ° ° ° °
D ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

D50 \ D60 \

HOH __©

(D51, D50) ASIN — (D61, D60) RAD
Binary Floating Binary Floating

This instruction performs the mathematical ASIN operation on the floating point value in S.
The result is stored in D.

@l D51 | D50 | ASIN value
Binary Floating

RAD value (angle>t/180)

I 56T T De | Assign the binary floating
value

Note: Before the instruction is executed, the data in parameter S must be floating number;
otherwise, the execution result will be wrong.

169

4-9-12. ACOS [ACOS]

1. Summary
ACOS [ACOS]
16 bits - 32 bits ACOS
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Soft element address need to do arccos 32 bits, BIN
D Result address 32 bits, BIN
3. Suitable soft components
Operand System Constant | Module
Word D|[F| | cD|DX|DY|DM | DS | KH ID| QD
S ° ° ° ° °
D ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

o S,
H ACOS ‘ D50 ‘ D60 ‘ (D51,D50) ACOS — (D61,D60) RAD
Binary Floating Binary Floating

Calculate the arcos value(radian), save the result in the target address

() o T os0] ACOS value
Binary Floating

RAD value (angle>t/180)
(o) [oe T owo] Assign the binary floating value

Note: Before the instruction is executed, the data in parameter S must be floating number;
otherwise, the execution result will be wrong.

170

4-9-13. ATAN [ATAN]

1. Summary
ATAN [ATAN]
16 bits - 32 bits ACOS
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Soft element address need to do arctan 32 bit, BIN
D Result address 32 bit, BIN
3. Suitable soft components
Operand System Constant | Module
Word D|[F| | cD|DX|DY|DM | DS | KH ID| QD
S ° ° ° ° °
D ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

. oo

H%{ ATAN ‘ D50 ‘ D60

‘ (D51,D50) ATAN — (D61,D60) RAD
Binary Floating Binary Floating

Calculate the arctan value (radian), save the result in the target address

@ I D51 I D50 I ATAN value
Binary Floating

RAD value (anglexm/180)
Assign the binary floating

I De1 [Deo | value

Note: Before the instruction is executed, the data in parameter S must be floating number;
otherwise, the execution result will be wrong.

171

4-10. RTC Instructions

Mnemonic Function Chapter
TRD Clock data read 4-10-1
TWR Clock data write 4-10-2
TCMP Clock compare 4-10-3

2 1: To use the instructions, The Model should be equipped with RTC function;
2% 2: There are some errors in the clock of XD/XL series PLC, which is about =5 minutes per
month. It can be calibrated regularly by HMI or in the PLC program.

4-10-1. Read the clock data [TRD]

1. Instruction Summary

Read the clock data:

Read the clock data: [TRD]

16 bits TRD 32 hits -

Execution Normally ON/OFF, Suitable XD, XL

condition rising/falling edge Models

Hardware Software -

requirement requirement

2. Operands
Operands | Function Data Type
D Register address to save clock data 16 bits, BIN

3. Suitable Soft Components

Operand System Constant | Module
Word D'|FD|TD"| CD"| DX | DY | DM | DS | KH ID | QD
D ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description
o
- TRD ‘ DO ‘

The current time and date of the real time clock are read and stored in the 7 data devices
specified by the head address D.
Read PLC’s real time clock according to the following format.

Read the special data register (SD013~SD019).
172

12019 awin
[eaJ 1oy Ja1s1Bal elep [e10ads

Unit Item Clock data Unit Item
SDO018 | Year 0-99 —> DO Year
SD017 | Month 1-12 — > D1 Month
SDO016 Date 1-31 —> D2 Date
SDO015 | Hour 0-23 —> D3 Hour
SD014 | Minute 0-59 — D4 Minute
SD013 | Second 0-59 — D5 | Second
SD019 | Week | 0 (Sun.)-6 (Sat.) —> D6 Week

The RTC (real time clock) value is in BCD code format (SD013 to SD019). Please choose
hex format to monitor the RTC value in XDPpro software. The value can be transformed to
decimal format by BIN instruction. After reading the RTC by TRD instruction, the value will
show in decimal format.
After reading the RTC by TRD, the value becomes decimal value.
after executing TRD instruction, DO to D6 are occupied.

4-10-2. Write Clock Data [TWR]

1. Instruction Summary
Write the clock data:

Write clock data [TWR]

16 bits - 32 bits TWR
Execution Normally ON/OFF, Suitable XD, XL
condition rising/falling edge Models
Hardware Software -
requirement requirement
2. Operands
Operands | Function Data Type
S Write the clock data to the register 16 bits, BIN
3. Suitable Soft Components
Operand System Constant | Module
Word |m [T | oD | DX | DY | DV DS | KH D | QD
D ° ° ° ° ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

173

HHTWR%)

Write the RTC value to the PLC.
Write the set clock data into PLC’s real time clock.
In order to write real time clock, please set the 7 registers value from DO to D6.

Bumas »20]9 Joj eleQ

Unit Item Clock data

DO Year 0-99 —>
D1 Month 1-12 —
D2 Date 1-31 —>

D3 Hour 0-23 —>
D4 Minute 0-59 —
D5 Second 0-59 —>
D6 Week | 0 (Sun.)-6 (Sat) —

After executing TWR instruction, the time in real time clock will immediately change to be
the new time. It is a good idea to set the time few minutes late as the current time, and then
drive the instruction when the real time reaches this value.

Note: when choosing secret download program advance mode in XDPpro software, the RTC

only can be changed through TWR instruction.

There is another method to write the RTC. In the XDPpro software, please click the clock
details in project bar on the left. Then click write into the current time.the PC will auto-write

the current time to the PLC.

- PLC Status
. 1.9y cpuDetail
.80] BD Details
Yoo Expansion Details

...{ Scan Cyde
.3 Clock Details
... 3 Error Details

4-10-3. Clock compare [TCMP]

1. Instruction Summary
Compare three continuous clocks time.

Unit Item

SD018 Year (%)
2

SD017 | Month e
SD016 | Date |5 &
o D

SDO015 | Hour gg__g
SD014 | Minute | & &
SD013 | Second | S
D

SD019 | Week =

Clock compare [TCMP]

16 bits TCMP 32 bits -

Condition | Normally ON/OFF, Suitable XD, XL
rising/falling edge model

Hardware - Software -

174

2. operand

Operand | Function Model
S1 The first clock soft component address 16 bits, BIN
S2 The second clock soft component address 16 bits, BIN
S3 The third clock soft component address 16 bits, BIN
S4 PLC real time clock information first address 16 bits, BIN
D2 The compare result first address bit
3. suitable soft component
Operand System Constant Module
Word D[] | |DX |[DY |DWM | DS | KH ID | QD
S1 ° ° ° ° ° ° °
S2 ° ° ° . ° ° °
S3 ° ° ° . ° ° °
S4 ° ° ° ° ° ° °
Bit Operand System
X Y M S | T | C | Dam
D ° ° °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.
M includes M, HM, SM; S includes S, HS; T includes T, HT; C includes C, HC.

Description

X0

—|I——| TRD | D30|

D & & = @)

TCMP D20 D21 D22 D30 MO

MO
——{ D20 | D21 [D22 |>[D30 | D31 [D32]

M1
—— D20 | D21 | D22 |=[D30 [D31 | D32]

M2
——{ D20 | D21 [D22]<[D30 [D31 [D32 |

Even X0=OFF to stop instruction TCMP, M0O~M2 still keep the
state before X0 become OFF.

TRD will read the present clock information in D30~D36 (year, month, day, hour, minute,

second, week).

X0 from OFF to ON, TCMP worked. Compare the three registers starting from S4 to three
registers S1, S2, S3 (year, month, day). When S1, S2, S3 is larger than S4 clock, MO is ON.
When S1, S2, S3 is equal to S4 clock, M1 is ON. When S1, S2, S3 is smaller than S4 clock,

M2 is ON.

175

For example, the present clock is 15:32:49 7,30,2014 Wednesday. D30=14, D31=7, D32=30,
D33=15, D34=32, D35=49, D36=3. If the setting time is 1,6,2015, D20=15, D21=1, D22=6,
Then MO=ON. If the setting time is 7,31,2014, D20=14, D21=7, D22=31, then M1=ON. If
the setting time is 6,31,2014, D20=14, D21=6, D22=31, then M2=0N.

Note: if S4 is D33, it means hour, minute, second, then S1, S2, S3 mean hour, minute, second.
S4 can start from year, month, day, hour; cannot start from minute, second. The week cannot
compare.

For example:
X0
H%ﬂ TRD ‘ D30 ‘
{ TCMP ‘ D20 ‘ D21 ‘ D22 ‘ D33 ’ MO ‘

MO
M1

The present clock is 15:32:49 7,30,2014 Wednesday. So D30=14, D31=7, D32=30, D33=15,
D34=32, D35=49, D36=3. If the setting time is 15:32:49, D20=15, D21=32, D22=49, so
Y1=ON. If the setting time is 17:32:49, D20=17, D21=32, D22=49, so YO=ON. If the setting
time is 2:32:5, D20=2, D21=32, D22=5, so Y2=ON.

176

S HIGH SPEED COUNTER (HSC)

This chapter will introduce high speed counter’s functions, including high speed count model,
wiring method, read/write HSC value, reset etc.

Instructions List for HSC
A Function Instruction Chapter
name
HSC read/write
DMOV | HSC read —+—{pmov Trsco] oo | 5-6-1
DMOV | HSC write |+ pmov [Daooo [Hsco | 5-6-2

No 24-segments single

CNT e | —{ cwT [Hsco [ximo | 5-7-1
CNT_AB No 24-segments AB phase }—H—| CHT_AB | HiCO | K100 | 5-7-2
CNT 24-segments single phase }—“—| CHT | HiCO | E1000 | Lo | 5-7-3
CNT_AB | 24-segments AB phase |—i+—{ ciT_aB [Hsco [Ki00 [Do | | 5-7-4
RST HSC reset — 5-8

5-1. Functions Summary

XD, XL series PLC has HSC (High Speed Counter) function which will not affect by the
scanning cycle. Via choosing different counter, test the high speed input signals with detect
sensors and rotary encoders. The highest testing frequency can reach 80 KHz.

Note:

(1) The high-speed counting input of XD/XL series PLC can only receive collector open-
circuit signal (OC), but can not receive differential signal, so it is necessary to select the

encoder of collector open-circuit signal (OC).

(2) When the counting frequency is higher than 25Hz, please select a high-speed counter.
(3) The XD1/XL1 series does not support high-speed counting.

177

Count input

B A
Sensor % Rotary encoder
& & &
[o[lo[o] O] O -
ojlo]o]o] o]
[com [xt | x3 | x5 |
[com | x0 | x2 | x4 | x6 |

5-2. HSC Mode

XD, XL series high speed counter has two working mode: increasing mode and AB phase
mode.

Increasing Mode

Under this mode, the count value increase at each pulse’s rising edge;

. 1 —
count mput
0 _

counter's
current valie

AB Phase Mode

Under this mode, the HSC value increase or decrease according to two differential signal (A
phase and B phase). According to the multiplication, we have 1-time frequency and 4-time
frequency, but the default count mode is 4-time mode.

1-time frequency and 4-time frequency modes are shown below:

1-time Frequency

178

Aphase 1—

input 0—
B phase 1

input 0
Counter
current

value (0

4-time Frequency

p | !
| !
H Ol - 1 [1 ™ = = T =T —
n Ut Vb \ N il
\ [\ | [[
\ [\ I I [
Vo \ IR Vo
\ [\ I [[
\ [\ I [[
1 Vo \ [[
phase | — Sxiisziiex iz iiun R iRl ur Sxiissiis
\ | \ | |
O \ \ \ \ |
- —_— e = = —_ = = = |
Input R \ 1y [
Vo \ [v
\ [\ I I [
Vo \ IR v
\ [\ I [[
\ [\ I [[
\ [\ I [[
\ [\ I [[
\ [\ I [[
\ [\ I [[
Vo [— ot [
\ [\ I [[
| |} [— I [[
\ [L I /. [
\ [| [[
Vo Mo [
Vo L [[
\ [! | Q : |
Vo — 1 I
\ [| Q Q |
| [— !
Vi L \ v
Vo ! [
Voo = [
\ [.| Vo
Voo [
\ [— ‘o
\ \ [
\ \ — [
| — (]
! | Y
\ \ 1 Y
\ - Vo
\ [
| | Q ;
| \ L
\ Vo
c I el
| \
ounter current |
— \
\
\
value 00— et b —

5-3. HSC Range

HSC’s count range is: -2,147,483,648 ~ +2,147,483,647. If the count value overflows this
range, then overflow or underflow appears;

Overflow means the count value jumps from +2,147,483,647 to -2,147,483,648, then continue
counting; underflow means the count value jumps from -2,147,483,648 to +2,147,483,647
then continue counting.

179

5-4. HSC Input Wiring

For the counter’s pulse input wiring, things differ with different PLC model and counter
model; several typical input wiring diagrams are shown below: (take XD3-60 HSCO as the
example):

Increasing mode (counter HSCO)

Pulse input
[ol[o]o[oO]
lol]lololol]o]
[coMm [x1 [X3 | X5 |
[coM [X0 [X2 | X4 [X6 |

AB phase mode (counter HSCO)
A phase input
(B phase input

| o[o |
o]0] o

[coM | X1 [X3
\

O

|
O

[[
X4 | X6 |

5-5. HSC ports assignment

XD series PLC HSC channels list:

HSC channel
PLC model Incremental | AB phase mode
mode

XD1 16/32 0 0
XD2/XD3 | 16/24/32/48/60 3 3
XD5 16/24/32/48/60 3 3
24T4/32T4/48T4/60T4 4 4
48D4T4 8 8
48T6/60T6 6 6
60T10 10 10
XDM 24T4/32T4/48T4/60T4 4 4
60T10 10 10
XDC 24/32/48/60 4 4
XD5E 24/30/48/60 3 3
30T4 4 4
60T4 4 4
60T6 6 6
60T10 10 10

180

HSC channel
PLC model Incremental | AB phase mode
mode

XDME 30T4/60T4 4 4

60T10 10 10

XDH 60T4 4 4

XL1 16 0 0

XL3 16/32 3 3

XL5 16/32 3 3

3274 4 4

XL5E 16/32 3 3

32T4 4 4

XL5E 64T6 6 6

XLME 3274 4 4

Each letter’s Meaning:
U A B z
Pulse input A phase input B phase input Z phase pulse catching

X can use as normal input terminals when there are no high speed pulses input. In the
following table, Frequency doubling 2 means 2 frequency doubling; 4 means 4 frequency

doubling; 2/4 means 2 and 4 frequency doubling.
Note: Z phase signal counting function is in developping.

XD2-16
Increasing mode AB phase mode
HSCO | HSC2 | HSC4 | HSC6 HSC10|HSC12| HSCO | HSC2 | HSC4 | HSC6
Max
- 10K | 10K | 10K 5K 5K
Frequency
doubling 214 | 204
SOLGERr N VA J J J
interruption
X000 U A
X001 B
X002 z
X003 U A
X004 B
X005 Z
X006 U A
X007 B
X010 Z
XD2-24/32, XD3-16/24/32, X1_3-16/32
Increasing mode AB phase mode
HSC0 |HSC2 | HSC4 | HSC6 HSC10|HSC12| HSCO |HSC2| HSC4 |HSC6
. 80K | 10K | 10K 5K | 5K
frequency
Frequency
doubling 214 2/4
S J VN J J J
interruption
X000 U A
X001 B
X002 Z
X003 u A

181

X004

X005

X006

X007

X010

N | |>

X011

XD2-48/60, XD3-48/60, XD5-16/24/32/48/60, XD5E-24/30/48/60, XL5-16/32, XL5E-16/32

Increasing mode

AB phase mode

HSCO0

HSC2

HSC4

HSC6

HSC8

HSC10

HSC12

HSCO0

HSC2

HSC4

HSC6

HSC8

Max
frequency

80K

80K

10K

50K

50K

5K

Frequency
doubling

214

214

214

Counter
interruption

J

X000

X001

X002

N[> <«

X003

X004

X005

N|(m|>

X006

X007

X010

A
B
Z

XD5-24T4/32T4/48T4/60T4, XDM-24T4/32T4/60T4/60T4L, XDC-24/32/48/60T

XD5E-30T4/60T4, XDME-30T4/60T4, XL5-32T4, XL5E-32T4, XLME-32T4

Increasing mode

AB phase mode

HSCO

HSC2

HSC4

HSC6

HSC8

HSC10

HSCO

HSC2

HSC4

HSC6

HSC8

HSC10

Max
frequency

80K

80K

80K

80K

50K

50K

50K

50K

Frequency
doubling

214

214

214

214

Counter
interruption

J

J

J

X000

X001

X002

N[> <«

X003

X004

X005

N|m|(>

X006

X007

N || >

X010

X011

X012

X013

N|(m|>

182

XD5-48D4T4

Increasing mode

AB phase mode

HSC

HSC

HSC
4

HSC
6

HSC
8

HSC1|HSC1|HSC1|HSC|HSC

0

2 4 0

HSC
4

HSC
6

HSC
8

HSC1
0

HSC1|HSC1

Max
frequency

M

1M

M

1M

80K

80K

80K | 80K | 1M | 1M

1M

1M

50K

50K

50K | 50K

Frequency
doubling

214 | 2/4

214

2/4

214

2/4

214 | 2/4

Counter
interruptio
n

\/

\/

X0+

A+

X0-

X1+

B+

X1-

X2

X3+

A+

X3-

A-

X4+

B+

X4-

B-

X5

X6+

A+

X6-

X7+

B+

X7-

X10

X11+

A+

X11-

A-

X12+

B+

X12-

B-

X13

X14

X15

X16

X17

X20

w|>

X21

X22

X23

w|>

X24

X25

X26

w|>

X27

XDH-60T4-E

Increasing mode

AB phase mode

HSCO

HSC2

HSC4

HSC6

HSC8/HSC10| HSCO

HSC2

HSC4

HSC6

HSC8HSC10

Max
frequency

200K

200K

200K

200K

1

00K

100K

100K

100K

Frequency
doubling

2/4

2/4

2/4

2/4

Counter
interruption

\/

\/

\/

X000

X001

X002

N[> <

X003

X004

X005

N|m|>

X006

X007

W@ >

183

X010

X011

X012

X013

N|m|>

XD5-48T6/60T6, XD5E-60T6, XL5E-64T6

Increasing mode

AB phase mode

HSCO0

HSC2

HSC4

HSC6

HSC8

HSC10

HSCO

HSC2

HSC4

HSC6

HSC8

HSC10

Max
frequency

80K

80K

80K

80K

80K

80K

50K

50K

50K

50K

50K

50K

Frequency
doubling

214

214

214

2/4

2/4

Counter
interruption

J

J

J

X000

X001

X002

N|[@|[>| <«

X003

X004

X005

N|(m (>

X006

X007

X010

N || >

X011

X012

X013

N|(m|>

X014

X015

X016

N[>

X017

X020

X021

N|m@|>

XD5-60T10, XDM-60T10, XD5E-60T10, XDME-60T10

Increasing mode

HSCO

HSC2

HSC4

HSC6

HSC8

HSC10{HSC12

HSC14

HSC16

HSC18

HSC20

HSC22

Max
frequency

80K

80K

80K

80K

80K

80K

80K

80K

80K

80K

Frequency
doubling

Counter
interruption

X000

X001

X002

X003

X004

X005

X006

X007

X010

X011

X012

X013

X014

X015

X016

X017

X020

184

X021

X022

X023

X024

X025

X026

X027

X030

X031

X032

X033

X034

XD5-60T10, XDM-60T10, XD5E-60T10, XDME-60T10

AB phase mode

HSCO0

HSC2

HSC4

HSC6

HSC8

HSC10

HSC12

HSC14

HSC16

HSC18

HSC20

HSC22

Max
frequency

50K

50K

50K

50K

50K

50K

50K

50K

50K

50K

Frequency
doubling

2/4

214

214

214

214

214

214

214

214

Counter
interruption

J

J

J

J

J

J

J

J

J

X000

X001

X002

N> <«

X003

X004

X005

N|m@|>

X006

X007

X010

N>

X011

X012

X013

N || >

X014

X015

X016

N|m|>

X017

X020

X021

N>

X022

X023

X024

N|@|>

X025

X026

X027

N|m (>

X030

X031

X032

N || >

X033

X034

X035

N||>

185

5-6. AB phase counting frequency doubling setting

For AB phase counting, the frequency doubling can be set in special FLASH data registers
SFD321, SFD322, SFD323... SFD330, when the value is 2, it is 2 frequency doubling, 4 is 4
frequency doubling.

Note: After the SFD register is modified, it is necessary to restart the high-speed counter
(i.e. disconnect and reboot the drive condition) in order to make the new configuration

effective!

Register . . .
. Function Setting value Meaning
2 2 frequency
HSCO frequency doubling
SFD320 doubling 4 frequency
4 .
doubling
2 2 frequgncy
SED321 HSC2_ frequency doubling
doubling 4 frequency
4 ;
doubling
2 2 frequency
SED322 HSC4_ frequency doubling
doubling 4 frequency
4 ;
doubling
2 2 frequgency
SED323 HSCQ frequency doubling
doubling 4 frequency
4 ;
doubling
2 2 frequency
SED324 HSC8_ frequency doubling
doubling 4 frequency
4 ;
doubling
2 2 frequency
SED325 HSC1_0 frequency doubling
doubling 4 4 frequency
doubling
2 2 frequency
SED326 HSC1_2 frequency doubling
doubling 4 frequency
4 ;
doubling
2 2 frequency
SED327 HSC1_4 frequency doubling
doubling 4 frequency
4 ;
doubling
2 2 frequency
SED328 HSC1_6 frequency doubling
doubling 4 frequency
4 ;
doubling
2 2 frequency
SED329 HSC1_8 frequency doubling
doubling 4 frequency
4 .
doubling

186

5-7. HSC instruction

This section introduces the usage of single-phase high-speed counting instruction (CNT), AB-
phase high-speed counting instruction (CNT_AB), reset of high-speed counting, reading and
writing of high-speed counting.

5-7-1. Single phase HSC [CNT]

Instruction Summary
Single phase HSC instruction.

Single phase HSC [CNT]
16 bits Instruction - 32 bits Instruction CNT
Execution Normally ON/OFF | Suitable models XD, XL
condition coil
Hardware Software -
requirement requirement
Operands
Operands | Function Type
S Specify HSC code (Eg. HSCO0) 32 bits, BIN
D Specify the compare value (Eg. K100, DO) 32 bits, BIN
Suitable Soft Components
Operand System Constant | Module
word D|m|[m|c|[px]|pby|bMm]|Ds | KH D] QD
Sl Only can be HSC
S2 o [[[[[[TJe []

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

FUNCTIONS AND ACTIONS

(sL)

HSCO‘ D20 \

o]

e When MO is on, HSCO counts X0 signal in single phase mode, compares the high-speed

counting value with the value set in register D20. When the high-speed counting value is
equal to the set value, HSCO coil is set on immediately, and the counting value is
accumulated in HSCDO (double words).

e If the driving condition MO is not disconnected, HSCO will remain on state and continue
counting, and the counting value in HSCDO will continue to accumulate.

e If the driving condition MO is disconnected, HSCO will remain on state and the counting
value in HSCDO will remain unchanged.

e During the counting process, if MO is disconnected and connected again, the values in
HSCDO will continue to accumulate after the last counting value.

187

5-7-2.

In the counting process, if the setting value in D20 changes and the current counting value
is less than the new setting value, then the new setting value is compared.

AB phase HSC [CNT_AB]

Instruction Summary
AB phase HSC instruction.

AB phase HSC [CNT_AB]
16 bits Instruction - 32 bits Instruction CNT_AB
Execution Normally ON/OFF | Suitable models XD, XL(exclude
condition coil XD1, XL1)
Hardware Software -
requirement requirement

Operands
Operands | Function Type
S Specify HSC code (Eg. HSCOQ) 32 bits, BIN
D Specify the compare value (Eg. K100, DO) 32 bits, BIN

Suitable Soft Components

Operand System Constant | Module
word D|m|[m|c|[px|pby|bMm]|Ds | KH D] QD
Sl Only can be HSC
S2 e[[[[[[[Je [|
*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;

DM includes DM, DHM; DS includes DS, DHS.

FUNCTIONS AND ACTIONS

MO (s) (s2)
H H CNT_AB‘ HSCO \ D20 \

When MO is on, HSCO counts X0, X1 signal in AB phase mode, compares the high-speed
counting value with the value set in register D20. When the high-speed counting value is
equal to the set value, HSCO coil is set on immediately, and the counting value is
accumulated in HSCDO (double words).

If the driving condition MO is not disconnected, HSCO will remain on state and continue
counting, and the counting value in HSCDO will continue to accumulate.

If the driving condition MO is disconnected, HSCO will remain on state and the counting
value in HSCDO will remain unchanged.

During the counting process, if MO is disconnected and connected again, the values in
HSCDO will continue to accumulate after the last counting value.

In the counting process, if the setting value in D20 changes and the current counting value
is less than the new setting value, then the new setting value is compared.

188

5-7-3. HSC reset [RST]

The reset mode of high-speed counter is software reset mode.

MO
| CNT | HSCO | K12000
M1

41— RST | HSCO

As shown above, when MO is ON, HSCO begins to count the pulse input of X0 port; when M1
changes from OFF to ON, HSCO is reset, and the count value in HSCDO (double words) is

cleared.

5-7-4. Read HSC value [DMOV]

Instruction Summary

Read HSC value to the specified register;

Read HSC value [DMOV]
16 bits Instruction - 32 bits Instruction DMOV
Execution Normally ON/OFF, | Suitable models XD, XL (exclude
condition rising/falling edge XD1, XL1)
Hardware Software -
reguirement reguirement
Operands
Operands | Function Type
S Specify HSC code 32 bits, BIN
D Specify the read/written register 32 bits, BIN
Suitable Soft Components
Operand System Constant | Module
word D|[m]|m[co|[bpx]|by[pm]| DS [KH D[oD
S Only can be HSC
D e[[[[[[[] [|

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

FUNCTIONS AND ACTIONS

(s)
}—H—{ DMOV ‘ HSCO ‘ D10 ‘

When the trigger condition is established, the high-speed count value in the accumulative
register HSCDO (double words) corresponding to HSCO of the high-speed counter is read into

the data register D10 (double words).

189

High-speed counter can not directly participate in any application instructions or data
comparison instructions (such as DMUL, LD > etc.) except DMOV, but can only be carried
out after reading and writing into other registers.

As high speed counter is double words counter, so it must use 32-bit instruction DMOV.
DMOV often uses together with high speed counter.

Program example:

SMO
/1 } CNT_AB ‘ HSCO‘ K999999999 %
L{ DMOV ‘ HSCO ‘ D10 %
SMO
| } CNT_AB ‘ HSC2 ‘ K999999999 F
L{ DMOV ‘ HSCZ‘ D20 %
D10 K1000 YO0
D= ¢ s)
D20 K1000
D =|

5-7-5. Write HSC value [DMOV]

Instruction Summary
Write the specified register value into HSC;

Write HSC value [DMOV]
16 bits - 32 bits DMOV
Instruction Instruction
Execution Normally ON/OFF, Suitable models | XD, XL (exclude XD1,
condition rising/falling edge XL1)
Hardware Software -
requirement requirement

operands
Operands | Function Type
S Specify HSC code 32 bits, BIN
D Specify the read/written register 32 bits, BIN

suitable soft components

Operand System Constant | Module
word D|FD|TD'|CD | DX|DY|DM| DS | KH ID | QD

S ° °

D Only can be HSC

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

190

FUNCTIONS AND ACTIONS

MO &S
}—|1|—| DMOY | D0 | HaCo |

When the trigger condition is established, The value in the double-word data register D20 is
written into the accumulative register HSCDO (double-word) corresponding to the HSCO of
the high-speed counter, and the original data is replaced.

High-speed counter can not directly participate in any application instructions or data
comparison instructions (such as DMUL, LD > etc.) except DMOV, but can only be carried
out after reading and writing into other registers.

As high speed counter is double words counter, so it must use 32-bit instruction DMQOV.
DMOV often uses together with high speed counter.

5-7-6. The difference between HSC and normal counter

Although the instructions of high-speed counter use "CNT" in the same way as those of
ordinary counter, their functions are quite different.

When MO is changed from OFF to ON once, the value of common counter is added 1.

The high-speed counter trigger condition must be in the normally closed state when counting,
which is equivalent to the high-number counter being activated, but the value of the high-
number counter does not change. Only when the corresponding external signal input terminal
receives the signal, the high-number counter counts. If the external signal input terminal has
signal input and its trigger condition is not closed, the high-number counter will not count.
The difference is shown in the following table:

Counter type Instruction format Function
Normal Mo Count the OFF to ON times of MO, when
counter }—‘ H CNT ‘ co ‘ K2000 ‘ the counting value reaches 2000, CO is ON.

When MO is ON, count the X0 input signal,
High-speed MO when the counting value reaches 2000,
counter H 1 ONT | HsCo | K2000 | | higep s ON, MO should be always ON
when counting.

191

5-8. HSC Example

The following takes XD3-60 as an example to show the programming method of HSC.

Single-phase incremental mode

MO
| CNT | HSCO | K2000
M1

—m— RST | HSCO

When the MO0 is ON, HSCO counts the rising edge of the OFF to ON of the input X0 port at

high speed.

When M1 rising edge comes, reset HSCO high-speed counter and HSCDO (double word).

SMO
|} CNT HSCO K88888888
L DMOV HSCO DO

M1

il RST HSCO
DO D2

D< (vo)

Since the high-speed count value is 32-bit, the
DOJ \D2 D? P4 (instructions here are all 32-bit instructions.
>

D=1 ID<| (vi) Suchas DMOV, DLD<,DLD=
DO D4

D=1 (y2)

e When SMO is on, HSCO counts X0 port in single-phase incremental mode, the setting value

is K888888, and reads the high-speed counting value to DO (double-word) in real time.
e When DO (double words) is less than D2 (double words), YO is ON, when DO (double
words) is equal to or larger than D2 (double words) and less than D4 (double words), Y1 is
ON. when DO (double words) is equal to or larger than D4 (double words), Y2 is ON.
e When M1 rising edge is coming, reset HSCO and HSCDO0(double words).
e As the high speed counter is double words counter, please use double words instruction
DLD < and DLD =.

192

AB phase input mode

M8

|| CNT_AB | HSCO | K999999

SMO0

N DMOV HSCO DO
DO K3000

D =| (v2)

M9

i RST HSCO

When M8 is ON, HSCO starts to count. The signal inputs from X0 (A phase) and X1 (B
phase).

When SMO is ON, the value in HSCDO (double words) related to HSCO is written to DO
(double words) in real-time.

When the present counting value is over 3000, Y2 is ON.

When the rising edge of M9 is coming, reset HSCO and HSCDO (double words).

RST HSCO

{ L CNT_AB | HSCO K88888888

DMOV HSCO DO

DO KO DO K100

—D =t p< (yo)

Since the high-speed count value is 32-bit, the
D0 K100 DO K200

O
WV
—~~

{DZ} {D<} (v1) instructions here are all 32-bit instructions.
Such as DMOV, DLD<,DLD=

Y2)

When the rising edge of the original forward pulse coil SM2 comes, that is, at the beginning
of each scanning cycle, HSCO is reset and the counting value in HSCDO is cleared.

When coil SMO is on, HSCO begins to count X0 and X1 ports in AB phase mode. The
setting value of counting is K888888. At the same time, the counting value in HSCDO
(double words) is written into DO (double words) in real time.

When the counting value in DO (double words) is greater than KO and less than K100, the
output coil YO is ON; when the counting value in DO (double words) is greater than or equal
to K100 and less than K200, the output coil Y1 is ON; and when the counting value in DO
(double words) is greater than or equal to K200, the output coil Y2 is ON.

Since the high-speed counter is a double words counter, it is necessary to use the double
words comparison instruction DLD = and DLD < for comparison.

193

5-7. HSC interruption

5-7-1. Function overview and panel configuration

For XD/XL series PLC, some high-speed counters (referring to the high-speed counting input
port allocation table of chapter 5-5 of each type of PLC) have a set value of 32 bits in 1-100
sections. When the difference of high-speed counting equals to the set value of corresponding
100 sections, the interruption will occur according to the corresponding interruption mark.

If the set value of N segment is set, there must be interrupt mark and interrupt program
corresponding to N segment. The interruption marks corresponding to each high-speed

counter are shown in chapter 5-9-4.

When using high-speed counting interrupt function, instructions can be written directly (see
chapters 5-9-2 and 5-9-3), or can be configured by software panel. Please click @ in the

XDPPro software, it will show below window.

|§1§i& phase 100 segment high speed counting W |
High Speed l Compare Value: Intemupt Address: HD100
[] Opposite Absolute [Circulate [] cam
Config Value
Compare Value: | 99939939 El Section Mum: |3 El
Section Mum Value
Segment] Count Hum: EO0
Segment? Count Hum: 20000
Segmentd Count Hum: 0000

Read Fom PLC | | Wite ToPLC | |

ok | | Cancel

In this panel, we can configure the parameters related to high speed count interruption. Take
the settings in above figure as an example to explain each parameter function.

Parameter Function

single phase 100 . L
. High Speed Counting in Single Phase
segmtgnts high speed Incremental Mode
| Single phase 100 segment high speed counting ?I:_(())lcj)n Ing = AB
segments . ..
phase high speed High Speed Counting in AB phase
. mode

counting

194

High Speed C HSCO v

HSCO0~HSC18(32-
bit)

High-speed counter number
corresponding to high-speed input
port

Compare Value: |D500

Free to specify

HSCO is ON when the count value is
equal to the value in the register.

Compare Value: 99999939 =

Free to specify

When it counts to the compare value,
HSCO is ON, the compare value can
be set here or put in compare reigster
D500

[] Opposite Absolute

Relative

It will produce the interruption of
segment N when the counting value =
segment N-1 interruption counting
value + segment N setting value.

Absolute

It will produce the interruption when
the counting value is equal to setting
value.

Intemupt Address: HD100

Free to specify

The set values of 100 segments of
high-speed counting interrupts are
stored in the registers starting from
HD100, and the set values are stored
in the double-word registers HD100,
HD102, HD104....

[] Girculate [] Cam

Interruption cycle

It must be used in relative mode.
When all interrupts are over, high-
speed counting interrupts can still be
generated circularly.

CAM

It must be used in absolute mode.
When the counting value equals any
set value, interruption occurs.

Section Num: 3

L3

1~100 optional

If set to 3, it means execute three
high-speed counting interrupts

Value

Free to specify

Each segment corresponds to an
interrupt count value, which is written
to the address block starting from
HD100; the interrupt time is
determined by the relative/absolute
count mode

For detailed usage of the above parameters, please see the following chapters.
After writing to the PLC and clicking "OK", the high-speed count interrupt instruction
configuration is completed, as shown in the following figure:

195

CHT HSCO DbOD HD100 |—

5-9-2. Single phase 100-segment HSC [CNT]

Summarization
Single phase 100-segment HSC instruction.

Single phase 100-segment HSC [CNT]
16-bit instruction - 32-bit instruction | CNT
Execution condition | Normal ON/OFF Suitable model XD, XL (exclude
XL1, XD1)
Hardware - Software -
requirements requirements
Operand
Operand | Function Type
Sl Set the HSC (for example: HSCO) 32 bits, BIN
S2 Set the compare value (eg. K100, DO) 32 bits, BIN
S3 Set the 100-segment setting value 32 bits, BIN
Suitable soft components
Operand System Constant | Module
Word D|m|[m[co[px|[pby[bmMm]| DS | KH D[QD
S1 Only can be HSC
S2 ° °
S3 °

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;

DM includes DM, DHM; DS includes DS, DHS.

Description

}—l\{m})—{ CNT ‘ HSCO ‘ HDO ‘ HD100 ‘

o When the high-speed counter HSCO counts in single-phase mode, high-speed counting

value is compared to data block starting from HD100 (such as HD102, HD102, HD104
and other double-word registers), it will immediately produce the corresponding high-
speed counting interrupt when the condition is met, each section of the corresponding
interrupt marks please refer to chapter 5-9-4.

During the high-speed counting process, it is invalid to modify the set value of 100
segments.

In the process of high-speed counting, the driving condition MO can not be
disconnected. If MO is disconnected and then rebooted, no interruption will occur. The
high-speed counter must be reset first, and then set ON MO again to produce
interruption.

When the interrupt is finished in a single execution, if it needs to start the interruption
again, the high-speed counter must be reset first, and then the driving condition must
be ON again.

In interrupt loop mode, interrupts can be generated in sequence as long as M0 remains

196

on state.

5-9-3. AB phase 100-segment HSC [CNT_AB]

Summarization
AB phase 100-segment HSC instruction.

AB phase 100-segment HSC [CNT_AB]
16 bits instruction - 32 bits instruction CNT_AB
Execution condition | Normal ON/OFF Suitable model XD, XL (exclude
XL1, XD1)

Hardware - Software -
requirements requirements

Operand
Operand | Function Type
S1 Set the HSC (such as:HSCO0) 32 bits, BIN
S2 Set the compare value (such as: K100, D0) 32 bits, BIN
S3 Set the 100-segment setting value 32 bits, BIN

Suitable soft components

Word Operand System Constant | Module
D|[m]|m[co|[bpx]|by|[bm]| DS [KH D[QD
S1 Only can be HSC
S2 ° °
S3 .

*Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Description

(s3)

}—'\(M})—{ CNT_AB | HSCO | HDO | HD100 |

e When the high-speed counter HSCO counts in AB phase mode, high-speed counting
value is compared to data block starting from HD100 (such as HD102, HD102, HD104
and other double-word registers), it will immediately produce the corresponding high-
speed counting interrupt when the condition is met, each section of the corresponding
interrupt marks please refer to chapter 5-9-4.

e During the high-speed counting process, it is invalid to modify the set value of 100
segments.

e In the process of high-speed counting, the driving condition MO can not be
disconnected. If MO is disconnected and then rebooted, no interruption will occur. The
high-speed counter must be reset first, and then set ON MO again to produce
interruption.

197

e When the interrupt is finished in a single execution, if it needs to start the interruption
again, the high-speed counter must be reset first, and then the driving condition must
be ON again.

e In interrupt loop mode, interrupts can be generated in sequence as long as M0 remains
on state.

5-9-4. Interruption flag of HSC

The 100 segments interruption flags of each HSC are in the following table. For example, the
100 segments interruption flags of HSCO are 12000, 12001, 12002..... 12099.

Interruption flag
HSC e Segment 2 | Segment 3 Segment N Segment 100
HSCO 12000 12001 12002 === | 1 (2000+N-1) 12099
HSC2 12100 12101 12102 | (2100+N-1) 12199
HSC4 12200 12201 12202 | (2200+N-1) 12299
HSC6 12300 12301 12302 I (2300+N-1) 12399
HSC8 12400 12401 12402 | (2400+N-1) 12499
HSC10 12500 12501 12502 | (2500+N-1) 12599
HSC12 12600 12601 12602 | (2600+N-1) 12699
HSC14 12700 12701 12702 I (2700+N-1) 12799
HSC16 12800 12801 12802 | (2800+N-1) 12899
HSC18 12900 12901 12902 I (2900+N-1) 12999

5-9-5. Setting value meaning in absolute or relative mode

The setting value meaning is different in absolute and relative mode. Relative/absolute mode
can be set in the software panel. It can also be modified by special Flash register SFD330.
(Note: Driving conditions must be OFF and ON again to make the configuration effective.)
0: Relative mode;

1: Absolute mode.

e Relative mode

198

In relative mode, the set value of high-speed counting 100 segments is relative cumulative
value. When the set value of counting equals the sum of the interruption count value of N-1
segment and the set value of N segment, the segment N interrupt is generated.

N interrupt markers correspond to N interrupt settings. The N+1 interrupt settings register is
reserved for other purposes.

Examplel:

The current value of HSCO is 0, segment one preset value is 10000, the preset value in
segment 2 is —5000, the preset value in segment 3 is 20000. When starting to count, when
the counter's current value is 10000, it generates the segment 1 interruption 12000; when the
counter's current value is 5000, it generates the segment 2 interruption 12001; when the
counter's current value is 25000, it generates the segment 3 interruption 12002.

See graph below:

HSCO HDO HD1 HD2 HD3 HD4 HD5
KO K10000 K-5000 K20000

HSCO0= K0+K10000=K10000 | 2000 |

[
»

12001

HSC0= K10000+ (K-5000) =K5000

v

12002

HSCO0= K5000+K20000=K25000

v

Example 2:

HSC2 current value is 10000, the segment one preset value is 10000, the preset value of
segment 2 is 5000, the preset value of segment 3 is 20000. When starting to count, when the
counter's current value is 20000, it generates the segment 1 interruption 12100; when the
counter's current value is 25000, it generates the segment 2 interruption 12101; when the
counter's current value is 45000, it generates the segment 3 interruption 12102.

See graph below:

199

HSC2 HDO HD1 HD2 HD3 HD4 HD5

K10000 K10000 K5000 K20000
HSC2=K10000+K10000=K20000| 2100
"y
HSC2=K20000+K5000=K 25000 12101
\ J
HSC2=K25000+K20000=K45000 12102

e Absolute Mode
In absolute mode, interruption occurs when the count value equals the set value of each
section of the counter. N interrupt markers correspond to N interrupt settings. The N+1
interrupt settings register is reserved for other purposes.

Example 1:

The current value of counter HSCO is 0, the setting value of segment 1 is 10000, the setting
value of segment 2 is 15000, and the setting value of segment 3 is 20000. When it starts
counting, if the current value of the counter is 10000, the segment 1 interruption 12000 is
generated; when the current value of the counter is 15000, the segment 2 interruption 12001 is
generated; when the current value of the counter equals 20000, the segment 3 interruption
12002 is generated.

HSCO HDO HD1 HD2 HD3 HD4 HD5
KO K10000 K15000 K20000
HSCO0= K10000 12000
>y

12001

HSCO0= K15000

v

12002

HSCO0= K20000

v

Example 2:

The current value of counter HSC2 is 5000, segment 1 set value is 10000, segment 2 set value
is 5000, and segment 3 set value is 20000. When it starts counting, if the current value of the
counter is 10000, segment 1 interrupt 12100 is generated; when the current value of the

200

counter is 5000, segment 2 interrupt 12101 is generated; when the current value of the counter
equals 20000, segment 3 interrupt 12102 is generated.

HSCO HDO HD1 HD2 HD3 HD4 HD5
KO K10000 K5000 K20000
HSCO0= K10000 12000

12001

HSCO0= K5000

v

12002

HSCO0= K20000

v

Note: When absolute counting is performed in non-cam mode, counting interrupts are
generated sequentially, i.e.,segment 1 interruption, segment 2 interruption, segment 3
interruption... When a segment interrupt occurs, no interrupt occurs even if the count value
reaches the set value of the segment again.

As in the example above, if the count value is increased from 4000 to 5000 and 10000 after
the interruption of segment 1 and 2, the interruption of segment 1 and 2 will not occur again,
and the interruption of segment 3 will occur when the count value continues to increase to
20000.

5-9-6. HSC interruption cycle mode

Mode 1: Single loop (normal mode)

The HSC interruption will not happen after it ends. The following conditions can start the
interruption again.

reset the HSC

Reboot the HSC activate condition

The interruption is generated as the following sequence when single loop execution:

Thelast
Segment 1 Segment 2 Segment 3 Segment N
. . > . > N s RIS . N A —>» segment
interruption interruption interruption interruption .)
Interruption

Mode 2: Continuous loop

Continous loop interruption is only suitable for relative counting mode. In continuous loop
mode, the interruption will start again after it is completed. This mode is especially suitable
for the following application:

continuous back-forth movement.

Generate cycle interruption according to the fixed pulse.

201

When continuous loop interruption is performed (without cam function enabled), interrupts
occur in the following order:

Segment 1
interruption

The'last Segment 2
segment . .
. . Interruption
interruption
Segment N Segment 3
interruption interruption

S~

Via setting SFD331, users can switch between single loop mode or continuous loop mode.
The detailed assignment is show below:
(Note: the settings will be effective after setting OFF and ON the driving condition again)

Address HSC Setting

Bit0 100 segments HSC interruption cycle (HSCO)

Bitl 100 segments HSC interruption cycle (HSC2)

Bit2 100 segments HSC interruption cycle (HSC4)

Bit3 100 segments HSC interruption cycle (HSC6)

Bit4 100 segments HSC interruption cycle (HSC8) 0: single loop
Bit5 100 segments HSC interruption cycle (HSC10) 1: continuous loop
Bit6 100 segments HSC interruption cycle (HSC12)

Bit7 100 segments HSC interruption cycle (HSC14)

Bit8 100 segments HSC interruption cycle (HSC16)

Bit9 100 segments HSC interruption cycle (HSC18)

202

5-9-7. CAM function of high speed counter interruption

High-speed counting cam: After setting all interruption set value, the high-speed counting
cam function is selected. When the high-speed counting value is equal to any of the
interruption set value, the corresponding high-speed counting interruption (the same as the
100-segment high-speed counting interruption marker) is executed immediately. When the
high-speed counting value changes repeatedly, the same high-speed interruption of the cam
can be executed repeatedly.

High-speed counting cam not only can fully realize the cyclic sequence interruption function
of ordinary electronic cam, but also can generate multiple times of positive and negative
single point interruption in single cycle. It is widely used in control systems of high-speed
winding machine and packaging machine.

Note: CAM function is only fit for absolute counting mode.

Cam function can be set by configuration panel in XINJE PLC software, or by special Flash
register SFD332: (Note: Drive condition must be set OFF and ON again to make
configuration effective)

0: No cam function enabled

1: Enable Cam Function

Example:

Four values are stored in four consecutive double-word registers starting with register HDO.
When HSCO starts to count, if the HSCO count value equals any of the four registers, the
corresponding interrupt signal will be generated immediately. As shown in the following
figure:

203

HSCO A

HDB |- —————mmmmmm e

117 S

HD2 f——mmm e

HDO [~ ™

S /

\ 4 \ v Y v VvV v
12000 12001 12002 12001 12002 12003 12002

5-9-8. Interruption using notes and parameter address

MO

X | CNT_AB | HSCO | K2000 | HDO |
M1

i | RST | HsCO |

LD MO //HSC trigger condition MO (also interruption counting condition)

CNT_AB HSCO0 K2000 HDO /IHSC and 100-segment head address setting

LDP M1 /IHSC reset trigger condition

RST HSCO /IHSC and 100-segment reset (also reset the interruption)

As shown in the above example (note: the interrupt subprogram is omitted, see the application
example in chapter 5-9-9). The data register HDO sets the region starting address for the set
value of 100 segments, and then stores the set value of 100 segments in double-word form.
Attention should be paid to using high-speed counting interrupts:
o The register after the last segment no needs to set 0, but should be reserved and cannot
be used for other purpose. For example, it has 3 segments, segment 1 is HD0, segment
2 is HD2, segment 3 is HD4, then HD6 is reserved.
e Itisnot allowed to set the interrupt setting value without writing the interrupt program.
Otherwise, errors will occur.
e 100-segment interrupt of high speed counter generate in turn, that is, if the first interrupt
does not occur, the second interrupt will not occur.
e In high speed counting process, if the present counting value is changed by DMOV,
ADD instruction (DMOV K1000 HSCDO), the interruption value will not change at
this time. Please do not change the HSCD value when the high speed counter is running.

204

Some parameters can be modified in special Flash registers, as shown in the following table:

Parameter Register Setting value
address
Counting mode | SFD330 0: relative 1: absolute
Execution mode | SFD331 0: execution once 1: interruption cycle
CAM function | SFD332 0: not enable 1: enable cam function

The above parameters can also be configured by the configuration panel in the following way:
Move the mouse over the high-speed counting instruction and right-click it. Select "CNT_AB
Instruction Parameter Configuration” from the drop-down menu. A configuration panel will
appear to configure the parameters in this window. As shown in the following figure:

High Speed Count 24 Section Config
' Single phase 100 seament high speed counting vl
- et s
Opposite || Absclute [Circulate [] cam
Config Value
Compare Valus: 3000 = Section Mum: |1 =

Section Mum

Segment]l Count Hum:

Read FromPLC | | Wite ToPLC | | OK | | Cancel

5-9-9. Application of HSC interruption

Application 1:

When MO is ON, HSCO starts counting. The counting value is stored in the address starting
from HDO. When it reaches the set value, the interruption is produced. When the rising edge
of M1 is coming, clear the HSCO.

Method 1:

Configure the parameters through XDPpro software:

205

High Speed Count 24 Section Config

|AEphase1ﬂ]segnatHd1$eedmﬁ1g v|

o SpesdGrsco .
Ferce

Corfig Value
Compare Value: 200000

Compare Value: Intemupt Address:

Opposite || Absclute [Circulate [] cam

E Section Num: |2 E

Section Mum

Segmentl Count Hum:

Segment? Count Hum:

Read FromPLC | | Wite ToPLC | | OK | | Cancel

Configure item

Function

High speed counter

Choose HSC, the range is from HSCO to HSC18

Frequency

Choose the HSC frequency doubling (2 or 4)

Compare value

The value can be register or constant, in this example, when the
counting value reaches compare value, HSCO is ON. here the compare
value is 200000 which is saved in D10.

Relative and absolute

The HSC is relative mode or absolute mode

Interrupt address The starting registers to store 100 segments interruption preset value
Circulate 100 segments interruption mode is cycle or not
Cam The cam function is executed when any set value of 100-segment high

speed counting interruption equals the counting value.

Method 2: make the program

206

|| } DMOV ‘KlOOOO‘ HDO ‘

DMOV ‘K-lOOOO‘ HD2 ‘

DMOV ‘ KZOOOOO‘ D10 ‘

M
| }CNT_AB‘ HSCO ‘ D10 ‘ HDO ‘
M

} } RST ‘ HSCO‘

INC

:

SMO
I INC | D1

:

Instruction:
LD SMO /ISMO is normally ON coil
DMOV K10000 HDO /lsegment one preset value HDO is 10000
DMOV K-10000 HD2 /lsegment 2 preset value HD2 is -10000
DMOV K200000 D10 //set HSC compare value
LD MO /IHSC activate condition MO
CNT_AB HSCO0D10HDO //HSC interruption instruction
LDP M1 /IHSC reset condition M1
RST HSCO Ifreset HSC and 100 segments interruption
FEND /[the main program end
12000 /Isegment one interruption flag
LD SMO //SMO is normally ON coil
INC DO //D0= DO+1
IRET /linterruption return flag
12001 /lsegment 2 interruption flag
LD SMO //SMO is normally ON coil
INC D1 /ID1=D1+1
IRET /linterruption return flag

207

Application 2: knit-weaving machine (continuous loop mode)
The machine principle: Control the inverter via PLC, thereby control the motor. Meantime,

via the feedback signal from encoder, control the knit-weaving machine and the precise
position.

AB phase HSC input
< phase inpu

PLC
forward. backward control
speed 1 control feedback
signal
V3 series inverter
drive *
Motor — Encoder

control *

Knit-weaving machine

| 12003 |
HSC0=K15000+(K-15000) N
| 12002 |
HSC0=K90000+(K-75000)
12001
HSCO0=K75000+K15000
) 12000
Pulse frequency f | HSC0=K0+K75000 |Fonward Reverse
Forward fast run slow run Reverse fast run | slow run |
Time t
Forward run Reverse run

Below is PLC program: Y2 represents forward output signal; Y3 represents reverse output

signal; Y4 represents output signal of speed 1; HSC2: Back-forth times accumulation counter;
HSCO: AB phase HSC;

208

|ﬂBphase1[I]mgnaﬂidlmeadmﬁlg v|

Hd'&ﬂﬂﬂ Compare Value: Irtemupt Address:

Frequence: [+] Opposte [| Absolute [] Circulate [] cam
Conrfig Value
Compare Value: 1000000 El Section Num: |4 El
Section Mum Value

Segment]l Count Hum: ToO00
Segment? Count Hum: 15000
Segmentd Count Hum: =T5000
Segmentd Count Hum:

Read FomPLC | Wite ToPLC | | OK | | Cancel

209

Y2
(s)

Y2
ffl CNT | HSC2 | K1000000
SMO
{1 LA CNT_AB | HSCO | DO | D100
DMOV | HSCO | D200
FEND
12000
SMO Y4
f (s)
IRET
12001
SMO Y4
f (R)
Y2
(R)
Y3
(s)
IRET
12002
SMO0 Y4
il (s)
IRET
12003
SMO Y3
H (R)
Y4
R)
Y2
S)
IRET

210

Instruction List;

LD SM2 /[SM2 is initial ON coil

SET Y2 /Iset ON Y2 (forward run)

LDP Y2 // Back-forth times activate condition Y2
CNT HSC2 K1000000 /IHSC2 starts counting

LD SMO //ISMO00O is normal ON coil

CNT_AB HSCO0 DO D100 //HSC 100 segments first address
DMOQOV HSCO D200 /Iread HSCO counting value to D200
FEND /fmain program end

12000 /lInterruption 1 flag

LD SMO //SMO is normal ON coil

SET Y4 //set ON Y4 (run at speed 1)

IRET [linterruption return

12001 /linterruption 2 flag

LD SMO //SMO is normal ON coil

RST Y4 Ilreset Y4 (stop running at speed 1)
RST Y2 /lreset Y2 (stop forward running)

SET VY3 //set ON Y3 (reverse running)

IRET [linterruption return

12002 /linterruption 3 flag

LD SMO //SMO is normal ON coil

SET Y4 //set ON Y4 (run at speed 1)

IRET [linterruption return

12003 /linterruption 4 flag

LD SMO //SMO is normal ON coil

RST Y3 /lreset Y3 (stop reverse running)

RST Y4 Ilreset Y4 (stop running at slow speed)
SET Y2 /set on Y2 (forward running)

IRET {linterruption return

211

6 Communication Function

This chapter mainly includes: basic concept of communication, Modbus
communication and free communication.
Relative Instruction

Mnemonic Function Circuit and soft components Chapter
MODBUS Communication
COLR Coil Read }HH COLR‘ Sl‘ s2 ‘ s3 ‘ D1 ‘ D2 ‘ 6-2-3
INPR Input coil read —H—' INPR‘ S1 ‘ S2 ‘ S3 ‘ D1 ‘ D2 ‘ 6-2-3
COLW single coil write | —+— coLw | D1| D2 | s1 | s2 | 6-2-3
MCLW Multi-coil write | |1 McLw | p1| b2 | 03| 51| s2 | 6-2-3
REGR Register read H}—' REGR ‘ S1 ‘ S2 ‘ S3 ‘ D1 ‘ D2 ‘ 6-2-3
INRR 'rggg”egmer H}—4 INRR ‘ 51‘ sz‘ $3 ‘ DI ‘ D2 ‘ 6-2-3
REGW Sv'rr:?;e register HH REGW‘ Dl‘ D2 ‘ s1 ‘) ‘ 6-2-3
MRGW Multi-register | L1 mrew | b1 | p2| 03] s1 [s2 | 6-2-3
Free Communication
SEND Send data i senp | D10 [D100 | K2 | 6-3-4
RCV Receive data }HW RCV ‘ D20 ‘ D200 ‘ K2 ‘ 6-3-4
Read and write serial port data
CFGCR Read serial port }HT CFGCR ‘ HDO ‘ K7 ‘ K2 ‘ 6-5-1
Write serial r% CFGCW | HDO K8 K2 =
CFGCW 0OM16.3.4 i | | | | 6-5-1

6-1. Summary

XD, XL series PLC main units can fulfill your requirement on communication and network.
They not only support Modbus RTU, but also support Modbus ASCII and field bus X-NET.
XD, XL series PLC offer multiple communication methods, with which you can
communicate with the devices (such as printer, instruments etc.) that have Modbus
communication protocol.

6-1-1. COM port

COM Port

XD, XL series PLC have multiple communication ports, such as USB port, Ethernet port,
port0~port5, port2-RS232, port2-RS485.
212

X not support + support

USB | RJ45 | COMO | COM1 | COM2- | COM2- | COM3 | COM4 | COM5
RS232 | RS485
XD1 x x v N x N x x x
XD2 x x \ \ x \ \ N v
XD3 v x x N x N N N N
XD5 v x x N x N N N N
XDM \ x x N x \ \ N N
XDC x x x \ \ \ \ N v
XD5E | N x N x N N N N
XDME | x v x v x v v v v
XDH x N x N x N N x x
XL1 x| x v v x v x x x
XL3 v x x N x N N x x
XL5 N x x N x N N x x
XL5E x N x N x N N x x
XLME | x N x N x N N x x
Note:

% 1: XL1-16T-U has USB port.

%2: In the series of " v " PLCs, there may be some models that do not support COM2-COMb.
See Appendix 5 for details.

The distribution of XD series communication ports is as follows:

COM1/RJ45 com4 COoM5

USB/RJ45,/COMO
comM3 /COM2-RS232 com2-RS485

Note: The left side of output terminal block of XD5E/XDME/XDH is RS232 port.

The distribution of XL series communication ports is as follows:

213

COM3

XL1/XL3/XL5

I}

— COM1

USB.COMO

3 l

=

XLSE/XLME

Comz

COoM1

-— R.J45

]— R.J45

-

The definitions and functions of each communication port are as follows:

Port Appearance Definition protocol Function
Download program, set the
COMO RS232 port X-NET port paramete_rs' through
Modbus software or xinje config
tool
Modbus RTU Download program and
Modbus ASCII | connect external devices,
COM1 RS232 port Free set the port parameters
communication | through software or xinje
X-NET config tool
Modbus RTU Download program and
Modbus ASCII | connect external devices,
COM2-
RS232 RS232 port Fre_e _ set the port parameter_s _
communication | through software or xinje
X-NET config tool
COM2-
RS485 A, B port RS485 port Modbus RTU Download program and
AB Modbus ASCII | connect external devices,
, B port
Free set the port parameters
COM2 RS485 port communication | through software or xinje
X-NET config tool
High speed download port,
usB USB port X-NET please install the USB
driver first
High speed stable
download/upload program
and data, remote
monitoring, communicate
with TCP IP device in
TCP/IP LAN, set the port
RJ45 Ethernet port communication | parameters through
based on Ethernet | software or xinje config
tool. Only XDH series
LANZ port supports
EtherCAT, can
synchronous control of 32-
axis motor.

214

Left extension ED Modbus RTU _
port (for connect external devices,
. Modbus ASCII
COM3 extending Free set the port parameters
RS232/RS485 . through software or xinje
communication .
port) X-NET config tool
Above extension
COM4 BD port/ hzﬂo?jdbtijis AI?S-I-CUII connect external devices,
RS_232/RS485/Op Free set the port parameters
COMS tltzzéglgglropxrt communication ‘::rcl)rr?fLilgr;c;sg)Iftware or Xxinje
details) X-NET ’
Note:

(1) COMO port is X-NET communication mode by default; COM1 of XDC is X-NET
communication mode by default.

(2) COM2-RS232 and COM2-RS485 of XDC series cannot be used simultaneously; when
configured in programming software, the port number is COM2.

(3) If COML1 cannot communicate with PC after changing the parameters, please click [stop
PLC when reboot] in the software and then power on again to solve the problem; if
unnecessary, it is better not to modify COM1 communication parameters.

(4) COMS port of XDH series PLC does not support communication extended ED module,
LANL1 port supports Ethernet communication, LAN2 port supports EtherCAT bus function.
(5) X-NET communication function is not within the scope of this manual, please refer to the
X-NET user manual.

(6) Ethernet communication content is not within the scope of this manual, please refer to the
user manual of TCP IP communication based on Ethernet.

(7) the Ethernet bus is not within the scope of this manual. Please refer to the user manual of
EtherCAT motion control.

1. RS232 port (COM0, COM1, COM2-RS232)

PRG
RxD
TxD
VCC
GND

o o O BN

Mini Din 8-pin plug (holes)

2. RS48S port (COM2, COM2-RS485)
About RS485 port, A is “+” signal. B is “-” signal. XL series PLC RS485 port is put outside.
SG terminal is signal ground. The terminal diagram is shown as below:

215

Please use twisted pair cable for RS485. (See below diagram). But shielded twisted pair cable
is better and the single-ended connects to the ground.

Send ‘\:_‘\:\x{ receive

se

receive >_ "_"\:\:_f(send

3. USB port
When downloading programs and data through the USB port, the USB driver and
XINJEConfig tool must be installed first. Because the current USB driver has been built in
the XINJEConfig software, the USB driver will be installed automatically after the
XINJEConfig software is installed.
After installing the xinje config tool and usb driver, please switch to Xnet mode in the PLC
software:

(1) Open XDPPro software, click option/software serial port config

=
Seral Part{C) Baudrate(B)
W () 4800BPS () SED0BPS
(®) 19200BP5(_) 38400BPS
[] Blue Tooth Serial Port .
(_) 115200BPS
Parity(F) Cther set
() Mone () Odd (@) Even Databits:8 Stophits: 1
This COM Port Mot Bxdst
#Net Protocal ? Automatic Detection Cancel

(2) Click Xnet protocol to switch to xnet mode. Then click ok to confirm.

216

corfig | Service

[[] find by id OO0-D00-D00-DO00-0000

service is stopped v1.6.398

T

Note:

(1) If it shows the error “find device: error2 cannot find device”, you can click "Restart
Service" to try to reconnect, or restart the programming software and PLC to reconnect. If
you still can't connect, you need to check whether the PLC is power on, whether the USB
download cable is connected properly, whether the USB driver and XINJEConfig software

are installed properly.

Service
| stop senvice | | xnet config tool
| statservice |

| restart service |

service is stopped v1.6.398

o][o

4. FEthernet port (RJ45)
RJ45 port is unique for Ethernet PLC, supports TCP/IP Ethernet communication, the port is
faster and more stable than USB communication, the data monitoring real-time ability is
better, program downloading and uploading is faster. The connection mode of Ethernet
communication itself has obvious advantages over RS485 and USB. In many situations of
PLC communication, users can communicate with any PLC on the spot through only one
switch.
In addition to its application in LAN, Ethernet also supports the remote search, monitoring
and operation of PLC, download functions, and communication with other TCP IP devices in
the network through the Internet.

217

RJ45 port can be configured in "PLC Config-Ethernet" of XINJE PLC programming
software, or through XINJEConfig tool. Refer to the relevant manual for details.

The LAN2 port of XDH series PLC supports EtherCAT bus control function. The number of
axes is up to 32, and the control cycle is less than 1ms. Please refer to EtherCAT motion
control user manual for the specific use of the function.

=

File Edit Search View Online Configure Option Window Help

DR xaneonza2se &
B bl A I A <O e o { 1 — %

@

Xinje XD/E Series PL

008 @EHEgRE
X o P ko - @ [[«

Ins =Ins Del sDel FS 5 6 F7T sFB sFF F3 F11 sF11 F12
Emjec # %] [pLC1 - Ladder
;_QProject
=B ———

-] Code

;i Ladder

Func Block
Config Block
[sequence Block
/=] Comment Editor

@ Free Monitor
-- Data Monitor

< 10 Monitor

o E] Set Reg Init Value
-2 PLC Config
110

l_ Password

- Pulse
-[HH Module
...6o| BD
... ED| ED
-] 4GBOX
-] 5] WBOX
-2 PLC Status
@5 €PU Detail
$oo Expansion Detalls
0| BD Details

gricl Port/

= L_j PLC Config

ﬂ 140

-Jaa] Password
@ PLC Serial Port

-0 Module

general | remote communication

¥ ethemet 8
Fulse

® Auntomatically obtain IP address

@ BD

H ED Use the following IP address

i] 4GBOX ’7
: WBOX

Cancel

1| ED Details [

5. Left extension ED port (COM3)

The left extension ED port can connect ED card to extend RS232 and RS485 port. The ED
models include XD-NES-ED (can extend one RS232 and one RS485 port, but the two cannot

communicate at the same time).

XD-NES-ED
O Each part name is shown as below:
. LED Name Function
ower — Power LED The light is ON when the ED module
Communication oo power on
LED Communication | The light is ON when ED module
LED communication is normal
Wiring terminal < A RS485+
gi B RS485-
Q | SG Ground
% FG Connect to ground terminal
S | -8 Empty
— | TX RS232 send
— RX RS232 receive
SG Ground

6. Above extension BD port (COM4, COMS5)
The above extension port can connect BD card which contains RS232 mode (XD-NS-BD),
RS485 mode (XD-NE-BD) and optical fiber mode (XD-NO-BD).

XD series 24/32 1/0 PLC can extend one BD card, XD series 48/60 I/0O PLC can extend 2 BD
cards, XD series 16 1/0 PLC cannot extend BD card.

(1) XD-NS-BD

Communication
LED

CoMm

TX RXGND =

Wiring terminal

‘HHHH‘

(2) XD-NE-BD

Communication

LED

Terminal

SG o

ER

0

A

Wiring terminal

|

. coMresistor switch

Each part name is shown as below:

Name

Function

Communication
LED

Not support this function

Wiring | TX Signal send
terminal | RX Signal receive
GND | Ground
° Empty

Each part name is shown as below:

Name

Function

Communication
LED

The light is flashing when the BD
card communication is successful

Wiring | A 485+

terminal | B 485-
S Signal ground
° Empty

Terminal resistor
switch

To choose whether to use terminal
resistor (120Q2)

XD-NE-BD has the switch to select whether it is terminal. The switch default setting is
OFF which means not install terminal resistor. If XD-NE-BD is at the head or end of the
bus, it needs to install 120Q2 terminal resistor at the both side and turn on the switch

(right).

(3) XD-NO-BD

Communicatiol
LED

N 5

CoMm

Wiring termina

1

Each part name is shown as below:

Name

Function

Communication
LED

Not support this function

Wiring terminal

The left side is signal input
terminal, the right side is signal
output terminal

219

6-1-2. Communication parameters

Communication Parameters

Station Modbus station number: 1~254
Baud Rate 300bps~9Mbps

Data Bit 56,7,8,9

Stop Bit 1,15,2

Parity Even, Odd, even, empty, mask

The default parameters: Station number is 1, baud rate is 19200bps, 8 data bits, 1 stop bit,
even parity.

There are many ways to set the parameters of PLC communication port:

There are two ways to set Modbus communication parameters: (1) setting parameters by
programming software; (2) setting parameters by XINJEConfig tool, refer to chapter 6-2-6 for
details.

Free format communication parameters can be set by programming software, refer to chapter
6-3-2 for details.

X-NET communication parameters can be set by Xinje Config tool. Refer to X-NET fieldbus
manual for details.

Note: For the A, B terminal on the PLC body, 1Mbps and higher baud rate is only fit for X-
NET communication mode.

6-2. MODBUS communication

6-2-1. Function overview
XD, XL series PLC support both Modbus master and Modbus slave.

Master mode: When PLC is set to be master, it can communicate with other slave devices
which have MODBUS-RTU or MODBUS-ASCII protocol via Modbus instructions; it also
can change data with other devices.

For example: Xinje XD3 series PLC can control inverter by Modbus.

Slave mode: When PLC is set to be slave, it can only response with other master devices.
Master and slave: In RS485 network, there can be one master and several slaves at one time

(see below diagram). The master station can read and write any slave station. Two slave
stations cannot communicate with each other. Master station should write program and read

220

or write one slave station; slave station has no program but only response the master station.
(Wiring: connect all 485+, connect all 485-)

/ \
/ \

]
I
€T
1

In RS232 network (see below diagram), there can only be one master and one slave at one
time.

\ 4

Master

There is dotted line in the diagram. It means any PLC can be master station when all PLC in
the network don’t send data. As the PLC do not have unified clock standard, communication
will fail when more than one PLC send data at one time. It is not recommended to use.
Note:

1. For XD/XL series PLC, RS232 and RS485 only support half-duplex.

2. For XC series PLC, if master PLC send one data to slave PLC, and master PLC send data
again before slave PLC receiving the last one completely, slave PLC end data error may
occur; For XD/XL series PLC, we solve this problem by adding waiting time before
communication, which means the slave PLC will receive the next data only after some time
the last data finished.

6-2-2. Changing of Modbus instruction

Modbus instruction handling mode has changed in XD/XL series PLC, users can write
Modbus instructions directly in program, the protocol station will queue up Modbus requests,
which is not the same task with communication; It means users can use one triggering
condition to trigger multiple Modbus instructions at the same time. PLC will queue up
Modbus requests according to protocol station, which will lead to communication error in XC
series PLC.

MO
Ay N

COLR K1 K500 K3 M1 K2 ’»

MCLW K1 K500 K3 M1 K2 }»

1]

REGW K1 K500 D1 K2 ’“

XC series (%)
221

MO
—

COLR K1 K500 K3 M1 K2 ’>

MCLW K1 K500 K3 M1 K2 }»

L]

REGW K1 K500 D1 K2 ’}

XD3 series (\)
Note: XD/XL series PLC sequence block has cancelled Modbus communication instructions,

which is replaced by the current Modbus instruction handling mode.

6-2-3. Modbus communication address

The soft component’s code in PLC corresponds with Modbus ID number, please see the

following table:

XD1, XD2, XD3, XL1, XL3 series PLC Modbus address and internal soft component table:

Modbus Modbus
type component | Address number | address address
(Hex) (decimal)

M MO0~M7999 8000 0~1F3F 0~7999
X0~X77 (main unit) 64 5000~503F 20480~20543
X10000~X10077 5100~513F 20736~20799

64
(#1 module)
X10100~X10177 5140~517F 20800~20863
64
(#2 module)
X10200~X10277 64 5180~51BF 20864~20927
(#3 module)
X10300~X10377 64 51C0~51FF 20928~20991
(#4 module)
X10400~X10477 64 5200~523F 20992~21055
(#5 module)

X X10500~X10577 64 5240~527F 21056~21119

(#6 module)
Coil X10600~X10677 64 5280~52BF 21120~21183
bit (#7 module)
X10700~X10777 64 52C0~52FF 21184~21247
(#8 module)
X11000~X11077 64 5300~533F 21248~21311
(#9 module)
X11100~X11177 64 5340~537F 21312~21375
(#10 module)
>B%(3000~X20077(#1 64 | 58DO~500F | 22736~22799
YO0~77(main unit) 64 6000~603F 24576~24639
Y10000~Y 10077 6100~613F 24832~24895
64

vy (#1 module)

Y10100~Y 10177 6140~617F 24896~24959
64

(#2 module)

Y10200~Y10277 64 6180~61BF 24960~25023

222

(#3 module)

Y10300~Y10377 64 61CO~61FF 25024~25087

(#4 module)

Y10400~Y 10477 64 6200~623F 25088~25151

(#5 module)

Y10500~Y10577 64 6240~627F 25152~25215

(#6 module)

Y10600~Y10677 64 6280~62BF 25216~25279

(#7 module)

Y10700~Y10777 64 62C0~62FF 25280~25343

(#8 module)

Y11000~Y11077 64 6300~633F 25344~25407

(#9 module)

Y11100~Y11177 64 6340~637F 25408~25471

(#10 module)

\B%())OOO~Y20077(#1 64 68D0~690F 26832~26895
S S0~S1023 1024 7000~73FF 28672~29695
SM SMO0~SM2047 2048 9000~97FF 36864~38911
T TO~T575 576 A000~A23F | 40960~41535
C C0~C575 576 B000~B23F | 45056~45631
ET ETO~ET31 32 C000~CO1F | 49152~49183
SEM SEMO~SEM31 32 C080~CO9F | 49280~49311
HM™ HMO~HM959 960 C100~C4BF | 49408~50367
HS™ HSO0~HS127 128 D900~D97F | 55552~55679
HT™ HTO~HT95 96 E100~E15F 57600~57695
HC™! HCO~HC95 96 E500~E55F 58624~58719
HSC™ HSCO~HSC31 32 E900~E91F 59648~59679
D D0~D7999 8000 0~1F3F 0~7999

IDO~ID99(main unit) | 100 5000~5063 20480~20579

IDI0000~IDI0099 1109 | 5100~5163 | 20736~20835

(#1 module)

D10100~1D10199 100 5164~51C7 20836~20935

(#2 module)

ID10200~1D10299 100 51C8~522B 20936~21035

(#3 module)

ID10300~1D10399 100 522C~528F 21036~21135

(#4 module)

Register ID10400~1D10499 100 5290~52F3 21136~21235
word D (#5 module)

ID10500~1D10599 100 52F4~5357 21936~21335

(#6 module)

ID10600~1D10699 100 5358~53BB 21336~21435

(#7 module)

ID10700~1D10799 100 53BC~541F 21436~21535

(#8 module)

ID10800~1D10899 100 5420~5483 21536~21635

(#9 module)

ID10900~1D10999 100 5484~54E7

(#10 module) 21636~21735

1D20000~1D20099 100 58D0~5933 22736~22835

223

(#1 BD)

uQn'?t()’~QD99(ma'” 100 | 6000~6063 | 24576~24675

QDI0000~QDI0099 | 144 | 6100-6163 | 24832~24931

(#1 module)

QD10100~QD10199 | 100 6164~61C7 24932~25031

(#2 module)

QD10200~QD10299 | 100 61C8~622B 25032~25131

(#3 module)

QD10300~QD10399 | 100 622C~628F 25132~25231

(#4 module)

QD10400~QD10499 | 100 6290~62E3 25232~25331
QD (#5 module)

QD10500~QD10599 | 100 25332~25431

62F4~6357

(#6 module)

QD10600~QD10699 | 100 6358~63BB 25432~25531

(#7 module)

QD10700~QD10799 | 100 63BC~641F 25532~25631

(#8 module)

QD10800~QD10899 | 100 6420~6483 25632~25731

(#9 module)

QD10900~QD10999 | 100 6484~64E7 25732~25831

(#10 module)

QD20000~QD20099 B _

(#1 BD) 100 68D0~6933 26832~26931
SD SD0~SD2047 2048 7000~77FF 28672~30719
TD TDO~TD575 576 8000~823F 32768~33343
CD CDO0~CD575 576 9000~923F 36864~37439
ETD ETDO~ETD31 32 A000~A01F 40960~40991
HD™! HDO~HD999 1000 A080~A467 41088~42087
HSD*! HSD0~HSD499 500 B880~BA73 47232~47731
HTD*! HTDO~HTD95 96 BC80~BCDF | 48256~48351
HCD*! HCDO0~HCD95 96 C080~CODF | 49280~49375
HSCD*! HSCD0~HSCD31 32 C480~C49F 50304~50335
FD*? FDO~FD5119 5120 C4C0~D8BF | 50368~55487
SFD*? SFD0~SFD1999 2000 E4CO~EC8F | 58560~60559
FS™2 FSO~FS47 48 FACO~FAEF 62656~62703

XD5, XDM, XDC, XD5E, XDME, XL5, XL5E, XLME series PLC Modbus address and
internal soft component table:

Modbus Modbus
Type component | Address numbers | address address
(hex) (decimal)
M MO0~M20479 20480 0~4FFFF 0~20479
X0~X77(main unit) 64 5000~503F | 20480~20543
. X10000~X10077 5100~513F | 20736~20799
Coil 64
bit X (#1 module)
X10100~X10177 5140~517F | 20800~20863
64
(#2 module)
X10200~X10277 64 5180~51BF | 20864~20927

224

(#3 module)

X10300~X10377 64 51C0~51FF | 20928~20991

(#4 module)

X10400~X10477 64 5200~523F | 20992~21055

(#5 module)

X10500~X10577 64 5240~527F | 21056~21119

(#6 module)

X10600~X10677 64 5280~52BF | 21120~21183

(#7 module)

X10700~X10777 64 52C0~52FF | 21184~21247

(#8 module)

X11000~X11077 64 5300~533F | 21248~21311

(#9 module)

X11100~X11177 64 5340~537F | 21312~21375

(#10 module)

X11200~X11277 64 5380~53BF | 21376~21439

(#11 module)

X11300~X11377 64 53C0~53FF | 21440~21503

(#12 module)

X11400~X11477 64 5400~543F | 21504~21567

(#13 module)

X11500~X11577 64 5440~547F | 21568~21631

(#14 module)

X11600~X11677 64 5480~54BF | 21632~21695

(#15 module)

X11700~X11777 64 54CO0~54FF | 21696~21759

(#16 module)

X20000~X20077

(#1 BD) 64 58D0~590F | 22736~22799

YO0~77(main unit) 64 6000~603F | 24576~24639

Y10000~Y 10077 640 6100~613F | 24832~24895

(#1 module)

Y10100~Y10177 6140~617F | 24896~24959
64

(#2 module)

Y10200~Y10277 64 6180~61BF | 24960~25023

(#3 module)

Y10300~Y10377 64 61CO0~61FF | 25024~25087

(#4 module)

Y10400~Y 10477 64 6200~623F | 25088~25151

(#5 module)

Y10500~Y10577 64 6240~627F | 25152~25215

(#6 module)

Y10600~Y10677 64 6280~62BF | 25216~25279

(#7 module)

Y10700~Y10777 64 62C0~62FF | 25280~25343

(#8 module)

Y11000~Y11077 64 6300~633F | 25344~25407

(#9 module)

Y11100~Y11177 64 6340~637F | 25408~25471

(#10 module)

Y11200~Y11277 64 6380~63BF | 25472~25535

(#11 module)

Y11300~Y11377 64 63C0~63FF | 25536~25599

225

(#12 module)

Y11400~Y 11477 64 6400~643F | 25600~25663

(#13 module)

Y11500~Y 11577 64 6440~647F | 25664~25727

(#14 module)

Y11600~Y11677 64 6480~64BF | 25728~25791

(#15 module)

Y11700~Y 11777 64 64C0~64FF | 25792~25855

(#16 module)

\B%()’OOO~Y20077(#1 64 68D0~690F | 26832~26895
S S0~S7999 8000 7000~8F3F | 28672~36671
SM SM0~SM4095 4096 9000~9FFF | 36864~40959
T T0~T4095 4096 A000~AFFF | 40960~45055
C C0~C4095 4096 BO00~BFFF | 45056~45151
ET ETO~ET39 40 C000~C027 | 49152~49191
SEM SEMO~SEM127 128 C080~COFF | 49280~49407
HM* HMO0~HM6143 6144 C100~D8FF | 49408~55551
HS™ HS0~HS999 1000 D900~DCEF | 55552~56551
HT* HTO0~HT1023 1024 E100~E4FF | 57600~58623
HC™ HC0~HC1023 1024 ES00~E8FF | 58624~59647
HSC™ HSCO~HSC36 40 E900~E927 | 59648~59687
D D0~D20479 20480 0~4FFF 0~20479

IDO~ID99(main unit) 100 5000~5063 20480~20579

ID10000~1D10099 100 5100~5163 20736~20835

(#1 module)

D10100~1D10199 100 |5164~51C7 | 20836~20935

(#2 module)

1D10200~1D10299 100 51C8~522B 20936~21035

(#3 module)

ID10300~1D10399 100 522C~528F 21036~21135

(#4 module)

ID10400~1D10499 100 5290~52F3 21136~21235

(#5 module)

ID10500~1D10599 100 52F4~5357 21236~21335

Register (#6 module)
word ID ID10600~1D10699 100 5358~53BB 21336~21435

(#7 module)

ID10700~1D10799 100 53BC~541F 21436~21535

(#8 module)

ID10800~1D10899 100 5420~5483 21536~21635

(#9 module)

ID10900~1D10999 100 5484~54E7

(#10 module) 21636~21735

ID11000~1D11099 100 54E8~554B

(#11 module) 21736~21835

ID11100~1D11199 100 554C~55AF

(#12 module) 21836~21935

ID11200~1D11299 100 55B0~5613

(#13 module) 21936~22035

ID11300~1D11399 100 5614~5677 22036~22135

226

(#14 module)

ID11400~1D11499 100 5678~56DB

(#15 module) 22136~22235

ID11500~1D11599 100 56DC~573F

(#16 module) 22236~22335

ID20000~1D20099(#1 100

BD) 58D0~5933 | 22736~22835

QDO0~QD99(main unit) | 100 6000~6063 | 24576~24675

QD10000~-QD100%9 | 44, 6100~6163 | 24832~24931

(#1 module)

QD10100~QD10199 100 6164~61C7 24932~25031

(#2 module)

QD10200~QD10299 100 61C8~622B 25032~25131

(#3 module)

QD10300~QD10399 100 629C~628F 25132~25231

(#4 module)

QD10400~QD10499 100 6290~62F3 25232~25331

(#5 module)

QD10500~QD10599 100 62F4~6357 25332~25431

(#6 module)

QD10600~QD10699 100 6358~63BB 25432~25531

(#7 module)

QD10700~QD10799 100 63BC~641F 25532~25631

(#8 module)
QD QD10800~QD10899 100 6420~6483 25632~25731

(#9 module)

QD10900~QD10999 100 6484~64ET 25732~25831

(#10 module)

QD11000~QD11099 100 64E8~654B 25832~25931

(#11 module)

QD11100~QD11199 100 _ 25932~26031

(#12 module) 654C~65AF

QD11200~QD11299 100 65B0~6613 26032~26131

(#13 module)

QD11300~QD11399 100 ~ 26132~26231

(#14 module) 6614~-6677

QD11400~QD11499 100 6678~66DB 26232~26331

(#15 module)

QD11500~QD11599 100 _ 26332~26431

(#16 module) 66DC~673F

SB)Z 0000~QD20099(#1 100 68D0~6933 | 26832~26931
SD SD0~SD4095 4096 7000~7FFF | 28672~32767
TD TDO0~TD4095 4096 8000~8FFF | 32768~36863
CD CD0~CD4095 4096 9000~9FFF | 36864~40959
ETD ETDO~ETD39 40 A000~A027 | 40960~40999
HD*! HDO0~HD6143 6144 A080~B87F | 41088~47231
HSD™* HSD0~HSD1023 1024 B880~BC7F | 47232~48255
HTD*! HTDO~HTD1023 1024 BC80~CO7F | 48256~49279
HCD™ HCD0~HCD1023 1024 C080~C47F | 49280~40303
HSCD™! HSCD0~HSCD39 40 C480~C4A7 | 50304~50343

227

FD™? FDO~FD8191 8192 C4CO~E4BF | 50368~58559
SFD™? SFDO~SFD5999 6000 E4CO~FC2F | 58560~64559
FS™2 FSO~FS47 48 FACO~FAEF | 62656~62703

XDH series PLC Modbus address and internal soft component table:

Modbus Modbus
Type component | Address numbers | address address
(hex) (decimal)

M MO0~M20479 20480 0~AFFFF 0~20479
X0~X77(main unit) 64 5000~503F | 20480~20543
X10000~X10077 5100~513F | 20736~20799

64
(#1 module)
X10100~X10177 5140~517F | 20800~20863
64
(#2 module)
X10200~X10277 64 5180~51BF | 20864~20927
(#3 module)
X10300~X10377 64 51CO~51FF | 20928~20991
(#4 module)
X10400~X10477 64 5200~523F | 20992~21055
(#5 module)
X10500~X10577 64 5240~527F | 21056~21119
(#6 module)
X10600~X10677 64 5280~52BF | 21120~21183
(#7 module)
X10700~X10777 64 52C0~52FF | 21184~21247
(#8 module)

X X11000~X11077 64 5300~533F | 21248~21311

(#9 module)
Coil X11100~X11177 64 5340~537F | 21312~21375
bit (#10 module)
X11200~X11277 64 5380~53BF | 21376~21439
(#11 module)
X11300~X11377 64 53C0~53FF | 21440~21503
(#12 module)
X11400~X11477 64 5400~543F 21504~21567
(#13 module)
X11500~X11577 64 5440~547F | 21568~21631
(#14 module)
X11600~X11677 64 5480~54BF | 21632~21695
(#15 module)
X11700~X11777 64 54C0~54FF | 21696~21759
(#16 module)
X20000~X20077
(#1 BD) 64 58D0~590F | 22736~22799
YO~77(main unit) 64 6000~603F | 24576~24639
Y10000~Y 10077 6100~613F | 24832~24895
64

v (#1 module)

Y10100~Y10177 6140~617F 24896~24959
64

(#2 module)

Y10200~Y10277 64 6180~61BF | 24960~25023

228

(#3 module)

Y10300~Y10377 64 61C0~61FF | 25024~25087

(#4 module)

Y10400~Y 10477 64 6200~623F | 25088~25151

(#5 module)

Y10500~Y 10577 64 6240~627F | 25152~25215

(#6 module)

Y10600~Y 10677 64 6280~62BF | 25216~25279

(#7 module)

Y10700~Y10777 64 62C0~62FF | 25280~25343

(#8 module)

Y11000~Y11077 64 6300~633F | 25344~25407

(#9 module)

Y11100~Y11177 64 6340~637F | 25408~25471

(#10 module)

Y11200~Y 11277 64 6380~63BF | 25472~25535

(#11 module)

Y11300~Y11377 64 63C0~63FF | 25536~25599

(#12 module)

Y11400~Y 11477 64 6400~643F | 25600~25663

(#13 module)

Y11500~Y 11577 64 6440~647F | 25664~25727

(#14 module)

Y11600~Y 11677 64 6480~64BF | 25728~25791

(#15 module)

Y11700~Y 11777 64 64C0~64FF | 25792~25855

(#16 module)

\B(é(;OOO~Y20077(#l 64 68D0~690F | 26832~26895
S S0~S57999 8000 7000~8F3F | 28672~36671
SM SMO0~SM4095 4096 9000~9FFF | 36864~40959
T TO~T4095 4096 AO000~AFFF | 40960~45055
C C0~C4095 4096 BO00~BFFF | 45056~45151
ET ETO~ET39 40 C000~C027 | 49152~49191
SEM SEMO~SEM127 128 CO080~COFF | 49280~49407
HM™? HMO0~HM6143 6144 C100~D8FF | 49408~55551
HS™! HS0~HS999 1000 D900~DCEF | 55552~56551
HT* HT0~HT1023 1024 E100~E4FF | 57600~58623
HC*! HC0~HC1023 1024 ES00~E8FF | 58624~59647
HSC™ HSCO0~HSC39 40 E900~E927 | 59648~59687
D D0~D20479 20480 0~4FFF 0~20479

IDO~ID99(main unit) 100 5000~5063 20480~20579

ID10000~1D10099 100 |5100~5163 | 20736~20835

(#1 module)

Register D10100-1D10199 100 | 5164~51C7 | 20836~20935
word ID (#2 module)

1D10200~1D10299 100 51C8~522B 20936~21035

(#3 module)

ID10300~1D10399 100 522C~528F 21036~21135

(#4 module)

1D10400~1D10499 100 5290~52F3 21136~21235

229

(#5 module)

ID10500~1D10599 100 52F4~5357 21236~21335

(#6 module)

ID10600~1D10699 100 5358~53BB 21336~21435

(#7 module)

ID10700~1D10799 100 53BC~541F 21436~21535

(#8 module)

ID10800~1D10899 100 5420~5483 21536~21635

(#9 module)

ID10900~1D10999 100 5484~54E7

(#10 module) 21636~21735

ID11000~1D11099 100 54E8~554B

(#11 module) 21736~21835

ID11100~1D11199 100 554C~55AF

(#12 module) 21836~21935

ID11200~1D11299 100 55B0~5613

(#13 module) 21936~22035

ID11300~1D11399 100 5614~5677

(#14 module) 22036~22135

ID11400~1D11499 100 5678~56DB

(#15 module) 22136~22235

ID11500~1D11599 100 56DC~573F

(#16 module) 22236~22335

ID20000~1D20099(#1 100

BD) 58D0~5933 | 22736~22835

QDO0~QD99(main unit) | 100 6000~6063 | 24576~24675

QD10000-QD10099 100 6100~6163 | 24832~24931

(#1 module)

QD10100~QD10199 100 6164~61C7 24932~25031

(#2 module)

QD10200~QD10299 100 _ 25032~25131

(#3 module) 61C8~622B

QD10300~QD10399 100 622C~628F 25132~25231

(#4 module)

QD10400~QD10499 100 _ 25232~25331

(#5 module) 6290~62F3

QD10500~QD10599 100 62F4~6357 25332~25431

(#6 module)

QD10600~QD10699 100 _ 25432~25531
QD (#7 module) 6358~63BB

QD10700~QD10799 100 63BC~641F 25532~25631

(#8 module)

QD10800~QD10899 100 6420~6483 25632~25731

(#9 module)

QD10900~QD10999 100 6484~64ET 25732~25831

(#10 module)

QD11000~QD11099 100 64ES~654B 25832~25931

(#11 module)

QD11100~QD11199 100 654C~65AF 25932~26031

(#12 module)

QD11200~QD11299 100 65B0~6613 26032~26131

(#13 module)

QD11300~QD11399 100 6614~6677 | 26132~26231

230

(#14 module)

OD11400~QD11499 | 100 c675-6op | 2623226331

(#15 module)

OD11500~QD11599 | 100 coDC_g7ar | 2633226431

(#16 module)

SB)ZOOOO~QD20099(#1 100 68D0~6933 | 26832~26931
) SD0~SD4095 4096 | 7000-7FFF | 28672-32767
™D TDO-TD4095 4096 | B000~8FFF | 32768-36363
cD CDO~CD4095 4096 | 9000~OFFF | 36864-40959
ETD ETDO~ETD39 20 AO00~-A027 | 40960~40999
HDL HDO~HD6143 6144 | AOBO-BSTF | 41088-47231
HSD'! | HSDO~HSD1023 1024 | B88O-BCTF | 47232-48255
HTD® | HTDO-HTD1023 1024 | BC80~CO7F | 4825649279
HCD'' | HCDO~HCD1023 1024 | COB0~C47F | 49280~40303
HSCD'! | HSCDO~HSCD39 40 C480~C4A7 | 50304-50343
FD2 FDO-FD8191 8102 | CACO~E4BF | 50368-58559
SFD 2 SFDO~SFD4095 4096 | EACO-FC2F | 5856064559
FS? FSO~FS47 256 FACO-F4EF | 62656-62703

Note:

1. the power down holding area is marked with *1, and the flash area is marked with *2.

2: the address in the above table is used when PLC is the lower computer and Modbus RTU
or MODBUS ASCI| protocol is used for communication, the general upper computer is:
SCADA/HMI/PLC.

3: if the upper computer is PLC, program according to Modbus RTU or MODBUS ASCI|I
protocol.

4: if the upper computer is SCADA or HMI, there are two situations: the first one has the
Xinje driver, for example: Xinje HMI / Zijingiao SCADA.

The program can be written directly by using PLC internal soft components (YO / MO0); for
the second type, Modbus RTU or Modbus ASCII is selected if there is no Xinje driver, and
then use the addresses in the table above to define the data variables.

5: input and output point is octal, please calculate corresponding input and output point
MODBUS address according to octal, for example: MODBUS corresponding to YO,

the address is H6000, the Modbus address corresponding to Y10 is H6008 (not H6010), and
the Modbus address corresponding to Y20 is H6010 (not H6020).

6: when the Modbus address exceeds 32767, it needs to be expressed in hexadecimal, and "0"
should be added before the address. For example: MODBUS of HDO is 41088 in decimal
(beyond 32767), and 41088 cannot be written into the software, so it needs to be expressed in
hexadecimal as HOAQ80.

7: Calculation of Modbus address of X and Y, taking X as an example, the calculation of
Modbus address of Y is the same as that of X.

X0: 20480 X10: 20480+8 X20: 20480+16 X30: 16384+24---

X10000: 20736 X10010: 20736+8 X10020: 20736+16--*

X10200: 20800 X10210: 20800+8 X10220: 20800+16--*

231

6-2-4 Modbus data format

Modbus transmission mode:

There are two transmission modes: RTU and ASCII; It defines serial transmission of bit
content in message domain; it decides how information to pack and decode; transmission
mode (and port parameters) of all devices in Modbus serial links should be the same.
Modbus-RTU data structure

RTU mode:

Under Modbus RTU (remote terminal unit) mode, message has two 4-bit hexadecimal
characters in every 8-bit byte. This mode has very high data density, higher throughput rate
than Modbus ASCII. Every message should be sent by continuous characters.

RTU mode frame check domain: cycle redundancy check (CRC) .

RTU mode frame description:

Modbus Function data CRC
station code
2 byte
1 byte 1 byte 0~252 byte CRC low | CRC
high
Format:
START No input signal = 10ms
Address (station no.) Communication address: 8-bit binary
Function Function code: 8-bit binary
DATA (n-1) Data content:
...... *Q_hi <
DATAO N*8-bit data, N<:8, max 8 bytes
CRC CHK Low CRC check code
CRC CHK High 1_6—b_|t CRC check code is consist of two 8-
bit binary
END No input signal = 10ms

2. Modbus address:

00H: All the Xinje XC series PLC broadcast
01H: Communicate with address 01H PLC.
OFH: Communicate with address 15H PLC.
10H: Communicate with address 16H PLC and so on. Up to 254 (FEH) .

slave stations don’t response.

3. Function and DATA:

Function Function Modbus instruction
code
01H Read coil COLR
02H Read input coil INPR(not support Xinje PLC)
03H Read register REGR
04H Read input register | INRR
05H Write coil COLW
06H Write register REGW
10H Write multi- MRGW
register

232

[OFH | Write multi-coil | MCLW |

(1) Take 06H function code as example (single register write), and introduce data
format.
E.g.: upper computer write data to PLC H0002 (D2).

RTU mode:

Asking format Response format

ID 01H ID 01H

Function code 06H Function code 06H

Register ID 00H Register ID 00H
02H 02H

Data content 13H Data contents 13H
88H 88H

CRC CHECK High | 25H CRC CHECK High 25H

CRC CHECK Low | 5CH CRC CHECK Low 5CH

Explanation:

1. Address is PLC station no.

2. Function code is Modbus-RTU protocol read/write code.

3. Register address is the PLC modbus address, please see chapter 6-2-3.

4. Data content is the value in D2.

5. CRC CHECK High / CRC CHECK Low is high and low bit of CRC check value.

If 2 pieces of Xinje XD3 series PLC communicate with the other one, write K5000 to D2.
MO

—N | REGW K1 H0002 K5000 KZ}{

MO is trigger condition (Rising edge). If communication fails, the instruction will try twice. If
the third time communication fails, then communication ends.
The relationship between REGW and Modbus RTU protocol (other instructions are the same)

REGW Function code 06H
K1 Station no.

HO0002 Modbus address
K5000 Data contents 1388H
K2 PLC serial port

The complete communication datum are: 01H 06H 00H 02H 13H 88H (system take CRC
checking automatically)

If monitor the serial port2 data by serial port debugging tool, the datum are: 01 06 00 02 13
88 25 5C

Note: The instruction doesn’t distinguish decimal, hex, binary, octal etc. For example,
B10000, K16 and H10 are the same value, so the following instructions are the same.
REGW K1 B111110100 D1 K2

REGW K1 K500 D1 K2

REGW K1 H1F4 D1 K2

(2) Function code 01H/02H: read coil/read input coil
Eg. Read coil address 6000H (Y0Q). At this time, Y0 and Y1 are ON.
233

RTU mode:

Asking format Response format

Address 01H Address 01H

Function code 01H/02H | Function code 01H/02H

Coil address 60H Byte number 01H
00H

Coil number 00H Data contents 03H
02H

CRC CHECK A3H CRC CHECK Low | 11H

Low

CRC CHECK CBH CRC CHECK High | 89H

High

As the status of YO and Y1 is ON, the data contents are 03H (0000 0011).

(3) Function code 03H: read register
Eg. Read two register starting from 03E8H (D1000, D1001).

RTU mode:
Asking format Response format
Address 01H Address 01H
Function code 03H Function code 03H
Register address 03H Byte number 04H
E8H
Register number 00H Data contents 12H
2EH
02H 04H
E8H
CRC CHECK 44H CRC CHECK Low | 9DH
Low
CRC CHECK 7BH CRC CHECK High | CCH
High

(4) Function code 05H: write single coil
Eg. Set on the coil address 6000H (Y0).

At this time, the data read from D1000 and D1001 are 122EH (4654) and 04E8H (1256).

RTU mode:
Asking format Response format
Address 01H Address 01H
Function code 05H Function code 05H
Coil address 60H Coil address 60H

00H 00H

Data contents FFH Data contents FFH
(low byte is before | 00H 00H
high byte)
CRC CHECK 92H CRC CHECK Low | 92H
Low
CRC CHECK 3AH CRC CHECK High | 3AH
High

Note: when writing single coil, ON is 00FFH, OFF is 0000H; the low byte is before high
byte for the data contents.

234

(5) Function code 0FH: write multiple coils
Eg. Write 16 coils start from address 6000H (YO0).

RTU mode:

Asking format Response format

Address 01H Address 01H

Function code OFH Function code OFH

Coil address 60H Coil address 60H
00H 00H

Coil number 00H Coil number 00H
10H 10H

Byte number 02H - -

Data contents 03H

(low byte is before | 01H

high byte)

CRC CHECK 43H CRC CHECK Low 4AH

Low

CRC CHECK 16H CRC CHECK High 07H

High

The data contents are 0103H, the binary format is 0000 0001 0000 0011, write in
corresponding Y17~YO0, so YO, Y1, Y10 are set ON.
Note: when writing the data contents, the low byte is before the high byte.

(6) Function code 10H: write multiple registers
Eg. Write 3 registers starting from address 0000H (DO).

RTU mode:
Asking format Response format
Address 01H Address 01H
Function code 10H Function code 10H
Register address 00H Register address 00H
00H 00H
Register number 00H Register number 00H
03H 03H
Byte number 06H - -
Data contents 00H
01H
00H
02H
00H
03H
CRC CHECK 3AH | CRC CHECK Low 3AH
Low
CRC CHECK 81H CRC CHECK High 81H
High

After executing, the value in DO, D1, D2 are 1, 2, 3.
Note: byte number = register number * 2.

235

Modbus-ASCII data structure

ASCII mode:

For Modbus ASCII (American Standard Code for Information Interchange) mode in serial
links, every 8-bit byte is sent as two ASCII characters. When communication links and
devices do not fit RTU mode timing monitor, we usually use the ASCII mode.

Note: One byte needs two characters, so ASCII mode has lower inefficiency than RTU
mode.

E.g.: Byte 0X5B will be encoded as two characters: 0x35 and 0x42 (ASCII code 0x35
="5", 0x42="B") .

ASCII mode frame check domain: Longitudinal Redundancy Checking (LRC)

ASCII mode frame description:

Start mark | Modbus no. | Function code | data LRC End mark
1 character 2 characters | 2 characters 0~252%2 2 characters 2 characters
0x3A characters 0x0D | 0x0A
Format:

STX (3AH) Start mark=3AH

Address code high bit Communication position (no) :

Address code low bit Consist of 2 ASCII codes

Function code high bit Function code (command) :

Function code low bit Consist of 2 ASCII codes

Instruction start 1D

Instruction start 1D Command start bit:

Instruction start ID Consist of 4 ASCII codes

Instruction start 1D

Data length

Data length Length from start to end:

Data length Consist of 4 ASCII codes

Data length

LRC check high bit LRC check code:

LRC check low bit Consist of 2 ASCII codes

END high bit End mark:

. END Hi=CR (0DH) , END Lo=CR
END low bit COAH)

2. Communication address:

00H: All Xinje XC series PLC broadcast—— slave stations do not response.
01H: Communicate with address 01H PLC.

OFH: Communicate with address 15H PLC.

10H: Communicate with address 16H PLC.

And so on, up to 254 (FEH) .

3. Function and DATA:

Function | Function Corresponding modbus
code

01H Read coil COLR

02H Read input coil INRR

236

03H Read register REGR

04H Read input register INRR

05H Write single coil COLW

06H Write single register REGW

10H Write multiple MRGW
registers

OFH Write multiple coils MCLW

Take 06H function code (write single register) as example, and introduce data format
Cother functions are similar to this) :
E.g.: upper computer write data K5000(H1388) to PLC H0002 (D2).

ASCII mode:
Start mark 3AH
ID 30H
31H
Function code 30H
36H
Register ID high byte 30H
30H
Register ID low byte 30H
32H
Data content high byte 31H
33H
Data content low byte 38H
38H
LRC 35H
43H
End mark ODH
0AH
Description:

1. address is PLC station number.

2. Function code is Modbus-ASCI|I protocol read/write code.

3. Register 1D is the PLC modbus communication ID, please see chapter 7-2-2.

4. Data content is the value in D2.

5. LRC CHECK Low / CRC CHECK High is low and high bit of CRC check value.

If two pieces of Xinje XD3 PLC communicate with each other, write K5000 to D2.
MO

—N | REGW K1 H0002 K5000 KZ}{

MO is trigger condition (rising edge). When Xinje PLC communicates by Modbus, if
communication fails, the instruction will try twice. If the third time communication fails, then
communication ends.

The relationship between REGW and ASCII protocol (other instructions are similar to this):
REGW Function code 06H

K1 Station number
H0002 Modbus ID

237

K5000 Data content is 1388H
K2 PLC communication serial port

Complete data string: 3AH 30H 31H 30H 36H 30H 30H 30H 32H 31H 33H 38H 38H
35H 43H (system take CRC checking automatically)

If monitor the serial port2 by serial port debugging tool, the datum are: 3AH 30H 31H 30H
36H 30H 30H 30H 32H 31H 33H 38H 38H 35H 43H ODH OAH

Note: The data does not distinguish decimal, binary, hexadecimal etc. For example, B10000,
K16 and H10 are the same value, so the following instructions are the same.

REGW K1 B111110100 D1 K2

REGW K1 K500 D1 K2

REGW K1 HI1F4 D1 K2

6-2-5. Communication Instructions

Modbus instructions include coil read/write, register read/write; below will introduce the
details.

Instructions in details:

The operand definition in the instruction:

1. Remote communication station and serial port number.

E.g.: one PLC connects 3 inverters. PLC needs to write and read the parameters of inverter.
The inverter station number is 1.2 and 3. So the remote communication number is 1.2 and 3.

2. Remote register/coil start ID number:

Assign remote coil/register number: the start coil/register ID of PLC read and write, it is
normally used with ‘assigned coil/register number’.

E.g.: PLC read Xinje inverter’s output frequency (H2103), output current (H2104) , bus
voltage (H2105) , then remote register/coil start ID is H2103, assigned coil number is K3.

3. Local receipt/send coil/register address: Coil/register in PLC used to exchange data with
lower computer.
E.g.: write coil MO: write MO status to assigned address in lower computer

Write register DO: write DO value to assigned address

Read coil M1: read content in lower computer assigned address to M1

Read register D1: read content in lower computer assigned address to D1

4. communication condition:

The preconditions of Modbus communication can be normal open/closed coil and
rising/falling edge. When the open/close coil triggers, Modbus instructions will always be
executed. When the communication between multiple slave stations or the traffic is large,
communication delay may occur. The oscillating coil can be used as triggering condition.
When the rising/falling edge triggers, Modbus instructions will only be executed once, and
only when the next rising/falling edge comes, Modbus instructions will be executed again.

238

Coil Read [COLR]

Instruction Summary
Read the specified station’s coil status to the local device;

Coil read [COLR]
16 bits COLR 32 bits -
instruction instruction
Execution Normally ON/OFF coil Suitable XD, XL
condition models
Hardware - Software -
reguirement Requirement
Operands
Operands | Function Type
S1 Specify the remote communication station no. 16 bits, BIN
S2 Specify the remote coil start address 16 bits, BIN
S3 Specify the coil quantity 16 bits, BIN
D1 Specify the local coil start address bits
D2 Specify the serial port no. 16 bits, BIN
Suitable soft components
Word Operands System Constant | Module
D* | D | TDO* | cD* | DX | DY | DM* | DS* | KH ID| QD
S1 ° ° ° ° °
S2 ° ° ° ° °
S3 o | o ° ° °
Operands System
Bit X|Y|M|s|T[C| D
D1 oo | e o [eo | o

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM. M includes M, HM, SM; S includes S and HS; T includes T and

HT; C includes C and HC.

Function

Go &= & v @)

® |

K1 ‘KSOO‘ K3 ‘ M1 ‘ KZ‘

e Read the coil, Modbus function code 01H.

239

e Serial port: KO~KS5. KO: Port0 (RS232), K1: Port1(RS232), K2: Port2(RS485), K3:
Port3(left extension port), K4: Port4(above extension port 1), K5: Port5(above
extension port 2).

e Operands S3: K1~K2000, the max coil quantity is 2000.

e When X0 is ON, COLR instruction is executed. When the instruction starts to execute,
the Modbus read and write flag SM160 (serial port 2) is set on; when the execution is
completed, SM160 (serial port 2) is set OFF. If a communication error occurs and the
number of resend is set, it will be automatically resend. Users can check the relevant
registers to determine the cause of the error. The execution result of Modbus read and
write instructions of serial port 2 is in SD160.

linput coil read [INPR]

Summary
Read the specified station’s input coil status to local device.

Input coil read[INPR]
16 bits INPR 32 bits -
instruction instruction
Execution Normally ON/OFF, rising Suitable XD, XL
condition edge models
Hardware - Software -
reguirement reguirement

Operands
Operands | Function Type
Sl Specify remote communication station no. 16 bits, BIN
S2 Specify remote coil start address number 16 bits, BIN
S3 Specify coil number 16 bits, BIN
D1 Specify start address number of local receipt bit

coils

D2 Specify serial port number 16 bits, BIN

Suitable soft components

Word Operands System Constant | Module
D* | D | TD* | CD* [DX | DY | DM* | DS* | KH ID | QD
S1 o | o ° ° °
S2 ° ° ° °
S3 o | o ° . °
D2 K
Operands System
. X M* | S| T [C[Dnm
Bit D1 R o (o | o

240

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S
and HS; T includes T and HT; C includes C and HC.

Function

F('"O—{

e Read input coil, Modbus function code is 02H.

e Serial port: KO~KS5. KO: Port0 (RS232), K1: Port1(RS232), K2: Port2(RS485), K3:
Port3(left extension port), K4: Port4(above extension port 1), K5: Port5(above
extension port 2).

e Operand S3: K1~K2000, max input coil number is 2008.

e When X0 is ON, INPR instruction is executed, Modbus read write flag SM160(serial
port2) is set ON, SM160 is set OFF when the execution is completed. If a
communication error occurs and the number of resend is set, it will be automatically

Go = &= v @)

INPR ‘ K1 ‘KSOO‘ K3 ‘ M1 ‘ KZ‘

resend. Users can check the relevant registers to determine the cause of the error. The
execution result of Modbus read and write instructions of serial port 2 is in SD160.
e This instruction cannot read XINJE PLC input coil.

Single Coil Write [COLW]

Summary
Write local device specified coil to remote station no’s coil.

Single Coil write [COLW]
16 bits COoLW 32 bits -
instruction instruction
Execution Normally ON/OFF, edge Suitable XD, XL
Condition triggering Models
Hardware - Software -
Requirement Requirement
Operands
Operands | Function Type
D1 Specify remote communication station number 16 bits, BIN
D2 Specify remote coil start address 16 bits, BIN
Sl Specify start address of local coil bit
S2 Specify serial port number 16 bits, BIN
Suitable soft components
Word Operands System Constant | Module
D~ | cD* | DX1'DY | Dm* | DS* | KH D[] oD
D1 ° ° ° ° °
D2 ° ° ° ° °
S2 K

Operand System
: X|Y| M]S| T| C|Dnm
Bit S
[} [) [) [) [] [)

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S
and HS; T includes T and HT; C includes C and HC.

Function

F(MO—{

e Write single coil, Modbus function code is 05H.

e Serial port: KO~KS5. KO: Port0 (RS232), K1: Port1(RS232), K2: Port2(RS485), K3:
Port3(left extension port), K4: Port4(above extension port 1), K5: Port5(above
extension port 2).

e When X0 is ON, COLW instruction is executed, Modbus read write flag SM160(serial
port2) is set ON, SM160 is set OFF when the execution is completed. If a
communication error occurs and the number of resend is set, it will be automatically

ey (2 () 2

COLW‘ K1 ‘KSOO‘ M1 ‘ K2 ‘

resend. Users can check the relevant registers to determine the cause of the error. The
execution result of Modbus read and write instructions of serial port 2 is in SD160.

Multiple coils write [MCLW]

Summary
Write local device multiple coils to remote station no’s coil.

Multiple coils write [MCLW)]
16 bits MCLW 32 bits -
instruction instruction
Execution Normally ON/OFF, edge Suitable XD, XL
Condition triggering models
Hardware - Software -
Requirement Requirement

Operands
Operands | Function Type
D1 Specify remote communication station number 16 bits, BIN

242

D2 Specify remote coil start address 16 bits, BIN
D3 Specify coil number 16 bits, BIN
Sl Specify start address of local coils bit

S2 Specify serial port number 16 bits, BIN

Suitable soft components

Word Operands System Constant | Module
D|FD| TD*| CD* | DX | DY | DM* | DS* | KH ID | QD
D1 ° ° ° ° °
D2 ° ° ° ° °
D3 ° ° ° ° °
S2 K
Operands System
Bit X|Y[m[s[T*]cx| Dnm
S1 o | o | e o |o | o

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S
and HS; T includes T and HT; C includes C and HC.

Function

MCLW‘ K1 ‘KSOO‘ K3 ‘ M1 ‘ KZ‘

. @ e G @ @
- —

e Write multiple coils, Modbus function code is OFH.

e Serial port: KO~KS5. KO: Port0 (RS232), K1: Port](RS232), K2: Port2(RS485), K3:
Port3(left extension port), K4: Port4(above extension port 1), K5: Port5(above
extension port 2).

e Operand D3: max coil number is 1976.

e When X0 is ON, MCLW instruction is executed, Modbus read write flag SM160(serial
port2) is set ON, SM160 is set OFF when the execution is completed. If a
communication error occurs and the number of resend is set, it will be automatically
resend. Users can check the relevant registers to determine the cause of the error. The
execution result of Modbus read and write instructions of serial port 2 is in SD160.

Register read [REGR]
Summary
Read remote station no’s register to local device.

Register read[REGR]

16 bits REGR 32 bits -
instruction instruction

243

Execution Normally ON/OFF, edge Suitable XD, XL
Condition triggering models
Hardware - Software -
Requirement Requirement

Operands
Operands | Function Type
S1 Specify remote communication station number 16 bits, BIN
S2 Specify remote register start address 16 bits, BIN
S3 Specify register number 16 bits, BIN
D1 Specify start address of local register 16 bits, BIN
D2 Specify serial port number 16 bits, BIN

Suitable soft components

Word Operands System Constant | Module
D*| FD | TD* [CD* | DX | DY | DM* | DS* | KH ID| QD
S1 o | o . ° °
S2 ° . ° °
S3 ° ° ° ° °
D1 .
D2 K

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Function

. G & @ o @
- —

REGR‘ K1 ‘KSOO‘ K3 ‘ D1 ‘ K2‘

Read register, Modbus function code is 03H.

Serial port: KO~KS5. KO: Port0 (RS232), K1: Port1(RS232), K2: Port2(RS485), K3:
Port3(left extension port), K4: Port4(above extension port 1), K5: Port5(above
extension port 2).

Operand S3: max register number is 125.

When X0 is ON, REGR instruction is executed, Modbus read write flag SM160(serial
port2) is set ON, SMI160 is set OFF when the execution is completed. If a
communication error occurs and the number of resend is set, it will be automatically
resend. Users can check the relevant registers to determine the cause of the error. The
execution result of Modbus read and write instructions of serial port 2 is in SD160.

Input register read [INRR]

Summary

Read remote station no’s input register to local device.

244

Input register read [INRR]
16 bits INRR 32 bits -
instruction instruction
Execution Normally ON/OFF, edge Suitable XD, XL
Condition triggering models
Hardware - Software -
Requirement Requirement

Operands
Operands | Function Type
S1 Specify remote communication station number 16 bits, BIN
S2 Specify remote register start address 16 bits, BIN
S3 Specify register number 16 bits, BIN
D1 Specify start address of local register 16 bits, BIN
D2 Specify serial port number 16 bits, BIN

suitable soft components

Word Operands System Constant | Module
D*| FD| TD* | CD* | DX | DY | DM* | DS* | KH ID | QD
S1 ° ° ° ° °
S2 . ° ° ° °
S3 ° ° ° ° °
D1 °
D2 K

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Function

B ® ®® @ @
o

INRR ‘ K1 ‘KSOO‘ K3 ‘ D1 ‘ KZ‘

Read input register, Modbus function code is 04H.

Serial port: KO~K5. KO: Port0 (RS232), K1: Port1(RS232), K2: Port2(RS485), K3:
Port3(left extension port), K4: Port4(above extension port 1), K5: Port5(above
extension port 2).

Operand S3: max register number is 125.

When X0 is ON, INRR instruction is executed, Modbus read write flag SM160(serial
port2) is set ON, SM160 is set OFF when the execution is completed. If a
communication error occurs and the number of resend is set, it will be automatically
resend. Users can check the relevant registers to determine the cause of the error. The
execution result of Modbus read and write instructions of serial port 2 is in SD160.

Single Register write [REGW]

245

summary
Write local device register to specified remote station no’s register.

Register write[REGW]
16 bits REGW 32 bits -
instruction instruction
Execution Normally ON/OFF, edge Suitable XD, XL
Condition triggering models
Hardware - Software -
Requirement Requirement

Operands
Operands | Function Type
D1 Specify remote communication station number 16 bits, BIN
D2 Specify remote register start address 16 bits, BIN
S1 Specify start address of local register 16 bits, BIN
S2 Specify serial port number 16 bits, BIN

suitable soft components

Word Operands System Constant | Module
D|IFD|TD| CO|[DX|DY|DM| DS | KH ID| QD
D1 o | e ° ° °
D2 o | e ° ° °
S1 °
S2 K

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Function

() () () ()

X0
REGW‘ K1 ‘KSOO‘ D1 ‘ K2 ‘

e Write register, Modbus function code is 06H.

e Serial port: KO~KS5. KO: Port0 (RS232), K1: Portl(RS232), K2: Port2(RS485), K3:
Port3(left extension port), K4: Port4(above extension port 1), K5: Port5(above
extension port 2).

e When X0 is ON, REGW instruction is executed, Modbus read write flag SM160(serial
port2) is set ON, SMI160 is set OFF when the execution is completed. If a
communication error occurs and the number of resend is set, it will be automatically

resend. Users can check the relevant registers to determine the cause of the error. The
execution result of Modbus read and write instructions of serial port 2 is in SD160.

246

Multiple registers write [MRGW)]

Summary
Write local device multiple registers to remote station no’s registers.
Multi-register write [MRGW)]
16 bits MRGW 32 bits -
instruction instruction
Execution Normally ON/OFF, edge Suitable XD, XL
Condition triggering models
Hardware - Software -
Requirement Requirement
Operands
Operands | Function Type
D1 Specify remote communication station number 16 bits, BIN
D2 Specify remote register start address 16 bits, BIN
D3 Specify register number 16 bits, BIN
S1 Specify start address of local registers 16 bits, BIN
S2 Specify serial port number 16 bits, BIN
suitable soft components
Word Operands System Constant | Module
D* | /> | TO* | cD* | DX | DY | DM* | DS* [KH ID | QD
D1 ° ° ° ° .
D2 ° ° ° ° °
S1 °
S2 K

Notes: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

Function

F(MO—{

e Write multiple registers, Modbus function code is 10H.

e Serial port: KO~KS5. KO: Port0 (RS232), K1: Port](RS232), K2: Port2(RS485), K3:
Port3(left extension port), K4: Port4(above extension port 1), K5: Port5(above
extension port 2).

@y (2 () (=) ()

MRGW‘ K1 ‘KSOO‘ K3 ‘ D1 ‘ K2 ‘

e Operand D3: the max register number is 123.

e When X0 is ON, MRGW instruction is executed, Modbus read write flag SM160(serial
port2) is set ON, SM160 is set OFF when the execution is completed. If a
communication error occurs and the number of resend is set, it will be automatically
resend. Users can check the relevant registers to determine the cause of the error. The

execution result of Modbus read and write instructions of serial port 2 is in SD160.
247

6-2-6. Modbus serial port configuration

There are two ways to set Modbus communication parameters: 1. setting parameters by
programming software; 2. setting parameters by XINJEConfig tool;

1. Set parameters by programming software

When using programming software to configure the parameters of PLC serial port, the
version below V3.4 must use XNET communication mode, and the version above V3.4 can
also use Modbus communication mode (RS232 port).

(1) Use the USB download cable to connect the PLC with the computer. Here the USB

download cable is the HMI download cable, as shown below, the software must switch
to XNet communication mode.

(2) Open the programming software, click configure/PLC comm port settings. It will show
below figure:

=

=24 PLC Corfig R0 - HER
~{uea] 110

[Password
@ PLC Senal Port
! ethemet
-] Pulse
-0 Module

- E0l ED
- 0] 4GBOX

-] WBOX

Read From PLC Write Ta PLC

Cancel

(3) Click add, it will show two modes, modbus mode and free mode, please select modbus
mode, it will show below figure.

248

PLC1 - Serial Port Set

=3 PLC Canfig =h0 - B ModbusiE il 1

H /0 —|
[Password oM wa=: com v S 1 =
@@ PLC Serial Port
W ethemet SR | 19200bps v | fEE RTU v
[Pulse s
[l Module s |8 | EERGER 3
~Je] BD {ms):
E ED ¥l e Even W EEEH:J 300
-1 It| 4GBOX {ms):

Waox et |1 v mitcy 3

FEFEELE. EEHBEZPLC
Read From PLC | Witte To PLC Cancel

Port No.: It refers to Port of PLC, COMO refers to Port 0 (RS232), COML1 refers to Port 1
(RS232), COM2 refers to Port 2 (RS485) or Port 2-RS232 (RS485) or Port 2-RS485 (RS485),
COM3 refers to Port 3 (left extended ED port), COM4 refers to Port 4 (upper extended BD
port 1), COMS refers to Port 5 (upper extended BD port 2).
The baud rate, data bit, parity bit, stop bit should be same to the communication device.
Station number: if the PLC is master, the station no. is defaulted 1, if the PLC is slave, it
needs to set different station no.
Two communication modes: RTU, ASCII.
Delay before sending: Waiting time before PLC sends data. In the original XC series PLC, if
the master PLC communicates with the slave PLC, the master PLC sends data to the slave
PLC. If the master PLC sends data to the slave PLC after the first time, and the slave PLC has
not yet had time to receive the data, then the master PLC sends data to the slave PLC again,
which easily leads to the error of the slave PLC; In XD series PLC, it has send delay to solve
the problem. That is, after receiving data from the slave station, it must delay a certain time to
receive the next communication data, so as not to cause the above problems.
Reply overtime (ms): it refers to the time when the PLC can not receive the response after
sending the request and wait for sending again.
Retry times: It refers to the number of times that the PLC can not receive the reply, and each
reply needs a reply timeout time.

(4) After setting, click write to PLC, then cut off the PLC power supply and power on again

to make the settings effective.

Note: V3.4 version of the XD series of PLC download and upload serial configuration data
must use XNET communication mode, that is, using USB port to download and upload
configuration data. If the following prompt appears, you need to check whether the serial port
parameters you configured are downloaded from the USB port to the PLC.
Note: Versions V3.4 and above can be configured in Modbus communication mode (RS232
port); Versions V3.4 and below XD series PLC must use X-NET communication mode when
downloading and uloading serial configuration data, that is, downloading and uploading
configuration data through USB port.

249

2. Set the parameters by using XINJEConfig tool
When using configuration tool XINJEConfig to configure parameters of PLC serial port, the
XINJEConfig tools of V1.6.308 and below must use USB port. The XINJEConfig tool for
V1.6.309 and above can also be configured using RS232 port.
(1) Use the USB download cable to connect the PLC with the computer. Here the USB
download cable is the HMI download cable, as shown below.

(2) Open xinjeconfig tool

File Config Help

(3) Click config/find device:

ChooseComport v 3 The com port is

connecting PC and
PLC, please check
it in the device
manage

Device Type

DevicelD

(4) Choose the com port connecting PC and PLC, click ok. Click config/single
device/comport.

250

File | Config | Help
AppointDevice
FindDevice [
| SingleDevice || Comport
LocalMachine + Route
EthPort

(5) It will show below window.

MODBUS

StationD
BaudRate |1
DataBits

Parity Ven
StopBits 1

ChoosePHY RS232 Reply Time
Retry Times |3
SendDelay |3 ms

Mote Corfigration wil take effect @ RTU (3 ASCIl
after the power is re-up

ReadCorfig | | WiteCorfig

Serial port: KO ~ K5. Port0 (RS232), Portl (RS232), Port2 (RS485) or Port2-RS232 (RS232)
or Port2-RS485 (RS485), Port3 (left extension port), Port4 (upper extension port 1), Port5
(upper extension port 2).

Here, we can set the communication mode and parameters of each communication port.

(6) When the com port parameters setting is completed, click writeconfig. It will show “write
configuration success” message.

firite configration success!

251

(7) Close XINJEConfig tool, cut the PLC power and power on again to make the settings

effective.

6-2-7. Modbus Communication application

Wiring method
There are two wiring methods:
232 wiring methods

COM2™! diagram

4: RxD
5: TxD
8: GND
Mini Din 8 Pins port
Note:

1. COM2 with *1 only show the RS232 pins.

2. XD/XL series PLC, RS232 do not support full-duplex, so it can only communicate in
single direction.

3. RS232 communication distance is short (about 13m); RS485 is suitable for longer distance.

485 wiring methods

A twisted-pair cable A

B B
Connect all A terminals, connect all B terminals. A is RS485+, B is RS485-.

Application: One xinje XD3 series PLC controls 3 XC series PLCs, slave PLCs follow the
master’s action. (Master PLC Y0 ON, then slave PLC Y0 ON; Master PLC Y0 OFF, then
slave PLC Y0 OFF) Precondition: on-off of YO makes communication have enough time to
react. Also three slave PLCs can be not that synchronous (not fully synchronous).

Method 1 usual program

252

Y0
—N— | COLW K1 H4800 YO K2 |——

YO0 —{ COLW K2 H4800 YO K2 }7
—
| COLW K3 H4800 YO K2 |——

The program takes serial port 2 as example, so corresponding communication flag is the serial
port 2’°s. About other serial port, please refer to appendix 1. Serial port, please refer to
appendix 1.

Method 2 use broadcasting function:

PLC1

| COLW KO H4800 YO K2 |—

|
YO . . .
J Broadcast station is 0, all the slaves will response but not reply.
Broadcast cannot read.

When master YO status changes, it broadcasts the status to all the slaves. The synchronization
of three PLCs is better than method 1.

6-2-8. Application
Example 1:

Following are the programs for reading and writing Modbus communication between 1
master station and 3 slave stations.

Program operation:
(1) Write master PLC YO~Y 11 status to slave PLC 2 YO~Y11
(2) Read slave PLC 2 YO~Y11 to master PLC M10~M19
(3) Write master PLC D10~D19 to slave PLC 2 D10~D19
(4) Read slave PLC 2 D10~D19 to master PLC D20~D29
(5) Soasslave PLC 3 and 4

The following is a comparison of XC and XD series Modbus-RTU communication programs
for reference. The communication programs in XC series are as follows:

253

M8002 |
— | MOV K2 D100 k
D100 K5
>
X0 SO
1 (S)
S0 MO
S (s)

.

MO
4(}—{ MCLW D100 K24576 K10 YO K2 }7

MO M8138 S1
— {1t (S)

MO
(R
STLE
STL S1

MOV HAO DYO }7

S1 M1
1l (S)
M1
—H—{ COLR D100 K24576 K10 M10 K2 #
M1 M8138 S2
— {1t (S)
M1

4{

MOV KO DYO }*

STLE
STL S2

S2
T } FMOV K1 D10 K10 }*
M2
(S \
M2 \]
—H—{ MRGW D100 K10 K10 D10 K2 P
M2 M8138 S3
— i (s)
M2
(R)
STLE
STL S3
S3 M3
el (S)
M3
41}—{ REGR D100 K10 K10 D20 K2 }*
M3 M8138 |
— i | FMOV K0 D10 K10 P

— INC

}
]

D100 P

—~

,\
2 L0
TS0

Y
7

STLE

254

//send station no.2 to D100,
execute the process SO

//set ON Y0~Y11 of master
station, write the master status to
YO0~Y11 of slave PLC 2, 3, 4.
Enter process S1 when the
communication succeeded.

/lread the YO~Y11 of slave PLC 2,
3, 4 to master PLC M10~M19.
Reset master PLC Y0~Y11 and
enter process S2 after the
communication is successful.

Ifwrite 1 to master PLC D10~D19,
write the master PLC D10~D19 to
D10~D19 of slave PLC 2, 3, 4.
Enter process S3 when the
communication is successful.

/lread the D10~D19 of slave PLC
2, 3, 4 to master PLC D20~D29,
reset D10~D19 after the
communication is successful, then
the station no. is added 1, process
SO0 is executed, cycle.

Modbus-RTU instruction processing mode has changed. Users can write Modbus-RTU
instructions directly in user programs. Protocol stack will queue Modbus-RTU
communication requests. Communication is another task. In the main program, users can
write multiple Modbus-RTU communication instructions together and trigger them at the
same time through the same triggering condition. PLC will trigger these communications.
Instructions are queued according to the protocol station by Modbus-RTU, which will not
cause communication errors when multiple communication instructions are executed at the
same time as the original XC series PLC.

XD series program:

M200
—

} MOV H3FF DYO }7

M201
— I

4{ FMOV K1 D10 K10 }7

MO

} MOV HO DYO %

4{ FMOV KO D10 K10 ‘7

} MCLW K2 K24576 K10 YO K2 %

—{ COLR K2 K24576 K10 M10 K2 %
—{ MRGW K2 K10 K10 D10 K2 %
4{ REGR K2 K10 K10 D20 K2 %
—{ MCLW K3 K24576 K10 YO K2 %
———| COLR K3 K24576 K10 M20 K2 [
—{ MRGW K3 K10 K10 D10 K2 %
4{ REGR K3 K10 K10 D30 K2 %

4‘ MRGW K4 K10 K10 D10 K2 }—

4‘ REGR K4 K10 K10 D40 K2 %

255

//at the rising edge of M200, set
ON the master PLC Y0~Y11,
D10~D19 are set to 1, at the
rising edge of M201, set OFF
YO0~Y11 of master PLC, reset
D10~D19.

/hwrite the YO~Y11 of master
PLC to YO~Y11 of slave PLC
2, read the YO~Y11 of slave
PLC 2 to M10~M19 of master
PLC. Write the D10~D19 of
master PLC to D10~D19 of
slave PLC 2. Read the
D20~D29 of slave PLC 2 to
D20~D29 of master PLC.

6-3. Free communication

6-3-1. Free communication mode

Free format communication is data transmission in the form of data blocks, limited by the
PLC cache, the maximum amount of data sent each time is 256 bytes.

The so-called free communication, i.e. custom protocol communication, now many intelligent
devices on the market support RS232 or RS485 communication, but the protocols used by
various products are different, such as: Xinje PLC uses standard Modbus-RTU protocol, some
temperature controller manufacturers use custom protocols; if using Xinje PLC to
communicate with temperature controller, it is necessary to use free communication to send
data in full accordance with the protocol of the instrument manufacturer, so as to
communicate.

Prerequisites for free communication:

1.

PortO(RS232), Port1(RS232), Port2(RS485) or Port2-RS232(RS232) or Port2-
RS485(RS485), Port3(left extension port), Port4(upper extension port 1), Port5(upper
extension port 2) all support free communication. As the free communication needs to
change the communication parameters, portl is not recommended.

Baud rate: 300bps~3Mbps, 4.5Mbps~9Mbps (special model supported)

The data format must be the same as the lower device settings. There are several options
as follows:

Data bit: 5 bits (special model supported), 6 bits (special model supported), 7 bits, 8
bits, 9 bits.

Parity bit: none, odd parity, even parity, empty, mask

Stop bit: 1 bit, 1.5 bit, 2 bits

Starter: 1 byte, terminator: 1 byte

Users can set a start/termination character. After setting the start/termination character,
PLC automatically adds the start/termination character when sending data, and
automatically removes the start/termination character when receiving data.

In fact, the initiator and terminator can be regarded as the data frame head and end in
the protocol. Therefore, if the lower device communication has start and termination
character, it can be set in the software or written in the protocol.

Communication mode: 8 bits, 16 bits

When 8-bit buffer is selected for communication, the high bytes of registers are invalid.
PLC only uses the low bytes of registers to send and receive data.

When 16-bit buffer is selected for communication, the PLC will send all the data of the
register, and send low-byte data first, then high-byte data.

When it is necessary to transfer low bytes and high bytes of one 16-bit register to
another 16-bit register, 16-bit buffers must be selected for communication, and the
number of communication bytes is 2. When the value stored in a 16-bit register
occupies only low bytes, we can choose 8-bit buffer to communicate. The number of
communication bytes is 1. Usually when we communicate, the data will not exceed the

256

low byte of a register (HFF), so we only need to use the default 8-bit buffer in the
software to communicate.

6. Timeout: frame timeout (ms), reply timeout (ms)
Frame: A data string.
Frame timeout: refers to the time interval between two frames of data received by the
PLC, which ensures that the PLC can distinguish the end time of receiving a frame. It
is usually used to judge whether a frame of data in PLC has been received or not. When
the interval between two frames of data is longer than the frame time-out, it means the
end of one frame of communication data.
Reply timeout: refers to the time when the PLC can not receive the response after
sending the request, waiting for the resend. If the response time is set to exceed 300 ms,
when default communicating, the PLC waits 300ms for the other party to respond. If
the response time is not received, the request will be sent again.
If you want to shorten the communication time, you can adjust the above two
parameters according to the size of baud rate.

6-3-2. Serial port configuration

(1) Use the USB download cable to connect the PLC with the computer. Here the USB
download cable is the HMI download cable, as shown below, the software must switch
to XNet communication mode.

(2) Open the programming software, click configure/PLC comm port settings. It will show
below figure:

-4 PLC Config Add = Remove

1] 110

~[wa Password
@ PLC Seral Port
! ethemet

-] Pulse
[Module

- E0l ED
- I 4GBOX

R EtherCAT

] NC

5] WBOX

Read From PLC | | Wiiite To PLC —

257

(3) Click add, it will show two modes, modbus mode and free mode, please select free mode,
it will show below figure.

=-23 PLC Corfig Add - Remove Free Communication Params

~{ren) 140 —| =
[sa] Password Coli Comport: | COM1 v tin'?en::?.rt{mshz 3
@@ PLC Serial Port
¥ ethemet Baudrste: | 19200bps | HEsponse 300
] Pulse timeout{ms):
-0 Module Databits:] v | [] Beginchar: D
- 60 BD
£ ED Checkhits: |Even w | [] End Char: (D)
- I | 4GB0
1?% ﬁgerCAT Stophbits: i v | Buffer bit: il v
- WBOX

natice:Corfig effictive need to reboat PLC

¥MET is configured by the configuration tool

Read From PLC | Wite To PLC Cancel

Port No.: It refers to Port of PLC, COMO refers to Port 0 (RS232), COML refers to Port 1
(RS232), COM2 refers to Port 2 (RS485) or Port 2-RS232 (RS485) or Port 2-RS485 (RS485),
COM3 refers to Port 3 (left extended ED port), COM4 refers to Port 4 (upper extended BD
port 1), COMS refers to Port 5 (upper extended BD port 2).
Frame timeout (ms): It refers to the time interval between two frames of data sent by PLC,
which ensures that the receiver distinguishes the end time of receiving a frame.
Response timeout (ms): refers to the time when the PLC can not receive the response after
sending the request, waiting for the resend.
Other serial parameters can be set according to the parameters of the lower device.

(4) After setting, click write to PLC, then cut off the PLC power supply and power on again

to make the settings effective.

Note: Versions V3.4 and above can be configured in Modbus communication mode (RS232
port); Versions V3.4 and below XD series PLC must use X-NET communication mode when
downloading and uloading serial configuration data, that is, downloading and uploading
configuration data through USB port.

6-3-3. Suitable occasion

When does free communication need to be used?

As an example, the situation described in the above section is that XINJE PLC communicates
with the temperature control instrument, and the instrument uses its own communication
protocol, which stipulates that the reading temperature should be sent four characters: "R",
"T", "CR". Each character has the following meanings:

Character Meaning
Data start

258

R Read
T temperature
CR Enter, data end

PLC needs to send the ASCII code of the above characters to the instrument in order to read

the current temperature value measured by the instrument. The ASCII code values

(hexadecimal) of each character can be obtained by querying the ASCII code table.

Character ASCII code value
: 3A
R 52
T 54
CR 0D

Obviously, according to the situation described above, using MODBUS instructions can not

communicate, at this time you need to use free communication. Detailed usage will be used as

an example to program the sample program in later chapters.

6-3-4. Free communication instruction

Send data [SEND]
1. Instruction overview
Write the local data to specified remote station address.
Send data [SEND]
16-bit SEND 32-bit -
instruction instruction
Execution | Normally ON/OFF, rising Suitable XD, XL
condition | edge triggering model
Hardware | V3.2.3 and higher version Software V3.2.2 and higher version
2. Operand
Operand | Function Type
S1 Local data starting address 16-bit, BIN
S2 Send byte number 16-bit, BIN
n Communication port no. 16-bit, BIN
3. Suitable soft component
operand System constant Module
Word D|FD |ED |TD |CD [DX |[DY |DM | DS | KH ID | QD
S1 o | o ° °
S2 o | o ° . °
n ° K

Function and action

259

o () (=) n
FT% SEND ‘ D10 ‘ D100 ‘ K2 ‘

e Data sending instructions, M0's rising edge sends data once.
e Communication port. Scope: KO ~ K5. Port0, Portl, Port2 or Port2-RS232 or Port2-
RS485, Port3, Port4, Port5.

¢ In the process of data transmission, the "sending" flag SM 162 (communication port 2)

1S set on.
MO H

SM162 |
~~~~~~~~~ ~~~~~~~~~~

e  When the buffer number is 8 bits, only low-byte data is sent, so D100 = the number of
registers sent, for example, to send low-byte data in D10-D17, D100 should be set to
8.

e When the buffer number is 16 bits, high and low byte data will be sent, so D100 = the
number of registers sent * 2. For example, when sending high and low byte data in
D10-D17, D100 should be set to 16, and when sending, low byte will be before the
high byte.

Receive data [RCV]

1. Instruction overview
Write the specified remote station no’s data to local device.

Send data [RCV]

16-bit RCV 32-bit -

instruction instruction

Execution | Normally ON/OFF, rising Suitable XD, XL

condition | edge triggering model

Hardware | V3.2.3 and higher version Software V3.2.2 and higher version

2. Operand
Operand | Function Type
S1 Local data starting address 16-bit, BIN
S2 Receive byte number or soft component address 16-bit, BIN
n Communication port no. 16-bit, BIN

3. Suitable soft component

operand System constant Module
Word D|/FD [ED |TD |[CD [DX [DY |DM |[DS | KH ID | QD

S1 o | o L4 ® 260

S2 o | o ° . °

n °




Function and action

i Gy (=) o
PT% RCV ‘ D20 ‘ D200 ‘ K2 ‘

Data receiving instructions, M1's rising edge receives data once.

Communication port. Scope: KO ~ K5. Port0, Portl, Port2 or Port2-RS232 or Port2-
RS485, Port3, Port4, Port5.

After receiving the data, the "received" flag SM163 (communication port 2) is set on.

M1 H
all
SM163 y

Receive

When the buffer number is 8 bits, the received data is only stored in low bytes, so D200
= the number of bytes to be received * 2, for example, to receive 8 bytes of data, stored
in the low bytes of the eight registers D20-D27 in turn, at this time, D200 should be set
to 16.

When the buffer number is 16 bits, the received data is stored in a complete register, so
D200 = the number of bytes to be received, for example, to receive 8 bytes of data,
stored in the four registers of D20-D23 in turn, at this time, D200 should be set to 8.
And when receiving, low bytes are before high bytes.

Release serial port [RCVST] |

1.

Instruction overview

Release the specified serial port.

Release serial port [RCVST]

16-bit RCVST 32-bit -

instruction instruction

Execution | Normally ON/OFF, rising Suitable XD, XL

condition | edge triggering model

Hardware | V3.2.3 and higher version Software V/3.2.2 and higher version
2. Operand

261



Operand | Function Type
n Communication port no. 16-bit, BIN

3. Suitable soft component

operand System constant Module
Word D|FO |ED |TD |CD |DX |Dy |[DM | DS | KH D | QD
n K

Function and action

n
HM RCVST ‘ K2 ‘

e Release serial port instructions, M0's rising edge execute once.

e Communication port. Scope: KO ~ K5. Port0, Portl, Port2 or Port2-RS232 or Port2-
RS485, Port3, Port4, Port5.

o  When releasing the serial port, the "received" flag SM163 (communication port 2) is
set OFF.

e For free communication, if there is no timeout or the timeout time is set too long, the
occupied serial port resources can be released immediately through RCVST
instructions for other communication operations.

MO [
sm163_ | |

Receive

6-3-5. Free communication example

Example 1: In chapter 6-3-3, we give an example of communication between Xinje PLC and
temperature control instrument when explaining why to use free communication. Here is an
example.

Operation steps:

1. Connect the hardware first. Here we use the serial port 2 of the PLC to communicate, that
is, 485 + on the instrument is connected to A of the output port of the PLC, and 485- on the
instrument is connected to B of the output port of the PLC.

2. Set the serial port parameters of PLC according to the communication parameters of
temperature control instrument. The parameters are set as follows. After setting the
parameters, the power can be restarted.

262




=-23 PLC Corfig Add - Remove Free Communication Params
. ]
& Password COM2 Comport: | COM2 v E:;E{mﬂ: 0
@@ PLC Serial Port
¥ ethemet Baudrste: | 19200bps | HEsponse ol
@— PUise timeout{ms):
-0 Module Databits: ] v | [] Beginchar: D
Bo| BD

% ED Checkbits: | Even w | [] End Char: (D
- [ AGBOX
1?% ﬁgerCAT Stophbits: i v | Buffer bit: il v
-] WBOX

natice:Corfig effictive need to reboat PLC

¥MET is configured by the configuration tool

Read From PLC | Wite To PLC Cancel

3. make the program according to the descriptions in chapter 6-3-3.
Read temperature: “:” “R” “T” “CR”

€07 s data start
“R” -mmmmmmmme- read
CT7 mmmmmmmmmmmeeee temperature
“CR” =--=-m-mm- enter, data end
Program:
MO
Re;ﬂ | MOV H3A DO H
switch DO: “: ” ascii code
— MOV H52 D1 H
0
D1: “R” asciicode
— MOV H54 D2 H
0
D2: “T” ascii code
— MOV HOD D3 H
D1: “CR” asciicode
L{ SsEND DO kK4 K2 M
0
MO  SM162 DO: “:” ascii code
— | H,I [ ROV D10 K4 K2 H
Read Port 2 RS232 D10: Receive starting 0
switch  sending flag register

When trying to communicate between PLC and other intelligent devices, it is suggested to use
serial debugging tool to determine the data format of communication, that is, protocol. The
advantages of this method are: the serial debugging tool is easy to modify and flexible to use;
after the serial debugging tool determines that communication can be successful, the PLC

263



program is written according to the data format obtained, which is often twice the result with
half the effort.

In fact, Modbus-RTU protocol can be regarded as a special kind of free protocol. The
relationship between them is similar to ellipse and circle. We can try to use free format to
realize the function of Modbus instruction.

Example 2: The values of the five registers of a XD3 PLC are sent to the D1-D5 of another
XDM PLC.

If the user understands the Modbus communication, he can use the Modbus-RTU
communication mode to do so, as long as he writes a "write multiple register instructions
(MRGW)" in the host. Here we do it in free communication mode.

Operation steps:

1. Connect the hardware first. Here we use the serial port 2 of the PLC to communicate, that
is, connect A of the two PLC, and connect B of the two PLC.

2. Set the same serial port parameters of the two PLC. The parameters are set as follows.
After setting the parameters, the power can be restarted.

=-23 PLC Corfig Add - Remove Free Communication Params

~{ren) 140 —| =
[sa] Password COM2 Comport: | COM2 v tin'?en::?.rt{mshz 0
@@ PLC Serial Port
¥ ethemet Baudrste: | 19200bps | HEsponse 0
] Pulse timeout{ms):
-0 Module Databits: ] v | [] Beginchar: D
- 60 BD
~1E0 ED Checkbits: | Even w | [] End Char: (D)
- I | 4GB0
1?% ﬁg”&” Stopbits: |1 v| Bufferbit: 16631 v
- WBOX

natice:Corfig effictive need to reboat PLC

¥MET is configured by the configuration tool

Read From PLC | Wite To PLC Cancel

3. XD3 program:

SM2

—

MOV H1122 HD1
4366

MOV H3344 HD2
13124

MOV  H5566 HD3
21862

MOV H7788 HD4
30600

N R E

MOV  H99AA HD5
SM13 -26198

4m | SEND HD1 K10 K2

4386

I r . r T

264



XDM program:

SMo

%} | ROV DI K10 K2 }#

17

Sometimes the data of user communication is stored in multiple registers in the form of
ASCII code. Users need to take this value out, store it in a register and display it on the HMI.
Customers often consider using HEX (ASCII to hexadecimal) instructions to achieve it. But
HEX instructions are difficult to use and understand. Often, we will not use this instruction to
complete it. The relationship between values can be found by ASCII code comparison table.

ASCII code table:

ASCII Control ASCII Control ASCII Control ASCII Control
value character | value character | value character | value character
0 NUT 32 (space) 64 @ 96 )
1 SOH 33 ! 65 A 97 a
2 STX 34 ” 66 B 98 b
3 ETX 35 # 67 C 99 c
4 EOT 36 $ 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 ’ 71 G 103 g
8 BS 40 ( 72 H 104 h
9 HT 41 ) 73 I 105 i
10 LF 42 * 74 J 106 j
11 VT 43 + 75 K 107 k
12 FF 44 , 76 L 108 I
13 CR 45 - 77 M 109 m
14 SO 46 . 78 N 110 n
15 Sl 47 / 79 o] 111 0
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 Q 113 g
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115 S
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 V 118 Y
23 TB 55 7 87 w 119 W
24 CAN 56 8 88 X 120 X
25 EM 57 9 89 Y 121 y
26 SUB 58 : 90 Z 122 y
27 ESC 59 ; 91 [ 123 {
28 FS 60 < 92 \ 124 |
29 GS 61 = 93 ] 125 }
30 RS 62 > 94 A 126 ~
31 uUs 63 ? 95 — 127 DEL

265



Example 3: A pressure controller communicates with PLC in free communication mode to
realize data acquisition. The value displayed on the pressure controller is -0.7814 MPa. The
value collected by PLC is stored from DO, and seven registers are stored in turn. However, the
value of the seven registers combination needs to be taken out and stored in D46 in the form
of decimal.

Through the data monitoring of PLC, ASCII codes in DO~D6 registers can be monitored as
follows:

ERE T
§H’£§ 7 w| % | ¥ |m s sn|1 |Er|c |m | || |wsc D s 1 |e | || se | s |

+0 +1 +2 +3 +4 45 e = - = —
» Do . 0 . S . ; .

D10
D20
D30

D40 s

1ol zilte ieel RS [asor|

Switch to decimal format and show as below:

FLC1- R 1R
éH‘Ei‘-DT sl | x w|s |se|t | |c|m s | | |usc| D |sp |1 an | [xsp | Fn | se | sen
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 ~

| i) a5 45 a6 o5 o P - D . .

D1o 0 o o i o 0 0 i 0 i

D20 0 o o 0 o 0 i il i il

b0 s 0 o 0 0 0 0 0 0 0

D40 0 0 0 i 0 0 1 o o 0 -

[0 | oitte iepml RS ascrr J

By comparing the relationship between ASCII codes and decimal values, we can find the rule
that there is 48 difference between ASCII codes in D1, D3, D4, D5, D6 and decimal values.
The final decimal values are obtained by subtracting the values in registers by K48 and
multiplying by 10. The formula is as follows:
D46=(D1-48)*1+(D3-48)*0.1+(D4-48)*0.01+(D5-48)*0.001+(D6-48)*0.0001

DO is a symbol bit. Looking up the table, we know that when DO = K45, it represents a
negative value; when DO = K43, it represents a positive value.

The ladder diagram is as follows:

266



i

DO K45

SUB

D1 K48 D10

48 0

SuB

D3 K48 D12

5 0

SuB

D4 K48 D14

5 0

SuUB

D5 K48 D16

49 0

SUB

D6 K48 D18

52 0

FLT

D10 D10

FLT

FLT

FLT

D16 D16

0 1

FLT

D18 D18

0 4

EMUL

D12 KO0.1 D20

7 07

*‘ EMUL D14 KO0.01 D24

8 0.08

| EMUL D16 K0.001 D28

1 0.001

—{ EMUL D18 K0.0001 D32

4 0.0004

EADD

D10 D20 D40

0 07 07

EADD

D40 D24 D42

0.7 008 0.78

EADD

T - T r T T T T T *+ T [ T T T T T

D42 D28 D44

0.78 0.001 0.781

EADD

D44 D32 D46

"

0.781 0.0004 0.7814

45
DO K43

EMUL

D46 K-1 D100 |-

0.7814 -0.7814

45

267

EMUL

D46 K1 D100 |-

0.7814 -0.7814



6-4. Communication flag and register

Communication flag

Serial | Register address | Function Explanation
port
SM140 Modbus read-write When the instruction starts to
instruction execution flag execute, set ON
When execution is completed,
Port 0 set OFF
SM141
SM142 Free communication sending | When the instruction starts to
flag execute, set ON
When execution is completed,
set OFF
SM143 Free communication received | When receiving a frame of data
flag or receiving data timeout, set
ON.
Require user program to set OFF
SM144
SM149
SM150 Modbus read-write When the instruction starts to
instruction execution flag execute, set ON
When execution is completed,
set OFF
Port1 | SM151
SM152 Free communication sending | When the instruction starts to
flag execute, set ON
When execution is completed,
set OFF
SM153 Free communication received | When receiving a frame of data
flag or receiving data timeout, set
ON.
Require user program to set OFF
SM154
SM159
SM160 Modbus read-write When the instruction starts to
instruction execution flag execute, set ON
When execution is completed,
set OFF
Port2 | SM161
SM162 Free communication sending | When the instruction starts to
flag execute, set ON
When execution is completed,
set OFF
SM163 Free communication received | When receiving a frame of data
flag or receiving data timeout, set
ON.
Require user program to set OFF
SM164

......

268




SM169

Port3 | SM170~SM179
Port4 | SM180~SM189
Port5 | SM190~SM199

Communication registers

No.

Function

Explanation

Port 0

SD140

Modbus read and write
instruction execution result

0: correct

100: receive error

101: receive timeout

180: CRC error

181: LRC error

182: station number error
183: send buffer overflow
400: function code error
401: address error

402: length error

403: data error

404: slave station busy
405: memory error (erase FLASH)

SD141

X-Net communication
result

0: correct

1: communication timeout
2: memory error

3: receive CRC error

SD142

Free communication
sending result

0: correct
410: free communication buffer
overflow

SD143

Free communication
receiving result

0: correct

410: send data length overflow
411: receive data short

412: receive data long

413: receive error

414: receive timeout

415: no start symbol

416: no end symbol

free communication
receiving data number

Count as byte, not include start
symbol and end symbol

......

Port 1

Modbus read and write
instruction execution result

0: correct

100: receive error

101: receive timeout

180: CRC error

181: LRC error

182: station number error
183: send buffer overflow
400: function code error
401: address error

402: length error

403: data error

404: slave station busy
405: memory error (erase FLASH)

269




SD151 X-Net communication 0: correct
result 1: communication timeout
2: memory error
3: receive CRC error
SD152 Free communication 0: correct
sending result 410: free communication buffer
overflow
SD153 Free communication 0: correct
receiving result 410: send data length overflow

411: receive data short
412: receive data long
413: receive error
414: receive timeout
415: no start symbol
416: no end symbol

SD154 free communication Count as byte, not include start
receiving data number symbol and end symbol

SD159

SD160 Modbus read and write 0: correct

instruction execution result | 100: receive error

101: receive timeout

180: CRC error

181: LRC error

Port 2 182: station number error
183: send buffer overflow
400: function code error
401: address error

402: length error

403: data error

404: slave station busy
405: memory error (erase FLASH)

SD161 X-Net communication 0: correct

result 1: communication timeout
2: memory error
3: receive CRC error
SD162 Free communication 0: correct
sending result 410: free communication buffer
overflow
SD163 Free communication 0: correct
receiving result 410: send data length overflow

411: receive data short
412: receive data long
413: receive error
414: receive timeout
415: no start symbol
416: no end symbol

SD164 free communication Count as byte, not include start
receiving data number symbol and end symbol

......

SD169

Port 3 | SD170~SD179

Port4 | SD180~SD189

Port5 | SD190~SD199

270




6-5. Read write serial port parameters

In addition to modifying communication parameters through serial configuration panel, it can

also be realized by reading instruction [CFGCR] of serial parameters and writing instruction
[CFGCW)] of serial parameters.

6-5-1. Read serial port parameters [CFGCR]

1. Instruction overview
Read the serial port parameters to local specified registers.

Read serial port parameters [CFGCR]
16-bit CFGCR 32-bit -
instruction instruction
Execution | Normally ON/OFF, rising Suitable XD, XL
condition | edge triggering model
Hardware | - Software V3.4 and higher version
2. Operand
Operand | Function Type
D Local register starting address 16-bit, BIN
S1 Read serial port parameters number 16-bit, BIN
S2 Serial port no. 16-bit, BIN
3. Suitable soft component
operand System constant Module
Word D|FD |ED |TD |CD |[DX |DY |DM | DS | KH ID | QD
D °
S1 o | o °
S2 ° °

* Note: D denotes D HD; TD denotes TD HTD; CD denotes CD HCD HSCD HSD; DM
denotes DM DHM;
DS stands for DS DHS.

Function and action

e Operator S1: The number of registers used to read serial parameters is generally 8

CORCONCED

CGFCR‘ HDO‘ K8 \ K2 \

F(mo_{

(XD5SE/XDME series is 9).

e Operator S2: Serial port range: KO ~ K5. KO: Port0, K1: Portl, K2: Port2 or Port2-

RS232 or Port2-RS485, K3: Port3, K4: Port4, K5: Port5.

e Read 8 parameters of serial port 2 to HDO~HD?7. See sections 6-5-3 for the names and

271




definitions of specific parameters.

6-5-2. Write serial port parameters [CFGCW]

1.

Instruction overview

Write the local specified register value to specific serial port.

Write serial port parameters [CFGCW]

16-bit CFGCW 32-bit -
instruction instruction
Execution | Normally ON/OFF, rising Suitable XD, XL
condition | edge triggering model
Hardware | - Software V3.4 and higher version
2. Operand
Operand | Function Type
S1 Local register starting address 16-bit, BIN
S2 Write serial port parameters number 16-bit, BIN
S3 Serial port no. 16-bit, BIN
3. Suitable soft component
operand System constant Module
Word D|FD |ED |TD |CD |[DX |DY |DM | DS | KH ID | QD
S1 °
S2 o | o °
S3 ° °

* Note: D denotes D HD; TD denotes TD HTD; CD denotes CD HCD HSCD HSD; DM
denotes DM DHM;
DS stands for DS DHS.

Function and action

B ® ® ®
%ﬁ—{CFGCW HDO‘ K8 \ K2 \

Operator S2: The number of registers used to write serial parameters is generally 8

(XD5SE/XDME series is 9).

Operator S3: Serial port range: KO ~ K5. KO: Port0, K1: Portl, K2: Port2 or Port2-
RS232 or Port2-RS485, K3: Port3, K4: Port4, K5: Port5.
Write HDO~HD7 parameters to serial port 2. See sections 6-5-3 for the names and

definitions of specific parameters.

272




6-5-3. Serial port parameter name and setting

Assuming that HD0-HD14 corresponds to serial port parameters, the parameter names and
settings represented by registers are shown in the table below.

Para Parameter name and settings

mete MODBUS Free X-NET communication Ethernet

r communication | communication OMMS TBN communication

addre (HDO0=1) (HD0=2) (HD0=3) (HD0=3) (HD0=3)

ss

HDO | Network type
1: MODBUS; 2:free; 3:X-NET; 4: MODBU-TCP

HD1 | MODBUS Baud rate refer | Net ID Net ID Net ID
station no. to table 1 0~32767 0~32767 IP address high
1~254 2-byte

HD2 | Transmission Frame format | Station no. Station no. Station no.
mode refer to table 2 | 0~100 0~100 IP address low
0: RTU 2-byte
128: ASCII

HD3 | Baud rate refer | Free properties | Physical layer type
to table 1 bit7: 1: PHY_RS485

1:  with start | 2: PHY_SOF (Unidirectional Fiber Ring Network)
character 3: PHY_OFPP (Optical Fiber Point Network)

0: no start | 4: PHY_RS232

character 5: PHY_RS422

bit6: 6: PHY_TTL (TTLvoltage network)

1: with end

character

0: no end

character

HD4 | Frame format Start character | Link Layer Type

refer to table 2 0: TBN
1: HDN
2: CCN
3: PPFD
4: PPU
5: Ethernet
HD5 | retry count End character | OMMS Baud rate Subnet mask
0~5 properties refer to table | high 2-byte
128: Supports 1
periodic
communication,
otherwise does
not support

HD6 | Reply timeout | Frame timeout | OMMS baud Token Cycle | Subnet mask

0~65535 0~255 rate refer to Time low 2-byte
table 1 1~60000
(ms)

HD7 | Delay before Reply timeout | OMMS slave Max station | Gateway
sending 0~65535 (O is | station list number address high 2-
0~255 infinite wait) Each bit of each | 1~100 byte

byte in the array
indicates
whether the

slave station is
accessible (the

273




master station is
valid, i.e. the
station number
is 1).

HD8 | -

Gateway
address low 2-
byte

Note: The table does not contain "buffer digits" in free communication mode, so "buffer
digits" can not be read and written through CFGCR and CFGCW instructions, but can be read
and written using MOV instructions. The address of "buffer digits" is shown in Appendix 3.

Table 1: baud rate

Value | Baud rate Value | Baud rate Value | Baud rate Value | Baud rate
1 300 bps 7 19200 bps 13 256000 bps | 19 1000000
bps
2 600 bps 8 28800 bps 14 288000 bps | 20 1200000
bps
3 1200 bps 9 38400 bps 15 384000 bps | 21 1500000
bps
4 2400 bps 10 57600 bps 16 512000 bps | 22 2400000
bps
5 4800 bps 11 115200 bps | 17 576000 bps | 23 3000000
bps
6 9600 bps 12 192000 bps | 18 768000 bps
Table 2: frame format
Stop bit Parity bit Data bit length
Bit7 | Bit6 Bit | Bit4 | Bit3 Bit2 | Bitl | Bit0
00: 1 000: no 000: 5
01:15 001: odd 001: 6
10: 2 010: even 010: 7
011: empty 011:8
100: Mask 100: 9

274




7 PID Control Function

In this chapter, we mainly introduce the applications of PID instructions for XD, XL series,
including: call the instructions, set the parameters, items to notice, sample programs etc.

7-1. PID Introduction

PID instruction and auto tune function are added into XD/XL series PLC basic units. Via auto
tune method, users can get the best sampling time and PID parameters and improve the
control precision.

PID instruction has brought many facilities to the users.

Output can be data form D, HD, and on-off quantity Y, user can choose them freely when
programming.

Via auto tune, users can get the best sampling time and PID parameters and improve the
control precision.

User can choose positive or negative action via software setting. Positive action is used for
heating control; negative action is used for cooling control.

PID control separates the basic units with the expansions, which improves the flexibility of
this function.

XD/XL series PLC have two methods for auto tune, step response method and critical
oscillation method.

For temperature control object:

Step response method: the PID auto tune will start when current temperature of object
controlled is equal to ambient temperature.

Critical oscillation method: the PID auto tune can start at any temperature.

7-2. Instruction Form

Brief Introduction of the Instructions
Execute PID control instructions with the data in specified registers.

PI1D control [PID]

16 bits PID 32 bits -

instruction instruction

Executing Normally ON/normally closed | Suitable XD/XL

condition coil trigger models

Hardware - Software V3.2

requirement requirement

Operands

Operands Function Type

Sl set the address of the target value (SV) 16bits, BIN

S2 set the address of the tested value (PV) 16 bits, BIN

S3 set the start address of the control parameters 16 bits, BIN

D the address of the operation result (MV) or output | 16 bits, BIN; bit
port

275



Suitable soft components

Operands System Constant Module
D | D | TD* | CD* | DX | DY | DM* | DS* | KH D | QD

S1 ° ° °

Word 2 . o
S3 ° .
D . °

Bit Operands System

! X[ Y[ M [s[T™]C [ Dum
D o | o o o | o

*Note: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.
M includes M, HM, SM; S includes S and HS; T includes T and HT; C includes C and HC.

Functions and Action

G (=) (=) (o)

X0
— PID ‘ DO ‘ D10 ‘ HDO ‘ D100
o CORECOERCY)
— PID ‘ DO ‘ D10 ‘ HDO ‘ YO ‘

S3~ S3+ 69 will be occupied by this instruction, so please don’t use them as the common data
registers.

This instruction executes when each sampling time interval comes.

For the operation result, data registers are used to store PID output values; the output points
are used to output the occupy duty ratio in the form of ON/OFF.

PID control rules are shown as below:

P: proportion, I: integral, D: differential

N +
" P
rit) + a(t ) 4 t c(t
® ;Cﬁ) o 4{)&, Co_ntrolled ® >
A A object
» D +

Analog PID control system

276



e() =r(t)-c(t) (1-1)
u(t) =Kp [ e(t) + 1/Ti [ e(t)dt + TD de(t)/dt] (1-2)

Here, e(t) is offset value, r ('t ) is the setting value, ¢ (t) is actual output value and the u(t) is
the control value;

In function (1-2), Kp is the proportion coefficient, Ti is the integration time coefficient, and
TD is the differential time coefficient.

The result of the operation:

1. Analog output: digital form of MV = u(t), the default range is 0~4095.

2. Digital output: Y =T * [MV / PID output upper limit]. Y is the outputs activate time
within the control cycle. T is the control cycle, equals to the sampling time. PID output upper
limit default value is 4095.

7-3. Parameters setting

Users can call PID in XDP Pro software directly and set the parameters in the window (see
graph below), for the details please refer to XDP Pro user manual. Users can also write the
parameters into the specified registers by MOV instructions before PID operation.

PID Instruction Parameter Config E

Target Value (51 (DO Measure Value (FY) (D10 Farameter: |HOO Dutput; 10

Mode Config
@ Common Mode {:} Advanced Mode

Parameter Config

@ Marmal 'C} Auto
Sampling Time ] | m=
Froportion Gain (EF): 0 = %
Integration Time (TT): 0 *100m=
Differential Time (TD): 0 & | *10ms
FIT Computation Scope: ] E Direction Config

@ Hegative Movement {:} Fositiwe Mowvement

Hegatiwve Mowement: Mlong with +the increase
of the measures definite walune FV,
ontputwalue MV will als=e reduce.

It' = usually used in heat up control.

PID Control Death Band: 0

4¥

Fositive Mowement:dlong with the
increase of the measures definite walue
F¥, outputwalne MY will alse increase.
Tt' = usually used in cool contraol.

Owershoot Config
@ Enable Owershoot 'C} Dizable Owershoaot Parameter Range HDO - HDGD

Sugzgestion walue

Read From PLC | [Write T PLC| || 0K | | Cencel

277



Auto tune mode:

PID Instruction Parameter Config g

Target ¥alue (S¥) (DO

Measure Walue (PY) [D10 Parameter: (HDO

Output: 0

Parameter Config

{:} Marmal {9‘ Autao
Sampling Time ] = | ms
PID Computation Scope: ] E
PID Control Death Band: ] E
Self Ztudy Feriodic ¥alue: [0 E

Self Study Method: Step Responze ¥

|Step Responze |
Self Study FID Contr bbb nss

Owershoot Config
@ Enable Owerchoot O Dizable Owershact

Suggestion walne

Mode Config
{9‘ Common Mode {:} Advanced Mode

Direction Config
@ Hegative Mowement '5:) Positive Mowement

Hegative Movement:Along with the increase
of the measures definite walue F¥,
outputvalue MY will also reduce.

It = usually used in heat up control.

Fositive Movement:Along with the
increase of the measures definite walue
F¥, outputwalue MY will alse increase.
It' = nsually nsed in cool contral.

Parameter Range:HDO - HDEQ

[Read From FLD ] "l'l'rite e PLC] (

0k | [ Cencel |

V3.2 and higher version software can choose auto tune mode: step response or critical
oscillation.

7-3-1. Register and their functions

PID control instruction’s relative parameters 1D, please refer to the below table:

1: positive action

bitl~bit6 not usable

bit7:

0: manual PID;

1: autotune PID

bit8: 1: auto tune successful
flag

bit9~bit10: auto tune method
00: step response

01: critical oscillation

ID Function Description Memo

S3 Sampling time Whatever it is manual or auto 32 bits without sign,
mode, all needs to set Unit ms

S3+2 | Mode setting bit0: 0: negative action;

278




bitl1~bitl2: not useful
bit13~bitl4 auto tune PID
mode (valid in critical
oscillation mode)

00: PID control

01: PI control

10: P control

bitl5:

0: regular mode;

1: advanced mode;

S3+3 | Proportion Gain (Kp) Range: 1~32767[%]
S3+4 | Integration time (TI) 0~32767[unit: 100ms] 0 is taken as no
integral.
S3+5 | Differential time ( TD) 0~32767[unit: 10ms] 0 is taken as no
differential.
S3+6 | PID operation zone 0~32767 PID adjustment band
width value
S3+7 | Control death zone 0~32767 PID output value
will not change in
death zone
S3+8 | Sampling temperature 0~100[%)] Filter the input
filter coefficient sampling
temperature in
advanced mode, 0 is
no input filter
S3+9 | Differential gain( KD) 0~100[%] Only for advanced
mode (normal mode
default value is
50%), 0 is no
differential gain
S3+10 | Upper limit value of 0~32767
output
S3+11 | Lower limit value of 0~32767
output
S3+12 | Change of Unit full scale AD value * 16-bit no sign, only
Temperature Corresponds | (0.3~1%) for step PID
to Change of AD Value | default value is 10
S3+13 | PID auto tune overshoot | 0: enable overshoot only for step PID
1: notovershoot (try to
reduce the overshoot)
S3+14 | Current target value Cannot adjust 16-bit no sign, only
adjusting percentage for step PID
every time in auto tune
end transition stage
S3+15 | Number of times only for step PID,
exceeding the target value default value is 15
in auto tune end transition
stage when limiting the
overshoot
S3+16 | PID type and status Bit0~Dbit1: Internal use
00: manual mode parameters of the
01: step mode system for

279




10: Critical oscillation mode
Bit8:

0: manual control status

1: auto tune end, enter manual
control status

monitoring purposes
only

S3+17

PID max output

0~32767

Internal use
parameters of the
system for
monitoring purposes
only

S3+18

PID min output

0~32767

Internal use
parameters of the
system for
monitoring purposes
only

S3+19

Last time sampling time

0~sampling time (unit: ms)

16-bit no sign,
Internal use
parameters of the
system for
monitoring purposes
only

S3+20

Actual sampling time
space

The value is around the
sampling time

32-bit no sign,
Internal use
parameters of the
system for
monitoring purposes
only

S3+22

Last time user set target
temperature

The value before changing the
target temperature

Internal use
parameters of the
system for
monitoring purposes
only

S3+23

Parameter is
reserved

The following is the joint address (divided into step setting, critical oscillation setting and

manual control)

Step part (read only parameters, only for monitoring)

S3+24

Actual sampling space

0~4294967296 (unit: ms)

Internal usage
parameters of the
system

S3+26 | Operating segment of 0: Preparation stage Internal usage
auto-tuning PID 1~~2: auto tune parameter parameters of the
collection system
3: calculate PID parameters
S3+28 | Duration of auto-tuning | 0~4294967296 (unit: ms) Internal usage
PID operating parameters of the
parameters system
S3+30 | Real-time accumulation | Clear and recalculate the time Internal usage

of two inflection points

when reaching the inflection point

0~4294967296 (unit: ms)

parameters of the
system

280




S3+32 | Sampling variation of Sampling difference between two | Internal usage
inflection point inflection points parameters of the
-2147483648~2147483647 system
S3+34 | Sampling interval time | 0~4294967296 (unit: ms) Internal usage
of inflection point EK parameters of the
system
S3+36 | Time from auto-tuning | 0~4294967296 (unit: ms) Internal usage
PID to inflection point parameters of the
system
S3+38 | Last sampling -32767~32767 Internal usage
temperature parameters of the
system
S3+39 | The time from auto- -32767~32767 (unit: ms) Internal usage
tuning PID operation to parameters of the
inflection point system
S3+40 | Starting sampling value | -32767~32767 Internal usage
of auto-tuning PID parameters of the
operation system
S3+41 | Number of times at 0~65535 Internal usage
inflection point during parameters of the
auto-tuning system
S3+42 | Useless time 0~4294967296 (unit: ms) Internal usage
parameters of the
system
S3+44 | Stop temperature Temperature at the end of auto- Internal usage
tuning parameters of the
Range: -32767~32767 system
Critical oscillation part (read only parameters, only for monitoring)
S3+24 | PID control mode 0: PID control 16-bit no sign,
1: PI control internal usage
2: P control parameters of the
system
S3+25 | Current auto-tuning 0: Preparation stage 16-bit no sign,
segment 1: start to auto tune internal usage
2~3: auto-tuning parameter parameters of the
collection system
4: calculation of PID parameters
S3+26 | The auto-tuning 0: first peak 16-bit no sign,
temperature is located 1: second peak internal usage
at the number of peaks parameters of the
system
S3+27 | The lowest sampling -32767~32767 Internal usage
temperature parameters of the
system
S3+28 | The highest sampling -32767~32767 Internal usage
temperature parameters of the
system
S3+30 | sampling time of the 0~4294967296 (unit: ms) Internal usage
lowest sampling parameters of the
temperature system
S3+32 | sampling time of the 0~4294967296 (unit: ms) Internal usage

highest sampling
temperature

parameters of the
system

281




S3+34

auto-tuning time
cumulative

0~4294967296 (unit: ms)

Internal usage
parameters of the
system

Manual control part

(read only parameters, only for monitoring)

S3+24 | current target -32767~32767 Internal usage
temperature parameters of the
system
S3+25 | Need to update target 0: no need 16-bit no sign,
temperature 1: need internal usage
parameters of the
system
S3+26 | Number of times to 0~65535 Internal usage
reach target parameters of the
temperature system
S3+27 | PID upper limit of -32767~32767 Internal usage
operational range parameters of the
system
S3+28 | PID lower limit of -32767~32767 Internal usage
operational range parameters of the
system
S3+30 | High voltage time when | 0~4294967296 (unit: ms) Internal usage
PID uses Y to output parameters of the
system
S3+32 | Sampling temperature | The filtered temperature acquired | Floating point,
after last filtering in the last sampling time (the internal usage
input filter constant in the parameters of the
advanced mode needs to be set system
first)
S3+34 | Last temperature Floating point,
deviation internal usage
parameters of the
system
S3+36 | Value of last integral digital value corresponding to Ui | Floating point,
term of the last sampling time internal usage
parameters of the
system
S3+38 | Value of last digital value corresponding to Ud | Floating point,
differential term of the last sampling time internal usage
parameters of the
system
S3+40 | Last PID output Floating point,

internal usage
parameters of the
system

Note: When the auto-tuning mode is changed to manual control, the value in the original
address of S3+24~S3+40 will be overwritten by the value in manual control mode.

282




7-3-2. Parameters Description

Movement direction:

Positive movement: the output value MV will increase with the increasing of the measured
value PV, usually used for cooling control.

Negative movement: the output value MV will decrease with the increasing of the measured
value PV, usually used for heating control.

Mode setting
Common Mode:
Parameters register range: S3~S3+69, and S3~S3+7 need to be set by users;
S3+8~S3+69 are occupied by system, users can’t use them.
Advanced Mode
Parameters register range: S3~S3+69, among them S3~S3+7 and S3+8~S3+11 need to be
set by users; S3+16~S3+69 are occupied by system, users can’t use them.

Sample time[S3]

The system samples the current values according to some certain interval and compares them
with the output value. This time interval is the sample time T. There is no requirement for T
during DA output; T should be larger than one PLC scan period during port output. T value
should be chosen among 100~1000 times of PLC scan periods.

PID Operation Zone[S3+6]

PID control is entirely opened at the beginning and close to the target value with the highest
speed (default value is 4095), when it entered into the PID computation range, parameters Kp,
TI, TD will be effective.

See graph below:

output wvalue .
P PID operation area

target value

PID open completely

time t

If the target value is 100, PID operation zone is 10, and then the real PID’s operation zone is
from 90~110.

283



Death Region [S3+7]

If the measured value changed slightly for a long time, and PID control is still in working
mode, then it belongs to meaningless control. Via setting the control death region, we can
overcome this situation. See graph below:

output wvalue

next valuel135

current value 122

last valuei120

time t

Suppose: we see the death region value to be 10. Then in the above graph, the difference is
only 2 comparing the current value with the last value. It will not do PID control; the
difference is 13 (more than death region 10) comparing the current value with the next value,
this difference value is larger than control death region value. it will do the PID control with
135.

7-4. Auto Tune Mode

If users do not know how to set the PID parameters, they can choose auto tune mode which
can find the best control parameters (sampling time, proportion gain Kp, integral time Ti,
differential time TD) automatically.

Auto tune mode is suitable for these controlled objects: temperature, pressure; not suitable for
liquid level and flow.

Auto-tuning is the process of extracting PID parameters. Sometimes auto-tuning can not find
the best parameters at one time. It needs auto-tuning for many times. It is normal that there is
a vibration in the process. After the optimum parameters are found at the end of auto-tuning,
please switch to the manual PID mode. If the control object is unstable in the process of
manual PID, it can not be controlled at a constant target value, which may be caused by the
unsatisfactory adjustment of parameters. It is necessary to re-adjust the parameters of PID to
achieve stable control.

For step response method: Users can set the sampling cycle to be 0 at the beginning of the
auto tune process then modify the value manually in terms of practical needs after the auto
tune process is completed.

284



For step response method: Before doing auto tune, the system should be under the non-control
steady state. Take the temperature for example: the measured temperature should be the same
to the environment temperature.

For critical oscillation method: user needs to set the sampling time at the beginning of the
auto tune process. For slow response system, 1000ms. For fast response system, 10-100ms.

For critical oscillation method: the system can start the auto tune at any state. For object
temperature, the current temperature doesn’t need to be same to ambient temperature.

Two different methods and PID control diagram:
(1) Step response method
Make sure current temperature is equal to ambient temperature

output
X

DO
+DIFF
D
Setting yalue

DO
-DIFF

(2) Critical oscillation method
The auto tune start temperature can be any value.

Output
3
DO

+DIFF
D

Setting \71fue
DO

oY1= =

To enter the auto tune mode, please set bit7 of (S3+ 2) to be 1 and turn on PID working
condition. If bit8 of (S3+ 2) turn to 1, it means the auto tune is successful.

PID auto tune period value [S3+12]

Set this value in S3+12 during auto tune. This value decides the auto tune performance, in a
general way, set this value to be AD result corresponding to one standard tested unit. The
default value is 10. The suggested setting range: fall-scale AD result>0.3~1%.

285



User doesn’t need to change this value. However, if the system is interfered greatly by
outside, this value should be increased modestly to avoid wrong judgment of positive and
negative movement. If this value is too large, the PID control period (sampling time) got from
the auto tune process will be too long. As the result do not set this value too large.

»1: If users have no experience, please use the default value 10, set PID sampling time
(control period) to be Omsthen start the auto tune.

PID auto tune overshooting permission setting [S3+13]

If set 0, overshooting is permitted, and the system can study the optimal PID

parameters all the time. But in auto tune process, detected value may be lower or higher than
the target value, safety factor should be considered here.

If set 1, overshooting is not permitted. For these objectives which have strict safety demand
such as pressure vessel. Set [S3+13] to be 1 to prevent from tested value over the target value
seriously.

In the process, if [S3+2] bit8 changes from 0 to 1, it means the auto tune is successful and the
optimal parameters are got; if [S3+2] bit8 keeps 0, when [S3+2] bit7 changes from 1 to 0, it
means auto tune is finished, but the parameters are not the best and they need to be modified
by hand.

Every adjustment percent of current target value in auto tune end transition stage
[S3+14]

This parameter is effective only when [S3+13] is 1.

If doing PID control after auto tune, small range of overshooting may be occurred. It is better
to decrease this parameter to control the overshooting. But response delay may occur if this
value is too small. The defaulted value is 100% which means the parameter is not effective.
The recommended range is 50~80%.

Cutline Explanation:

Current target value adjustment percent is 2/3 (S3 + 14 = 67%), the original temperature of
the system is 0 <€, target temperature is 100 <€, and the current target temperature adjustment
situation is shown as below:

Next current target value = current target value + (final target value — current target value) x<
2/3;

So the changing sequence of current target is 66 <€, 88 €, 96 €, 98 €, 99 €, 100 €.

286



100 Target value
96 Current target 3
88
Current target 2
66 Current target 1
Current system value oot

Over target value times in auto-tuning end transition stage when limiting the overshoot

[S3+15]

This parameter is valid only when [S3+13] is 1;

If entering into PID control directly after auto tune, small range of overshoot may occur. It is

good to prevent the overshoot if increasing this parameter properly. But it will cause response
lag if this value is too large. The default value is 15 times. The recommended range is from 5
to 20.

7-5. Advanced Mode

Users can set some parameters in advanced mode in order to get better PID control effect.
Enter into the advanced mode, please set [S3+2] bit 15 to be 1, or set it in the XDP Pro
software.

Input Filter constant [S3+8]
It will smooth the sampling value. The default value is 0%, which means no filter.

Differential Gain[S3+9]

The low pass filtering process will relax the sharp change of the output value. The default
value is 50%; the relaxing effect will be more obviously if increasing this value. Users do not
need to change it.

Upper-limit and lower-limit value [S3+10], [S3+11]
Users can choose the analog output range via setting this value.
Default value: lower-limit output =0

Upper-limit =4095

287



7-6. Application outlines

Under the circumstances of continuous output, the system whose effect ability will die down
with the change of the feedback value can do auto tune, such as temperature or pressure. It is
not suitable for flux or liquid level.

Under the condition of overshooting permission, the system will get the optimal PID
parameters from auto tuning.

Under the condition that overshoot not allowed, the PID parameters got from auto tune is up
to the target value, it means that different target value will produce different PID parameters
which are not the optimal parameters of the system and for reference only.

If the auto tune is not available, users can set the PID parameters according to practical
experience. Users need to modify the parameters when debugging. Below are some
experience values of the control system for your reference:

Temperature system: P (%) 2000 ~ 6000, I (minutes) 3 ~ 10, D (minutes) 0.5 ~ 3
Flux system: P (%) 4000 ~ 10000, | (minutes) 0.1 ~ 1

Pressure system: P (%) 3000 ~ 7000, I (minutes) 0.4 ~ 3

Liquid level system: P (%) 2000 ~ 8000, I (minute) 1 ~ 5

288



7-7. Application

Example 1:
PID control program is shown below:

SMO0
— MOV D100 D10 [~  // Move ID100 content into D10

M1 HD2.7
— (S) /I auto tune mode, or set to autotune mode

M2 after auto tune end
A
4'\{/"0 PID DO D10 HDO YO /I start PID, DO is target value, D10 is the

‘ -
measured value, from HDO is PID

4'\{/' 1 parameters area; output PID result by Y0

M2
4{ }7

M2 HD2.7 /I PID control finish, close auto tune PID
— ( R ) mode

M1
4H{[})2.8 HDO?J(O (R) /I'if auto tune is successful, and overshoot is
permitted, close auto tune control bit, auto

4H{D2.8 HDO09 K1 tune will finish;

If auto tune turns to be manual mode, and
overshoot is not permitted, close auto

. tune control bit.
Soft element function comments:

HD2.7: Auto tune bit

HD2.8: Successful flag of auto tune
MO: Normal PID control

M1: Auto tune control

M2: Enter PID control after auto tune

Operation steps:

1. Send the actual temperature to PID collection register

2. Set probably value for P, I, D, sampling period

3. Set ON auto tune control bit M1 to startup PID auto tune

4. M1 will be reset after the auto tune is finished

5. Set ON MO, use the PID parameters getting from auto tune

6. If the PID effect is not good by using the auto tune PID parameters, user can adjust the PID
parameters to get good effect.

Note: This PLC temperature PID control program is applicable to almost all temperature
control projects.

289



Example 2:

To control the target temperature 60°C in step response mode.
Overshoot is permitted:

1. The target temperature 60°C (600)

2. Parameters setting

PID Instruction Parameter Config
Target Value (SV) D4500 Measure Value(PV) |D2 Parameter: |D4000 | Output: |Y0
Parameter Corfig Mod..e. Corfig B
. _ (® Common Mode () Advanced Mode
() Manual ) Auto
Sampling Time : 100 2| ms 0 =
N -
4085 =
PID Computation Scope: 1000 & Direction Config
PID Control Death Band: 20 - (®) Negative Movement () Positive Movement

MNegative Movement:Along with the increase of the

measures definte value PV, outputvalue MY will also
Self Study Periodic Value: 11 S iEe

It's usually used in heat up contral.

Self Study Method: Step Response v
Positive Movement:Along with the increase of the
Self Study PID Control Mode: PID Cartral measures definite value PV, outputvalue MY will
also increasze.
It’s usually used in cool control.
Crwershoot Corfig
(@) Enable Overshoot () Disable Overshoot Parameter Range:D4000 - D4063
100 =
15 =

Suggestion value

Read From PLC | | Wirte To PLC Cancel

3. The result curve

290



Temperature

A

100 .
NIV
60 / \ I N =

a0 f \ /

28

0 t>

Explanation:

The target temperature is 60 degree, PID calculation range is 10 degree, PID control dead area
is 0.2 degree, auto tune period changing value is 10. When the PID control works in normal
atmospheric temperature, the PID output terminal will heat the temperature from 28 to 100
degree, then the output stops, the temperature keeps increasing to 110 degree (max
temperature) as the remaining warmth. Then the temperature keeps decreasing to 60 degree,
the output starts to heat again to 70 degree and stops. The temperature increases a little then
decreases again. This process will repeat. Finally, the temperature will fluctuate close the
target temperature.

Note:

1. When the temperature reaches 100 degree and stops heating, the PID start bit D4002.7 will
not reset at once, it has delay before reset.

2. When the temperature reaches 100 degree and stops heating, the PID auto tune success bit
D4002.8 will be ON at once.

3. When it starts PID calculation, the PLC will auto set a sampling time (about 2500). This
parameter will be replaced by the PID best sampling time after stoping heating at 100 degree.
4. When it starts PID calculation, the PLC will auto set the PID parameters (P=4454, 1=926,
D=2317). These parameters will be replaced by the best PID value after stoping heating at
100 degree.

5. When the temperature reaches 100 degree and stops heating, the PID start bit D4002.7 will
not reset at once, it has delay before reset. At this time, the sampling temperature is higher
than target temperature. If user sets ON the PID auto tune again, PLC will get all the PID
parameters as 0. Please set ON the PID after the temperature decreases under the normal
atmospheric temperature.

6. If PID auto tune start bit and auto tune success bit are power-off retentive, please set or
reset them propably to avoid calculation error when starting the PLC next time.

291



7. The final heating temperature will up to 110 degree when the overshoot is permitted. It is
over the target temperature by 50 degree, the overshoot amount is too large.

8. When the PID starts to work, the output will heat the object from 28 degree to 60 degree,
then the output is forced to stop heating to avoid overshoot, but this will interrupt the PID
auto tune process.

9. To enlarge the PID calculation range can suppress the heating overshoot.

Overshoot is not permitted:
1. The target temperature is 60 degree (600)
2. The related parameter settings:

PID Instruction Parameter Config

Target Value (SV) D4500 Measure Valus(PV) Do Parameter: |D4000 Output: | YO
Parameter Config MDC!? L .
. _ (@) Common Maode () Advanced Mode
() Manual ® Auto
Sampling Time : 100 = ms 0 -
= =
095 =
PID Computation Scope: 1000 |2 Direction Corfig
PID Corttral Death Band: 20 . (@ Megative Movement () Positive Movement

Megative Movement:Along with the increase of the

measures definte value PV, outputvalue MV wil also
Seff Study Perodic Value: 10 = reduce.

It’s usually used in heat up control.

Self Study Method: Step Response v
Positive Movement:Along with the increase of the
Seff Study PID Control Mode: PID Control measures definite value PV, outputvalue MV wil
also increase.
It’s usually used in cool contral.
Overshoot Config
() Enable Overshoot (@) Disable Overshoot Parameter Range:D4000 - D4063
Each time adjust the increase: 100 = %
Cumrent target value resident Count: 15 =

Suggestion value

Read From PLC | | Wiite To PLC —

3. The result curve

292



\ Temperature

100

70

60

a0

28

H-\’

Explanation:

The target temperature is 60 degree, PID calculation range is 10 degree, PID control dead area
is 0.2 degree, auto tune period changing value is 10. When the PID control works in normal
atmospheric temperature, the PID output terminal will heat the temperature from 28 to 48
degree, then the output stops, the temperature keeps increasing to 70 degree (max
temperature) as the remaining warmth. Then the temperature keeps decreasing to 60 degree,
the output starts to heat again to 62 degree and stops. The temperature increases a little (about
64 degree) then decreases again. This process will repeat. Finally, the temperature will
fluctuate close the target temperature. The precision is + 0.25 degree.

Note:

1. When the temperature reaches 48 degree and stops heating, the PID start bit D4002.7 will
not reset at once, it has delay before reset.

2. When the temperature reaches 48 degree and stops heating, the PID auto tune success bit
D4002.8 will not be ON at once. It hasn’t set ON even when the auto tune succeeded.

3. When it starts PID calculation, the PLC will auto set a sampling time (about 2500). This
parameter will be replaced by the PID best sampling time after stoping heating at 48 degree.
4. When it starts PID calculation, the PLC will auto set the PID parameters (P=4454, 1=926,
D=2317). These parameters will be replaced by the best PID value after stoping heating at 48
degree.

5. When the temperature reaches 48 degree and stops heating, the PID start bit D4002.7 will
not reset at once, it has delay before reset. At this time, the sampling temperature is higher
than target temperature. If user sets ON the PID auto tune again, PLC will get all the PID
parameters as 0. Please set ON the PID after the temperature decreases under the normal
atmospheric temperature.

6. If PID auto tune start bit and auto tune success bit are power-off retentive, please set or
reset them propably to avoid calculation error when starting the PLC next time.

293



7. The final heating temperature will up to 70 degree when the overshoot is permitted. It is
over the target temperature by 10 degree, the overshoot amount is small.
8. To enlarge the PID calculation range can suppress the heating overshoot.

8 C Language Function Block

In this chapter, we focus on C language function block’s specifications, edition, instruction
calling, application points etc. We also attach the common function list.

8-1. Summary

XD/XL series supports to write function blocks in C language in the Xinje PLC software and
call them where needed. It supports almost all C language functions (compared with XC
series, XD/XL series also supports global variables), which enhances the confidentiality of
the program. At the same time, it can call many places and different files, greatly improves
the efficiency of programmers.

8-2. Instruction Format

1. Instruction Summary
Call the C language Function Block at the specified place.

Call the C language function block [NAME_C]

16 bits NAME_C 32 bits -

instruction Instruction

Execution Normally ON/OFF, Suitable XD, XL

condition Rising/Falling Edge activation Models

Hardware Software

2. Operands

Operands | Function Type

S1 Name of C Function Block, defined by the user String

S2 Corresponding start ID of word W in C language | 16 bits, BIN
function

S3 Corresponding start ID of bit B in C language bit, BIN
function

294



3. Suitable Soft Components

Word Operands System Constant | Module
DI | ™| | DX|{DY| pyv| ps*| KH ID| QD
S2 °
Operands System
Blt X|IY| M S* T* C* Dnm
S3 °

*Note: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS. M includes M, HM, SM; S includes S
and HS; T includes T and HT; C includes C and HC.

Function and Action

H(’HN%SC%D | -

S1 is the function name. It consists of numbers, letters and underlines. The first character
can’t be number, and the name length should be <=9 ASCII characters.

The name can be the same with PLC’s self instructions like LD, ADD, SUB, PLSR etc.
The name can’t be the same with the function blocks existing in current PLC;

8-3. Operation Steps

1. Open PLC edit tool, in the left “Project” toolbar, choose “Func Block”, right click it and
choose “Add New Func Block”.

295



;_j Project
Z-23 PLCL
=-_] Code
EE% Ladder
Id... Instruction Lisk

E S Add Hew Func Elock

=] <omm Import Fune Block From Dizk
B Free Monitar
[ata Monitaor
E] Set Req Init Yalue
=2 PLC Config
[ Password
@ PLC Serial Port
O Module

L] I

2. See graph below, fill in the information of your function;

Func Hlock Info Edit

X

Fune Block Hame:|FUHC1 N | Ver=sion: (1.0.0
1 \
Dezcription: \
Function
Block Name
Editor Name
uthor: | Date: |2|:|13E 38 &8 v|
| oK || Cemcel |

Function Block name is the name we use to call the BLOCK. For example: the diagram of
FUNC1 should be written as below:

‘ MO
‘ T } FUNC1 DO MO }—‘

3. After creating the new Function Block, you can see the edit interface as shown below:

296



FIL1 — Ladder HonoaB] ook W] |

! Infermation § Main function’s name ( it’s function block’s

1 fweex]{ Name, this name can’t be changed freely, and I ——————

2 Fuy users should modify in the edit window.)

] ey

4 Luthor

g UpdateTi 2013-3-6 10:49:07

& Comment

-

8 TEETREFETEETY El e i e e e e e e e e e e e e e

o woid FUMNC1({ WORD W , BIT B )
0B {
11
1z '
13

Edit your C language WORD W: correspond to soft component D
program between {}’ BIT B: correspond to soft component M

Parameters’ transfer way: if call the Function Block in ladder, the transferred D (HD)
and M (HM) is the start ID of W and B. Take the above graph as the example, start with
D0 and MO, then W[0] is DO, W[10] is D10, B[0] is MO, B[10] is M10; if the parameters
in the ladder are HDO, HMO, then W[0]=HDO0,B[0]=HMO; if the parameters in the
ladder are D100, HM100, then W[0]=D100, B[0]=HM100. So, word and bit
components start address are defined in PLC program by the user.

Note: The local variable defined inside the C function cannot be more than 100 words.

Parameter W: represent Word soft component, use it in the form of data group. E.g
W[0]=1; W[1]=W][2]+W]3]; in the program, use soft components according to standard
C language rules.

Parameter B: represent Bit soft component, use it in the form of data group. Support
SET and RESET. E.g: B[0]=1; B[1]=0; And assignment, for example, B[0]=BJ[1].
Double word operation: add D in front of W. E.g. DW[10]=100000, it means
assignment to double-word W[10]W[11]. Double-word operation: Support the
definition of floating variable in the function, and execute floating operation; (E.g:
float register DO(double word) means FW[0], FW[0]=123.456)

Other soft elements definition in C language:

When a function block is created, #define SysRegAddr HD_D _HM_M is default defined in
the main function. If you need to use input (X) and output (), you need to add X, Y in the
default Macro definition “#define SysRegAddrHD_D_HM_M?”, which will be “#define
SysRegAddrHD_D_HM_M_X_Y”. For example, set X0 state to coil M0, B[0]=X[0]; set YO
state to coil M10, B[10]= Y[0Q]. (Note: The corresponding X and Y are expressed in decimal
rather than octal in C language).

Similarly, the applications in C are same for non-power off memory process S, counter C,
timer T, counter register CD, timer register TD, register D (HD) and coil M (HM), etc. Macro
definition “#define SysRegAddr_ S C_T_CD_TD_D_M?”. If they are power off memory

297



process HS, counter HC, timer HT, counter register HCD, timer register HTD, etc, Macro
definition “#define SysRegAddr HS HC HT HCD HTD”.
Examples: W[0]=CDI[0];W[1]=TD[0];B[1]=C[0];B[2]=T[O];
Note: Software component types are supported except SEM.
e  When the function block is created, default define #define SysRegAddr HD D HM M in

the main function.

7
PP
9 wvoid FUNC1({ WORD W , BIT B )

18 B {

11 #define SysReghddr HD D HM M

12

13

14 }

15

It is recommended to use it as a local macro definition, that is, inside the function body.

e Function Library: The user function block can directly use the functions and constants
defined in the function library. See chapter 8-10 for the functions and constants
contained in the function library.

e The other data type supported:

BOOL; //BOOL Quantity

INT8U; //8 bits unsigned integer

INTSS; //8 bits signed integer

INT16U /116 bits unsigned integer
INT16S /116 bits signed integer

INT32U /132 bits unsigned integer
INT32S /132 bits signed integer

FP32; /l single precision floating

FP64; //double precision floating

Examples: #define DHD*(INT325*)&HD  //DHD means double word HD
#define FFW*(FP64*)&D  //FFW means double precision floating numbers
#define DDW*(long long* )&D //DDW means four words register
Explanation: DHD is 32-bit signed integer. DHD[O0] represents a 32-bit signed integer power-
off holding register composed of HDO and HD1.

Predefined macros: #define true 1
#define false 0
#define TRUE 1
#define FALSE O

e There is no non editable option for the export of header files, others are the same as the
source files.

e InC, there are two rules for referencing header files, #include “xx.h” and #include <xxx.h>.
when using the header file in the PLC project, it needs to use #include xxx.h in source file.

e Do not use Marco definition #define SysRegAddr in the header file, this Marco definition
is ineffective in the header file, which only can be used in source file.

298



8-4. Import and Export the Functions

1. Export
(1) Function: Export the function as the file, then other PLC program can import to use;

;-;"1 Project
=23 PLCL
=] Code
EE% Ladder
Id.. Instruction Lisk

=-[B] Fure Block
—1 IExp-:-rt Fune Block

|:|Se

;g—l Camm Remowe Funec BElock From Froject
@ Free Manitar

[aka Maonitor

E] Set Reg Inik value

Func Block Info Edit X

Fune Block Name:| | Version:

Description:

Author: | | Date: [20135F 38 6H «

Export |

() Edit () Ho Edit

0 | [ remcal |

(2) Export Format

a) Edit: Export the source codes out and save as a file. If import again, the file is editable;

b) No edit: Don’t export the source code, if import the file, it’s not editable. Ethernet models
and non Ethernet models cannot be used in common. You only need to modify the model
before exporting it.

2. Import
Function: Import the existing Func Block file, to use in the PLC program.

299



Froject
3 project
-2 PLCL
=] Code
Egi Ladder
Id... Inskruckion Lisk

I:‘ Zeq Add Hew Fune Elock

= comme Import Fune Elock From Disk
@ Free Monibar

Data Maonitor

Ej Set Req Inik Yalue

Choose the Func Block, right click ‘Import Func Block from Disk’, choose the correct file,
and then click OK.

8-5. Edit the Func Blocks

Example: Add DO and D1 in PLC’s registers, and then assign the value to D2;

(1) In ‘Project’ toolbar, new create a Func Block, here we name the Func Block as ADD_2,
then edit C language program;

(2) Click ‘compile' after edition.

FLC1 - Ladder FoncBlock—ADD 2
Information Export Compile

7 W [2] =W [0] 4W [1]
E e i e e e e e e e e e i e e e e e e e e e e e e e e e e e e e e e
o wvoid ADD 2 WORD W , BIT B )

105 {W [2] =W [0] +W [1]]

11

12 | ¥

13

4

Information(l)

Errar List | ©ukput
1.0 A4 A Emp PrFUncEAADD 2 o0 In Function 'aD0_2"

oA EmpPHFUReBVADD_Z.ci6: 1 error: expected ;' before 'asm' \

The information list

According to the information shown in the output blank, we can search and modify the
grammar error in C language program. Here we can see that in the program there is no ;’ sign
behind W [2] =W [0] + W [1].

Compile the program again after modifying the program. In the information list, we can
confirm that there is no grammar error in the program.

300



Information Export Compile

[ Comrnent :
7 W [2] =W [0] +W [1]
B e i e e i i e i e e e e i e i e e i e e e e e e i e e e e e e e e

S  wvoid ADD_1{ WORD W , BIT B |
106 W [2] =W [0] +W [1]:]
11

1z }
<

Information

Error List | ©utput

(3) Write PLC program, assign value 10 and 20 into registers DO, D1 separately, then call
Func Block ADD_2, see graph below:

Shid

H|

MOV k1o Do H

Mo kK20 D1 H

M0
— | {  apz2oo wmo H

(4) Download program into PLC, run PLC and set MO.

MOW k10 Do H

W 10

Mow k20 D1 H
20

ﬁ {  aoo2po w0 H
0 oN

(5) From Free Monitor in the toolbar, we can see that D2 changes to be 30, it means
assignment is successful;

DeHxamadEs e C 400 @ @EnE -
SR T Y S ® e w w A A bt )\« A

Ins sIns Del =De

Free Monitor

PLC1-BR%E1 o>
SEEL ~ | EIN S e Wik | 2l ER

IFires P =i i I

v 30 B 103H

301



8-6. Program Example

If PLC needs to do complicated calculation (including plus and minus calculation), the
calculation will be used for many times, C language function is easy to use.

Example 1:

Calculation a= b/c + b*c+(c-3)*d

Method 1: use ladder chart:

Get the result of c-3

Get the result of three multiplication equations

Get the sum

Ladder chart only support two original operands, it needs many steps to get the result.

[ SsUB 2 K3 Do
] |
(St

FLC-3

—| MUL DIk DS I

1 3 |
L3

0
D2c-2%n

— MUL D1 D2 Dld

4 2 8
A
[¥14:H*

= oY [ DX Db

MR 4 2

i
It B

—| WD e D1s

Dlg:BAC
D &:make B result ta
Dward

[ DADD DIZ_DId_DI0
pi1zcapn & F

34 B

—  DADD D0 DI& D22

D Beenake BAC seln
Lo
DA

Note:

1. The result of MUL is Dword, the result is stored in D14~D15.

2. The result of DIV has quotient D16 and remainder D17. If D17 has value, the calculation
precision will decrease. Please use float format to ensure the precision.

3. D16 quotient is word value, in plus calculation all the data should be changed to Dword.
The final result is stored in D22~D23.

302




Method 2: use C language:

MO
— RESULT DO MO

RESULT Function name

Do In the function, W [0] =D0, W [1] =DI...
If D0=D32, then W [0] =D32, W [1]=D33...
If S2=HD32, then W [0] =HD32, W [1] =HD33...

MO In the function, B [0] = MO0, B [1] =M1...
If S2=M32, then B [0] = M32, B [1] =M33...
If S2=HM32, then B [0] = HM32, B [1]=HM33...

C program
9 woid RESULT{ WORD W , BIT E )
10 {

11 long int a,b,c,d;;
12 | b=u[1]:

13 c=W[2]:

14 d=W[3]:

15 a=b/c+b*c+(c-3) *d;
16 DUW[4] =a;

12 i

Method 2 can simplify the program.
The above C language function is similar to ladder chart of method 1, whose precision is not
high. If it needs to get the high precision, please use float calculation.

Example 2: Calculate CRC parity value via Func Block
CRC calculation rules:

(1) Set 16-bit register (CRC register) = FFFF H

(2) XOR (Exclusive OR) the first 8-bit byte message and the low 16-bit CRC register.

(3) Right shift 1 bit of CRC register, fill 0 into the highest bit.

(4) Check the right shifted value, if it is 0, save the new value from step3 into CRC
register; if it is not 0, XOR the CRC register value with A001 H and then save the result into
the CRC register.

(5) Repeat step3&4 until all the 8-bit have been calculated.

(6) Repeatstep (2) ~ (5) , then calculate the next 8-bit message. Until all the messages
have been calculated, the result will be the CRC parity code in CRC register.

Edit C language Function Block program, see graph below:

303



= void CRC CHECE({ WoRD W , BIT E )
10 i

11 int i,j,m,n:

12 unsigned int reg cro=0xffff, k;
13

14 fori i = 0 ; 1 < W[O] ; i++ )
15 i

16 reg crot=W[i+l];

17 Tfor (j=0;]3<8:J3++]

15 i

19 if (reg cros0x01)

z20 reg_u:r|:=ireg_crc:>>1]*DanDl;
21 else

2z reg crocsreg crorrl;
23 }

24 }

25

26 m=W[0] +1:

27 n=wroj+2:

ed= k=reg crc:0xfrf00;

29 Wnl] = kx=3:

30 W[m]=reg croslxft;

31 }

Edit PLC ladder program,
DO0: Check byte number of data,
D1~D5: Check data content. See graph below:

2

Y MOV HS D0
MOV H12 D1
MOV H3 D2
MOV H56 D3
MOV H78 D4
MOV Ho D5

00
Y CRC_CHECK | DO | MO

Download to PLC, then RUN PLC, set MO, via Free Monitor, we can find that values in D6
and D7 are the highest and lowest bit of CRC parity value;

304



8-7. New functions

(1) Format

Click the advanced/editor support setting menu to open the C editor support options window.

PLC1 - Ladder ) SourceFile-FUNC1 |

Information Export

{}, Format = Toggle Lines Comments

e

1 j#?t##:t-‘##
2 Function
3 Version
4 Author:
5 UpdateTime:
6 Comment:
7
8
9

1e {

12

13

14 }

15

2021-08-16

void FUNC1( WORD W , BIT B )

11 #define SysRegAddr_HD_D_HM_M

Code Format

Format (® Aliman
Auto format completed statements when entering ™"
Auto format completed sequence when entering "}"
Handling special characters

IntelliSense

[] auto compette code
[+ auto indent

[ auto complete brace

(2) Local code auto format

14:16:31

'K'llt*ll**'lml"l"ﬁmt"ll**lﬂ**'ﬁml’"'ﬁlt*lﬂ**"ml"ﬁtKK*IIK*II**Ilt'ﬁtlt*lﬂ**tﬁl"ﬁtlt'ﬁl!

» Auto format completed statements when entering *;”

When the user enters the character ";" format the statement of the current row.
» Auto format completed sequence when entering “}”

When the user enters "}", format the contents in "{}".

(3) Handling special

characters

The full width characters entered by the user into the editor need to be converted to half
width characters because they are not recognized by the compiler.

305



(4) Auto complete code
When the user inputs characters, the code prompt function will give certain prompts to
help the user input and complete the code.
»  Submit
When the user press Enter or “;”, the currently edited code will be submitted to the
analyzer for analysis and a list of code tips will be generated.
» Prompt
When the user inputs characters, the code prompt control will pop up automatically to
match the user's input and give a prompt.

void FUNCL{ WORD W, BIT B )

#define SysRegAddr_HD D _HM M

il
} if
int
INTSL
INTSS
INT15L
INT16S
INT32L
INT325
if) { }
if0{ Jelse{}

» Access tips for member variables

When the user enters "." "or" - > ", the code prompt function will help the user prompt the
members in the structure or consortium type of the defined variable, as shown in the
following figure.

struct TestStruct

(=
int a;
int b;
—1
vold FUNC1{ WORD W, BIT B )
=

#define SysRegfddr HD D _HM_M

TestStruct test;
test.

} a
- b

» Auto indent

The automatic indentation function of the editor is optimized, which is more in line with
user habits.

» Auto complete brace

When the user enters "(" ["{", it will automatically help the user generate the
corresponding bracket ")"] "}".

(5) Comment / uncomment
Comment selects / deselects the comment for the row.
The shorcut key is Ctrl +/.

306



(6) Function library
Please refer to chapter 8-8.

8-8. Function library

It provides the functions of encryption, encapsulation, export and import of C function blocks.

8-8-1. Export the function library

Right click the function block and select export as function library to enter the function
library Export Wizard interface.

B e R p——
{3 Profect “|I: Information ¢
| B3 PLCY

1 3 % JESEEE
' L= Code

ZE 7 Ea 2 Fur
! 3 Ver
: --Id.. Instruction List 4 Aut
: =8 C -

] . Add new source file :
Add new header file

; *1
E Batch Import Files f
1 E]

: Batch Export Files ”
E . Export as Function Library .
R Batch Delete Files

N 7 == M s

The function library Export Wizard is divided into "select exported function block page”, "fill
in library information page", "select prohibited / allowed model page”, and help page in the
lower right corner.

(1) Help page
Click the help button to show the help information.

[ select Al [] Negate

307



i fl.l'u:hmlray
Click "Select Save Path" to select the storage path of the library to be exported this time.
3. Select a limited model

The exported function library is restricted by checking "Select allowed models” or “Select to
models”. The function library can only be used in the allowed model list or prohibited

in prohibited models.

"Select to allow models" and "Select to disable models" are only allowed to select one or

none.

Mercnrrpld:ngﬂ)ed:weneps click OK, the software backaround will generate a
r.n:nmllay .and save it to the selected path.

(2) select exported function block page
“Select function block and its dependencies page” is the first page of the Export Wizard,
as shown in the following figure.

FUNC1

[] Select All [] Negate

Select the function block to be exported. It must be unencrypted, otherwise it cannot be
exported normally.

Select the dependency of the exported function block on the right. If funcl declares that the
function in func2 is used, func2 needs to be added to the dependency of funcl. If there is no
dependency, you do not need to check it.

If the "select all" button is selected, all function blocks will be selected.

Check the negative button to deselect the selected function block and select the unselected
function block.

After selecting the C function block and its dependencies, click next to enter the "fill in
library information page".

308



(3) fill in library information page

Library Name: Version:
Author: Date: Monday , August
Description:
Save Path: Select Dir
Previous Next : Cancel Help

Please be sure to fill in the function library name, version, author, description and the
export path of the function library.

After filling in the library information, click the next to enter the "select prohibited /
allowed models page".

(4) select prohibited / allowed models page

The user can select the list of prohibited models, the list of allowed models, or none (that
is, any model is allowed).

After selecting the forbidden or allowed model, the page is shown in the figure below. At
this time, the select restricted model box below can be operated and selected. When the
option in the left column is selected, all models of the group will be selected; When
selecting the option in the second left column, all models of the series will be selected.

309



Tips: Ban models and Allow models, only one can be selected
Choose Ban Models [] Choose Allow Models
W mee  Imee
]Jy [JRC3 [] RC1-60
OIS (] RCe [ Rc2
] XA [] RCEH [] RC2D
[ ] XD ] RC2L
[] %G [] RC2va
[ XL [] RC2ZM
] XK [JRC3
1 XE
Previous 0K Cancel Help

(5) completion

After filling in the above information and confirming that it is correct, click "OK" to enter
the final export process. The bottom left corner of the export page prompts "exporting
function library...". This process takes a long time, please wait a moment.

The file generated by export is named according to the default rule “function library
name_Version_ The creation date.eblib”, which is stored in the save directory filled in
(3), as shown in the following figure.

£ B {EpE s ==l Frh

| |_| FUNC LIB_V1.0.0_20130507.eblib 2019/5/7 11:26 EBLIE =0{% 24 KB |

8-8-2. Manage the function library

Right click the function library, select manager library.

E Func Block
: E“jj Source File
. L. ¢ FUNCY
:j Header File

B -
m% Manager Library

: ...l User function library 12
| I|1 Confia Block 13
It will show below window:

LT3 - R I LR

310



File Display Setting
Added Library
Rl of the company

File

(1) add library

Through this function, the user can add the library file (suffix. Eblib) to the function
library directory set in xdppro and display it in the "function library" interface for import.
(2) Delete library

For the function library files in the function library directory that users do not need, you
can delete the library files in the directory by deleting the library.

Note: you need to select a specific function library before clicking "delete library".

Display:
In the display menu, you can expand / collapse all the file trees.

Setting:

(1) Set the library path

To use the function library, you need to set the directory of the function library before
subsequent operations.

After setting the library directory, the function library files will be obtained from the
directory and subdirectories, read, parsed and displayed in the management interface.

311



After clicking default, you will be provided with a default function library path. If it does
not exist, you need to create it manually.

Click Edit path, and you can select a folder as the function library path.

Click OK to read the function library file under the path and display it in the management
interface.

Area A, B, C, D:

Area a is the company drop-down list, where you can select a company to filter and view.
Area B is the tree diagram of function library files. The first level is the company / author,
the second level is the name of the function library, the third level is different versions of
the same function library, and the third level is specific files. Click the function library
file node of the third level to view the detailed description of the function library
(function library name, author, version, creation date and function library description) and
the black-and-white list of models in area C. At the same time, the instructions and
explanation of the function library are displayed in area D.

The user can browse all function libraries in the management interface, check the third
level function library file on the left, and click OK to load it into the current PLC project.
After clicking OK, all function libraries in the current PLC project will be unloaded and
the function library selected by the user will be reloaded for use.

Note: two versions of the same type of function library cannot be selected at the same
time.

8-8-3. Use the function library

(1) View function library instructions
Click the function library file node to view the instructions and instruction descriptions in the
library, as shown in the following figure.

312



EM{HESERTE =] B

B EF {E&E it B %ﬁ : ITESE
TEST_ADD[1.0.0  |686 i : EER

: %H:ﬂa\: 2019/7/23 11:01:03
TEST WUL|1.0.0  |BE6 T %%mlu‘cﬁmémaﬁﬁs &

*ifl

(2) Application of function library instruction in ladder chart
The use of instruction is consistent with the use of function block.
The format is: instruction WORD BIT, such as FUNC1 DO MO. The use in ladder chart is
shown in the following figure.

- TEST ADD DO MO I

(3) Download
If the function library has "forbidden models" or "allowed models"”, check it when

downloading the project. If you download unqualified models, they will not be allowed to
download.

8-9. Application notes

e In one Func Block file, you can write many functions, and they can be called by each other.
e Each Func Block file is independent, the function in other function block cannot be called.

e Func Block files can call C language library function in form of floating, arithmetic like

sin, cos, tan.

e  XCseries PLC only support local variable, while XD/XL series PLC support both local and

global variable. This makes C language Block more flexible and convenient.

e Recommended usage of global variables:

(D Use the soft component area instead of ordinary memory to store the data of global

variables.

The soft component space of PLC can be used as the global variable space, and the security

is guaranteed.
(@) Usage example
Take FP64 type as an example:

313



FunctionBlockName: FUNC1

Version: 1.9.

Author:

UpdateTime: 2928/1/3 10:38:47
Comment :

s declaration
11

12 woid FUNCL{ WORD W , BIT B )

=0T - T, ey

13 B {

14 | #define SysRegAddr HD_D_HM M

15

. [etobaty - eessy@itoD); | jnjtialization
18 | Test();

19 -3}

20 woid Test()

21 B {

22 #defin 5 d D D HY M

23 using
24 PEAT LA O :

25 | 3}

5 =

As shown in the figure above, the global pointer GlobalV is declared outside the function,
and then initialized in the main function to point to the space of the software component. The
first address of the space is the address where WI[O0] is located. Finally, the value of the
variable can be obtained through pointer operation in other functions.

Take structure type as an example:

1 #ifndef STRUCT_H
2 #define STRUCT_H
3

4 typedef struct

5

] INT1eU V;

7 FPE4 5;

8 JExStruct;

9

18 #endif

The declaration of structure

FunctionBlocklame: STRUCT
l.e.8

2828/1/3 18:58:49

1o Lomrrrrrer— the header file contained declaration
11 ExStruct™ 5T;
12 void STRUCT({ WORD W, BIT B )

12 B {
14
15 #define SysRegAddr_HD_D_HM_M
16
- - : . aga . .
| pr =(estuctymiiel); | jnitialization
19 ST-3V = 18;
8 ST-25 = 188.881;
21
22 Test(5T);
23 L}
24 void Test{ExStruct™ ex)
% BEq{
26 #define SysRegAddr_HD_D_HM_M
27
2B *{INT16U*)BHD[B] = ex-»V; .
29 *({FPG4=)BHD[2] = ex-35; uS|ng
38 T

Structure type global variable usage example

314



e  XDPPro software v3.3 and later version keep C function library:
A ==
& S O R -

o BT

In this function block, user can call the C function directly:

—
M e @ @ [

|

TCA Calenlation area of a circle

TCC Circumference calculation

TCRC CEC Check

TDSL Input data (short) from biz to small order
TOSS Input data (short) from small to largze order
TECA Calculation area of a circle

TECC Circumference calculation

TEEX Exponentiation caleulation

TEL1O Hatural logarithm

Hatural logarithm

TEFTH Fnown two right-angle sides and the hypotenuse  demanded
TEFTR Fnown one right-angle side and hypotenuse nmeed to demand the other right-angle side
TEQE Quadratic equation (float]

TESTM Sum of memory 32-bit fleating data

TETF The product of memory data (float)

TEUE Quadratic equation [float)

TEX Exponentiation caleulation

TFA Factorial solwving

TITF Inverse trigonometriec functions

TQE Quadratic equation (short)

TSN Sum of memory 32-bit integer data

TTF The product of memory data (short)

ﬁﬁﬂﬁﬁﬁﬂﬁﬁﬁﬁﬂﬁﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁ
=
=

TUE Quadratic equation (short)

For example: click TEL10, the function name will show on the project bar:

[ ;\1 Project
523 pLct
=] Caode
EE% Ladder
. Instruckion List
= Func Black
¥ TLUE

] sequence Block

User can call it in the ladder chart editing window at any time.

315



8-10. Q&A of C language

(1) second macro definition for the coil

Some users have further extended the software component type after defining it, as shown in
the following code:
#define SysRegAddr HD_D _HM_M_X_Y
#define OUT Y[1]
OUT = 100;
The second macro definition of coils such as Y is not allowed because the reading and writing
of coil data is not simply a pointer, but through a function. In this case, the compiler cannot
handle it, resulting in an error.

(2) Use the value of the coil as the judgment condition

The user uses the value of the coil as the judgment condition of the if statement, as shown in
the following code:
if(X[0])D[0] =10;
This writing method will report an error during compilation because our compiler has made
an error during internal processing. It is recommended that you change the line, as follows:
if(X[0])
D[0] =10;

(3) Use DM
DM[0] is not supported at present. Only DW and FW double word operations are supported.

(4) An error is reported during compilation, and macro defintion color changes to black
This phenomenon is caused by full angle characters in the code. Full angle characters can be
cleared by using formatting.

(5) The C language function in the header file has no compilation function.

& X1 pLct - 278 [ ss#e-HAND A | 5244 ADDING |
PLCI -
0 &R [e8 s |
EEQ I ERE 1 #ifndef _HAND A H
mn : 2 #define HAND A H
i 3 #endif
{3 E M
=3 B3 5  #define Home_speed 18888
i lec] ADDING 6 #define AxisEnable 1
_ c INML ;
'—J KIH 9 B INT325 ADDINGS(int x , int y) {
L d] HAND_A 10
—"E BT 11 int max;
FIRAENThES 12 max=Ffabs (x)*>+Fabs(y)*;
ol N B2t 3
- mEmR wd
[ iaEhsR 16
H gt SR 17

There is no compilation function in the header file. Only the source file can be compiled.
The header file cannot be compiled separately.

316



(6) When two source files call the header file, you only need to write a declaration in one source

file. Write in both source files and compile correctly, but the download program is wrong.

Using #include " xxx.h " outside the function can be understood as including this header file
globally. There is no problem compiling a source file separately.
The function of the header file can be understood as: the compiler replaces #include "xxx.h"
with variables and functions declared in the header file during code preprocessing.
However, during the download process, multiple source files are compiled and linked. After
preprocessing, both source files have declarations of variables and functions in the header file.
Repeated declaration errors will occur during linking, and XDPpro is shown as a link error.
Suggestion:
Correctly include the header file where the header file content needs to be used, rather
than blindly include the header file directly outside the function.

ﬁﬂ-{?\igiﬁﬁ ; run :?;3-1:_c:<|.a"'-';: AL LMNG
R TTAGER 4
-y 5
i-|c] ADDING 2
¢ hele] mML ;
E"_J FRRIE 9 I #include "HAND_A.h"™
L W] HAND_A 18
=-{20 FEThas 11 void ADDING( WORD W , BIT B )
T FRERRETR 12 @1
L0 PSS 13 ﬁdef"_m_a S';5I:'{eg.'—‘-.c|d.’_HI:_I:_I-'-'._'-'.
----- [ mE sk - #include HAND_A-h
-3 “ﬁ;ﬂ]ﬁﬁ* 16 INT325 MUL_A(INT32S r);
- S EEEERARR 17
..... @ B 18 DW[18]= ADDINGS(-10,30);
..... #HiEs 19 DW[14]= MUL_A(L);
----- G RRTE o
=4 PLCBE 2 L
Jrg] Vo 23
24 [ INT325 MUL_A{INT32S r) {
25
26 INT325 mas ;
27
23 mas=ADDINGS(-17,30)+r;
29
EL
3 Version: 1.8.8
T 4 Author:
=-CF i 5 UpdateTime: 2019/12/13 9:24:36
¢ .lc| ADDING 6 Comment:
foil|e] INmL 7
[ a o P R e T I T T I T I T T T T T T I I
E"_J I 9 #include "HAND A.h"
o HAND A 18 wold INITIL{ WORD W , BIT B )
=20 IR 11 B {
L BEfEEThAE 12 #define SysReghAddr HD D HM M
L AP EEETRE 12 #include "HAND_A.h
----- B EEThasi
15 DWW = ADDINGS(-17,37);
----- [ AR et A B ()
- i BAERR 17
----- By ks
----- 316
----- BT
=4 PLCEIE
i H Vo

317



L e wem PO ol =] v W e e P Ty Vv s - | = W

=g AHE < R (5
*;LI- Lélns'l Del igim ik _M_ jgtls_ —sll-ié_ F7OoFE o7 {s} Fi1 ?ﬁ Fiz sF12 L= D |:| . |:| R’ |
B X pLct - e | sz HAND A | 357 ADDING [FE0get-INITIL
M ee aw o
R EE 5 &F
] *::3 RS TN T T T T e
S%iEmE 2
; 4
& 5
| ADDING 5
(8] mm T
Hh a #include "HAND_A.h" -
“|H] HAND_A 1@ void INITIL( WORD W , BIT B ) =R %
- mdnRiE 11 3¢
RARFEFThREE 1z #define SysRegAddr HD D HM|
----- Ca AP ThiE 13 ANeEER SFERRE T,
D EETHER 14 _ ) isTure:True Errinfo:, ErrCodeEnum:FuncBLink
I IR 1: DW[17]= ADDINGS(-17,77);
- S R ERIRR 17
-[B) BEsE P s
i pres v L#= ]
€ >
DiEesz [OTE <
£E0)
EiRslx Fit

1. Mmph1848B\PriFuncBANITIL.o: In function “ADDINGS"
D:\Program Files (x86)0INJEWDPProTOOLXKDABING. 1.\ Mmp\16488\PriFuncB/HAND_A.h:9: multiple defintion of "ADDINGS®

LA Mmph16488\PriFuncBWDDING .o:D:\Program Files (x86 JXINJEXDPPro\TOOLXDARIN/. A\ tmp\16488\PrjFuncB/HAND_A h:9: first defined here

8-11. Function Table

The default function library

Constant Data Description
_LOG2 (double)0.693147180559945309417232121458 Logarithm of 2
_LOG10 (double)2.3025850929940459010936137929093 Logarithm of 10
_SQRT2 (double)1.41421356237309504880168872421 Radical of 2

_PI (double)3.1415926535897932384626433832795 PI

_PIP2 (double)1.57079632679489661923132169163975 P1/2

_PIP2x3 (double)4.71238898038468985769396507491925 PI*3/2

String Function

Description

void * memchr(const void *s, int c, size_t n);

Return the first ¢ position among
n words before s position

int  memcmp(const void *s1, const void *s2, size_t n);

Compare the first n words of
position s1 and s2

void * memcpy(void *s1, const void *s2, size_t n);

Copy n words from position s2 to
s1 and return sl

void * memset(void *s, intc, size_t n);

Replace the n words start from s
position with word c, and return to
position s

char * strcat(char *s1, const char *s2);

Connect string ct behind string s

char * strchr(const char *s, int c);

Return the first word ¢ position in
string s

int strcmp(const char *s1, const char *s2);

Compare string s1 and s2

char * strcpy(char *s1, const char *s2);

Copy string sl to string s2

318




Double-precision math
function

Single-precision math
function

Description

double acos(double x);

float acosf(float x);

Inverse cosine function

double asin(double x);

float asinf(float x);

Inverse sine function

double atan(double x);

float atanf(float x);

Inverse tangent function

double atan2(double y,
double x);

float atan2f(float y, float
X);

Inverse tangent value of
parameter (y/X)

double ceil(double x);

float ceilf(float x);

Return the smallest double
integer which is greater or
equal with parameter x

double cos(double x);

float cosf(float x);

Cosine function

double cosh(double x);

float coshf(float x);

Hyperbolic cosine function,
cosh(x)=(e"x+e"(-x))/2

double exp(double x);

float expf(float x);

Exponent (e”x) of a nature data

double fabs(double x);

float fabsf(float x);

Absolute value of parameter x

double floor(double x);

float floorf(float X);

Return the largest double
integer which is smaller or
equals with x

double fmod(double X,
double y);

float fmodf(float x, float y);

If y is not zero, return the
reminder of floating x/y

double frexp(double val, int
_far *exp);

float frexpf(float val, int
_far *exp);

Break floating data x to be
mantissa and exponent X =
m*2/exp, return the mantissa
of m, save the logarithm into
exp.

double Idexp(double X, int
exp);

float Idexpf(float x, int
exp);

X multiply the (two to the
power of n) is x*2/n.

double log(double x);

float logf(float x);

Nature logarithm logic

double log10(double x);

float log10f(float x);

logarithm (log10x)

double modf(double val,
double *pd);

float modff(float val, float
*pd);

Break floating data X to be
integral part and decimal part,
return the decimal part, save
the integral part into parameter

ip.

double pow(double x, double

float powf(float x, float y);

Power value of parameter y

y); (x%y)
double sin(double x); float sinf(float x); sine function
double sinh(double X); float sinhf(float x): Hyperbolic sine function,

sinh(x)=(e"x-e"(-x))/2

double sgrt(double x);

float sqrtf(float x);

Square root of parameter X

double tan(double x);

float tanf(float x);

Tangent function.

double tanh(double x);

float tanhf(float x);

hyperbolic tangent function
tanh(X)=(e”"x-e(-x))/(e"2+e"\(-

X))

The using method of the functions in the table:

float asinf (float x) ;

float asinf: float means the return value is float format;
float x: float means the function formal parameter is float format. In actual using, it do not
need to write the float. See line 14 in the following example:

319




9 void ZHENGIEIAN| WORD W , EIT E )
10 {

11 int =;

12 float =,v,z;

13 *x=FW[DO] ;

14 v=azinf(x);

15 z=180%v/3.14159;

16 a=(int) z;

1557 WL2]=a;

15 i

Flash register operation special function library

Flash register operation special

function Explanation

A function that copies data to a flash register.
DST: the starting address of the target register
copied to;

SRC: source data address;

Len: number of bytes copied;

flash_copy ( void *dst, void *src,
size tlen);

the copy bytes of the flash register, if the target area and
the source area overlap, flash_ Move can ensure that the
bytes of the overlapping area are copied to the target
area before the source string is overwritten, but the
source content will be changed after copying. However,
when the target area does not overlap with the source
area, it is same to the function of flash_copy.

DST: the starting address of the target register copied
to;

SRC: source data address;

Len: number of bytes copied;

flash_move ( void *dst, void *src,
size tlen);

flash_set_int8 ( void* dst, int8
data);

flash_set_int16 ( void™* dst, int16
data );

flash_set_int32 ( void™* dst, int32 _ _
data); Make some type of assignment to the flash register.

- - - DST: the starting address of the target register;
gl:ts;yset_lntm (void* dst, int64 Data: different types of data;

flash_set float32( void* dst, float32
data);
flash_set float64( void* dst, float64
data );

Take the copy data and assignment of flash register as an example to illustrate the use of
functions in the function table:
Example 1: Copy data to Flash register FD100

flash_copy ( void *dst, void *src, size_t len);
The Void in the flash_copy function represents the parameter type. In actual use, there is no
need to write void. See line 13 in the following example:

320



9 vold FUNCL1{ WORD W , BIT B )
=
11 #define SysRegAddr_HD D _HM_M_FD_SFD

12 | char a[8] = {'a', 'b', 'c', 'd", 'e', 'f', 'g', 'h'};

13 | flash_copy ( &FD[1@8], &a, sizeof(a) );//{EFsizecf(a)iTEafIEE;
14

15 | }

16

Example 2: set value in Flash register

flash_set_int16 ( void™* dst, int16 data );

The advantage of flash_ set_int16 compared to flash_copy:
If using flash_copy to set value in flash register. It is very inconvenient to use.
int temp_val = 1000;
flash_copy(&FD[1000], &temp_val, sizeof(temp_val));
If using flash_set: flash_set_int32(&FD[1000], 1000);
See line 13~18 in the below example:

9 wvoid FUNCL{ WORD W , BIT B )

18 [ {
11 #tdefine SysRegiddr HD D HM ._FD SFD
12 //flash_set EFIFEEIER =H
13 flash_set_intd ( &FD[1e4], 8 );
14 flash_set intle ( &FD[1es], 16 );
15 flash_set int32 ( &FD[1e88], 32 );
18 flash_set inte4 ( &FD[112], &4 );
17 flash_set flocat32 ( &FD[128], 32.32 );
18 flash_set floated ( &FD[122], B4.64 };
19
20 | }
21 =
Note:

(1) flash_ move function requires the support of the PLC firmware version of the lower
computer (firmware version: v3.7.2 firmware date: 20210528).

(2) The flash register can be written about 1000000 times, and each write is the erasure of the
whole flash register, which is time-consuming. Frequent writing will cause permanent
damage to the flash register. Therefore, it is not recommended that users write frequently.
Carefully use the power on normally on and oscillation coil (e.g. SM0, SM11) as the driving
conditions.

321



9 Sequence BLOCK

This chapter mainly introduces sequence block instruction and the application.

Sequence Block instruction:

Mnemonic | Function Ladder chart Chapter

Sequence Block

SBSTOP | Pause BLOCK ||| sBsTor| s1 | s2 | 9-6-1
SBGOON | Soloexectte | . [spaoon | s1 ] 2 | 9-6-1

9-1. Concept of the BLOCK

Sequence block whose brief name is BLOCK is a program block to realize some functions.
As a special flow, all instructions in the block are executed in order, which is the biggest
difference with general processes.

BLOCK starts from SBLOCK and ends with SBLOCKE, and programmers can write
instructions in the BLOCK. If one BLOCK contains multiple pulse output instructions (or
other instructions) , then pulse output instructions will execute in accordance with conditions
meet order; And meanwhile the next pulse output instruction will not execute until the current
instruction is over.

The XD3, XDM series PLC supports multiple BLOCKs™™.

A complete BLOCK structure is shown as below:

SBLOCK n = = = P BLOCK start

Instruction

Pulse output
Read write module

— — — p All instructions in

G c.od_e . BLOCK is executed in
Wait instruction
. order
Command list
SBLOCKE = — — P BLOCK end

322



2 1: Firmware version below V3.4.5: the XD series PLC allows up to eight BLOCKS.
Firmware version V3.4.5 and above: XD/XL series PLC can write up to 100 BLOCKS, but at
the same time can only run 8.

»2: When the trigger condition of the BLOCK is triggered by the closure of the normally
open coil, it will be executed from the top of the BLOCK to the bottom in turn. When the last
instruction is executed, the execution of the BLOCK will be restarted immediately from the
top to the bottom. When the trigger condition is disconnected, the BLOCK will not stop
immediately, but will complete the last scan and stop after the execution of the unexecuted
program.

»3: When the triggering condition of BLOCK is triggered by the rising edge of the coil, the
sequential function BLOCK will be executed one time from top to bottom and will not be
executed circularly.

9-2. Call the BLOCK

In one program file, it can call many BLOCK; the following is the method to add BLOCK in
the program.

9-2-1. Add the BLOCK
Open XDPPro software, right click the sequence block in the project bar:

[ g Project
.23 pLl
=] Caode
EE% Ladder
Id... Instruction Lisk

Func Black

;% com #dd Sequence EBlaock

@ Free Monitor

Data Monitor

EJ Set Reg Init Yalue

Click the command ‘add sequence block’, the following window will jump out:

323



Edit Seguence Block 1 IX

Comment : |Sequence Elackl |

E Insert ~ Edit Delete | Upwards Downwards |

Skip Output

| ok | [ Cancel |

You can edit the BLOCK in the window, Upwards/Downwards are used to change the
position of instructions in the block.
Click ‘insert’ button, some instructions list under the menu:

Edit Sequence Block 1 |§|

Comment : |Sequence Bloclkl |

Edit Delete | Upwards Downwards

Common Item

Fulze Item
Hait Item
Read/rite Module (FROMSTO)

G Item

| & || Cemcel |

Take ‘Pulse Item’ for example:

324




Dskip I:l Comment : |Pulse Config |

Data start address: user params address: D100 System params: Output:
Mode: Start execute zection count: EI [ Fulse Config ]

Add Delete | Upwards Downwar dgsd e BRESS iv) 15 Set |'X

Config = Delete |

frequence

Faram Yalne

T0 axiz—group 3-Max speed (Hz)

0 axis—group 3-Initial speed (Hz)

Y0 axis—group 3-3top speed (Hz)

T0 axiz—group 4-Fulze default speed (Hz)

T0 axisz—group 4-heceleration time of pulze default =. ..

T0 axis—group 4-leceleration time of pulse default s ..

used space! D0-T8, D100-D107

T0 axiz—group 4-hcceleration and deceleration time (mz)

Y0 axis—group 4-Max speed (Hz)

Y0 axis—group 4-Initial speed (Hz)

L S e T s e O e O s O e e R e i o |

T0 axiz—group 4-Step spead (Hzl

[Bead From FLC | [#rite To FLE | [ 0K | | Cancel

After click ‘OK’, you will find information in the configuration:

Edit Sequence Block 1

Comment : |Sequem:e Elackl

Insert ~ Edit Delete | Upwards Downwards

Skp Output

Click ‘OK’, the following instructions are added in the ladder:

| SBLOCK Sequence Block1 |

- FILSE DO D100 Ki vl

S SBLOCKE L

Meantime, a new sequence block is added in the right of the project bar:

325



Froject I
[ ;’l Project
-3 pLCY
=] Code
+ EE% Ladder
Id.., Inskruckion List

Funic Block
= Sequence Block,
Sequence Blockl
= comment Editar
B Free Monitar
3 [aka Maonitor
E _:] Set Req Init value

9-2-2. Move the BLOCK

If you want to move the BLOCK to other place, you have to select the original BLOCK and
delete it (select all, then delete):

0

Move the cursor to the new place, and then right click the BLOCK and select ‘add to lad’:

Froject

=] Code
+ EE% Ladder
|d.. Imskruckion List

Furic Block
=-[E] sequence Block

fdd To Lad

B Free Mon Delete Sequence Bloclk
] Daka Moniar
: _:] Set Req Init Yalue

Now the BLOCK is moved to the new place:

326



i | SBLOCK Sequence Blockl |

| PLsRDODIOOKI vo |}

| SELOCKE F

9-2-3. Delete the BLOCK

You can select the called BLOCK and delete it. If you want to completely delete the BLOCK,
right click the function block and select ‘delete sequence block’. After this operation, you
can’t call this BLOCK any more:

aject
=] Code
Egi Ladder
Id.. Instruckion List

Func Block:
= |:| Sequence Block,

;E-I Comment B #dd To Lad
B Free Manit I]:Ielete Sequence EBElock
[aka Monitar

E] Set Req Ini Yalue

9-2-4. Modify the BLOCK

There are two methods to modify the BLOCK.
(A) Double click the start/end segment to modify the BLOCK in general:

] [ sBLOcK Sequence Blockl

—— Y TR v

2 [ SELOCKE H

327



Edit Sequence Block 1 IX

Comment : |Sequence Elackl |

i Inzert ~ Edit Delete | Upward=s Downwards

Skip Output

ok ]| cencal |

(B) Double click the middle part to modify :

[ sBLOCK Sequence Blockl |

I PLER D0 D100 K1 W0

S SELOCKE F

Pulze Config

[ zkip I:l Comment

Data start address: user params address: Swstem params: Output:
Mode: Start execute section count: Fulze Config

hdd Delete | Upwards Downwards |

ulse Config

Nk

frequence pulse count Jump register

uzed space! D0-D9, D100-D107 [Read From PLCJ ['ﬁ'rite Ta PLEJ L OF J [ Cancel J

328



9-3. Edit the instruction of the BLOCK

9-3-1. Command item

Use ‘command item’ to edit the program:

Edit Sequence Elock 1

Comment : |Sequem: e Blockl

Inzert r|Edit Delete |Upwards Downwards

| Common Item |

Pulze Item

Wait Ttem
RFead/rite Module (FROMSTO)

& Item

An ‘instruction list’ will jump out after click the ‘command item’:

Instruction List :.X |

I:lSkip I:I Comment: |In5tructi-:-n List| |

| ok || Cencel

Users can add instructions in the frame.

Skip: to control the stop and run of the instructions. If you select skip and input control coil in
the frame, then when the control coil is ON, the command will not be executed. If not select,
the default action is execution.

Comment: to modify the note for the instruction.

329



Instruction Li=st

EE

WMoY Do D1
MUL L0 D5 D10

[C-:nrnment: |calcula+.i-:nn |

| ok || Cencal

Click ‘OK’, the ladder program will change as the following:

. SELOCK Seguence Block L

k20

—| |—| calculation |—

S SELOCKE L

Note: We can add multiply instructions in one BLOCK and use ‘Skip’ as every instruction’s
execution condition.

9-3-2. Pulse Item

Open the ‘pulse item’ in the same way:

Pulse Config |z

I:‘Skip I:l Comment : 'ulsr: Config |

Data start address: uzer params address: Swstem params: Outpnt:
Mode: Start execute zection count: Pulze Configz

#dd Delete | Upwards Downwards |

-l

frequence pulze count Jump ragizter

used space! T0-D9, D100-D107 [Read From PLC ] ['ﬁ'rite Ta PLC] L 0K J [ Cancel

330



In the following BLOCK, we add two impulse instructions:

a

9-3-3. Wait Item

‘Wait Item’: to wait coil flag or timer bit.

Open ‘Wait Item’ in the same way. There are two waiting modes: flag bit and timer wait.

(A) Flag bit

¥ait Config

DSkip |:| Comment : |'|'|'ait Config |

@) Wait Coil Flag:

() Wait T Timer: Unit:

| ok || Cemcel |

SEM corresponding ladder diagram is as below:

M3
I POST SEMO

(B) Timer wait

¥ait Config X
|

DSkip |:| Comment.: |'|'|'ait Config

() Wait Coil Flag: |:|
G} Wait T Timer: WUnat: (100 r % | Time: (K100

1 ms

10 ms

0k || Cancel |

SHLOCK

Sequence Block!

] PLSR DD D100 K1 Y0
— FLSR DO D100 K 0
L] SELOCKE

(C) Corresponding ladder diagram:

331



b0
_m [=BLOCK Sequence Blockl |

| Wall K100 Kioo F

S SELOCKE =

Note: Do not add normal coil after WAIT instruction in XD/XL series PLC sequence
BLOCK, and add XD, XL series PLC special signal SEM bit(SEM0~SEM31); SEM cannot
be controlled by set or reset. It can only be set by POST instruction and reset by WAIT SEM
instruction. Or output via OUT instruction. The difference between them is that the POST
command needs to be triggered by the pulse edge to keep the state of SEM; the OUT
command needs to be triggered by the normally open coil, and the SEM is reset when the
triggering condition is disconnected.

9-3-4. Module Read and Write (FROM/TQO) instruction

This item is used to read and write data between PLC and modules, and the operate panel is as
below:

1#read
Eead/¥rite Nodule E'
D Skip Comment: |Beadfrite Module

{:} Bead module '@} Hrite module

Module no: |EO Module address: KD
Count: K& FIC address: Mi0
oK | [ cencal

FROM\TO instruction can be selected from pull-down list:

MO
| SBLOCK ~ BLOCK 1 —

FROM K10000 KO K6 M10 —

TO K10000 KO K1 DO

SBLOCKE —

Note: As shown in the figure above, in V3.4 and above version software, when the module
number is set to KO~K15, the corresponding ladder diagram will be displayed as
K10000~K10015.

332



9-4. Running form of the BLOCK

1. If there are many blocks, they run as the normal program. The block is running when the
condition is ON.
(A) The condition is normal ON, normal OFF coil

M1

SBLOCK Sequence block 1
M2

SBLOCK Sequence block 2
M3

SBLOCK Sequence block 3

|
Scanning period 1 ' Scanning period 2 Scanning period 3
|
i
M1 :
] i
i
|
M2
|
M3 !
|
Blockl Blockl, Block2 Block1, Block2, Block3

Note: When the program in the BLOCK is not executed and the triggering condition M is
disconnected, the BLOCK will not stop immediately, but will complete the last scan, and will
stop after the rest of the program has been executed.

(B) The condition is rising or falling edge of pulse

333



M1

||

‘T ‘ SBLOCK Sequence block 1
M2

| |

‘ T‘ SBLOCK Sequence block

2

M3

| |

‘T ‘ SBLOCK Sequence block

3

When M1, M2, M3 is from OFF to ON, all these blocks will run once.

2. The instructions in the block run in sequence according to the scanning time. They run one
after another when the condition is ON.
(A) Without SKIP condition

i |
—1 | SBLOCK Sequence BLOCK 1

—| FL3R HDO HDI00 Kl Y0 |_
—|PLSR HD200 HD300 Kl 1f1|—

FROLI ED EO Eé MO

—| SBLOCKE |—

The instructions running sequence in block 1 is shown as below:

1
Feanning periodijScanning perisd® Scanning u:riods"scannin: perded § Scanning nﬂ-icdii

BLOCK condition
-1 i= OFF and all

FLER %0 FIIER ¥1 FEOM the sequence
insructions are
finizhed running.

Blockrunning

(B) With SKIP condition

334



I SBLOCE. Sequence BLOCEL

|_

—|IIUIB|—| FLER HDO HD100 K1 %0 |—

—{ - PLSR HD200 HD30 Ki ¥1 [

FROLI ED EO Eé MO

SELOCEE

LIz
mmll
5L
LIS
— M
—
Explanation:

A) When M2 is ON, block 1 is running.
B) All the instructions run in sequence in the block.
C) M3, M4, M5 are the sign of SKIP, when they are ON, this instruction will not run.

D) When M3 is OFF, if no other instructions use this YO pulse, PLSR HDO HD100 K1 YO0
will run; if not, the PLSR HDO HD100 K1 YO will run after it is released by other
instructions.
E) After YO pulse sending completed, check M4. If M4 is OFF, check Y1 block, if M4 is
ON, check M5. If M5 is OFF, module commmunication will run.

9-5. BLOCK instruction editing rules

In the BLOCK, the instruction editing should accord with some standards.
Do not use the same pulse output terminal in different BLOCK.

NO (x)

YES (1)

]
T

]
T

—| SBLOCKE Sequence BLOCKli—

_b|d|1_| AR HDO HDIOO K1 Y0 |-

- !

—| SBLOCKE Sequence BLOCKE{—

—| FLiE HDO HDIN K1 YO |—

SBLOCEE

S SELOCKE H

Mo
I

N
I

—| SBLOCE Sequence BLOCEL |—

—|M|1—| FL:E HDO HDIM El ¥0 |—

] !

—| SBELOCE Sequence BLOCEZ |—

—| FLSR HDO HDIOD El Y1 |_

SBLOCEE

SBELOCEE

. !

335




Do not use the same pulse output terminal in BLOCK and main program.

NO (>

YES (\)

1D

—| ——FLSR. HDO HDI00 K1 YOH
1

_|

SBLOCE Sequence BLI:IIZKll_

PLSE HDO HD100 E1 YEI|—

I

SBLOCEE

D

— F———FLSR. HDO HDLOD K1 Y04
WO

_|

SBLOCE Sequence BLOCKL |_

FL5R. HDO HD10d Kl Y1|—

I

SBLOCEE

There only can be one SKIP condition for one BLOCK instruction.

NO (> YES (\)
iy 1] LI
t SBLOCE Sequence BELOCKIL t SBLOCK sequence BELOCKL
il hId Ivll
| H——PFLSE. HD HDIO E1%0 |—PLSE. HD0 HDIMO K1 %0
I SELOCKE S SELOCKE

The SKIP condition only can use M, X, can not use other coil or register.

NO (>

YES (W)

SBELOCE. Sequence BIJ:ICKII—

u
[ FISR Do DiW K1v0 H

HD2[D10]
—[FLSE. HD0 HOImM KI YOH

SBLOCE sequence BLDEEII—

pu
[ FISE Do Dim Kivo Y

T2
—{FISF. A0 HDImM KI vOH

The output instructions cannot be CNT_AB(CNT), PWM.

NO (%) YES (\)
(] 0

— SELOCE Sequence BELOCKIH —] SBLOCESequence BLDEKII—

M1 InTl
—]CNTAF Hsco  DOH [ FISE DO Do K170 H

M2 InT
|_| PWM KO0 Do ¥oH |—|PLSR HDO HD100 El YEI|—
SELOCEE H SBLOCKE H

336




BLOCK is not recommended to put in the STL, because if one STL ends, while the BLOCK
doesn’t end, then big problem will happen.

NO (>0 YES (\)
S0
il } SBLOCK 5
SMO
It } SBLOCK H ——[FROM KO0 K1 K5 D100H
——[FROM KO K1 K5 D100 H — WAIT K1 K50 H
— L WAIT KL K50 | —{PLSR _HDO HD100 K1Y0 H
—— PLSR_HDO HD100 K1Y0 |- L SBLOCKE H
\ SBLOCKE H | |[STL SO
M100 YO M100 YO
| | ( ) | | { )
I \ 7 | \ 7

Label Kind type cannot be used in the block

Sign P, | cannot be used in block. Even they can be added in block, but they do not work in

fact.

9-6. BLOCK related instructions

9-6-1. Instruction explanation

ktop running the BLOCK [SBSTOP]

Summarization
Stop the instructions running in the block

[SBSTOP]
16 bits SBSTOP 32 bits -
Condition | NO,NC coil and pulse edge Suitable XD, XL
types
Hardware Software | V3.2
Operand
Operand | Function Type
S1 The number of the BLOCK 16bits, BIN
S2 The mode to stop the BLOCK 16bits, BIN
Suitable component
Operand Register Constant | Module
o' | | m | oo | DX| DY | pv* | Ds* | KH ID | QD
Word ST . .
S2 °

*Note: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

337




t SBSTOP ‘ K1 ‘ KO ‘

Function #Ml @ @

S2 is the mode for BLOCK stop, operand: KO, K1, K2

KO: stop the BLOCK slowly, if the pulse is outputting, the BLOCK will stop after the pulse
outputting is finished.

K1: stop the BLOCK immediately; stop all the instructions running in the BLOCK.

R Execute
SBSTT OoP
frequency
\\
\
\
Kl \\4 KO
\\
\
\
0 1

K2: Destructive slow stop BLOCK, that is, when the pulse is being sent, the SBSTOP
condition holds, then the pulse will slow down along the slope, without to use with the
SBGOON instruction, so the remaining instructions will not be executed. After executing this
instruction, the BLOCK can be restarted. (Note: K2 mode is only supported by V3.4.2 and
above PLC)

Continue running the BLOCK[SBGOON] |

Summarization
This instruction is opposite to SBSTOP. To continue running the BLOCK.

[SBGOON
16 bits SBGOON 32 bits -
Condition | Pulse edge Suitable XD, XL
types
Hardware | - Software | V3.2
Operand
Operand | Function Type
Sl The number of the BLOCK 16 bits, BIN
S2 The mode to continue running the BLOCK 16 bits, BIN
Suitable component
Operand Register Constant | Module
Word o | P oo [ DX] DY | pv* | ps* | KH D] QD
S1 . °
S2 °

338



*Note: D includes D, HD; TD includes TD, HTD; CD includes CD, HCD, HSCD, HSD;
DM includes DM, DHM; DS includes DS, DHS.

% CORNCD,

M3

aeen t SBGOON‘ K1 ‘ KO ‘

S2 is the mode to continue running the BLOCK. Operand: KO, K1.

KO: continue running the instructions in the BLOCK.

For example, if pulse outputting stopped last time, SBGOON will continue outputting the rest
pulse;

K1: continue running the BLOCK, but abandon the instructions have not finished last time.
Such as the pulse output instruction, if the pulse has not finished last time, SBGOON will not
continue outputting this pulse but go to the next instruction in the BLOCK.

This instruction only applies to PLSR instructions in BLOCK, and can only send the
remaining pulses for interpolation instructions, which can not be skipped.

9-6-2. The timing sequence of the instructions

SBSTOP (K1 K1) + SBGOON (K1 K1)

0

M | SBLOCK Sequence BLOCK 1 |+
————[ FLER _HDO HOIO0 K1 Y0 |
 — SELOCKE H

il |

1l [ SESTOP KI K

L3

I [ SBGOCH Kl E0 |

339



| . . | . . |

ccanning pericd 1lscanning pericd Ziscmin: paricd 3i=cm1n= pariad 4i=cm1n= pariad 5;

1 1 1 1

> > L g » »

. . 1 1 1 1

Condition MO | | | |

| | | |

rF 3 1 1 I I

| | 1 1

1 1 1 ]

| | | |

1 1 1 1

Condition M2 | | |

» | | |

| | |

T T 1

| i | i

! | Condi tion M | |

| [ T i i

I | I | | |

-« I I i I I

: — b | |
1

FLE Y0 [ ! i | ! !

—_ | il I I

I g | i i

| | | |

When MO is from OFF—ON, run “PLSR HDO HD100 K1 Y0” in the BLOCK to output the
pulse;

When M2 is from OFF—ON, the BLOCK stops running at once;

When M4 is from OFF—ON, abandon the rest pulse.

SBSTOP (K1 K1) +SBGOON (K1 K0)

10

M | SBLOCK Sequence BLOCK 1 |+
————[ PLER_HD0 HDIO0 Kl Y0
] SELOCKE H

i |

1t [ SBSTOP KI K

13

M [ EBGOCH K1 Kl M

340



Ecanning period 1 Scanning period 2 Scanning period 3 Scanning period 4  Scanning period 5

[ » » »

! ! !

! ! !

! i ! i

i > > i > >
Condition MO i i i i
A : : : :
l ! ! ! !

! ! i i i

Condition M2 ! ! ! !

4 i i i

' ! ! ! !

P | Con’ditifn M3 | |

I : A : :

< ' | ! ! | |
| | I i I i i i
' T @ |
PLS YO l | | i i

| T Vi | |
i | | PLS YO | |
i i

When M0 is OFF—ON, run ‘PLSR HDO HD100 K1 Y0’ in the BLOCK to output the pulse;
When M2 is OFF—ON, the BLOCK stops running, the pulse output stops at once;
When M3 is OFF—ON, output the rest pulses.

3. SBSTOP(K1 K0)+SBGOON(K1 K1)

0

L [ EBLOCK Sequence BLOCK 1]-
-+ PLSR HDO HDIO0 K1 vo |-
— SELCCKE H

i |

h | SESTOF Ki Ko |

14

L [ EBGOCH K K |

341



Scanningperio ﬂ.l: Scanningperio ﬂ.Z: Scanningperio ﬂ..?I‘ Scanningperio ﬂ.d;s canmingperic ﬂ.5=
| | |
I I I
> > > » s
Gondition MO ' '
» ! !
I I
i i
Gondition Mi; :
| |
! !
t | t
| ! | o
| I | Condition M
|

I | I I
| ! | |
“ T | |
* | I
PLS Y0 ; P
! ! e
| | |

When MO is from OFF—ON, run ‘PLSR HD0 HD100 K1 YO’ in the BLOCK to output the
pulse;

When M1 is from OFF—ON, stop running the BLOCK, the pulse will stop slowly with slope;
When M4 is from OFF—ON, abandon the rest pulses.

4. SBSTOP(K1 K0)+SBGOON(K1 KO0)

D

I# | SBLOCK Sequence BLOCK 1 [
———{ PLSR HDO0 HDIOD Kl Y0 |4
S — SELOCEE =

i |

it [ EBSTOF Kl K |

I3

I# [ SBGOCH Kl Kl |

1 1
1 . - 1 - . 1 . . 1 . . 1 . . 1
I:ca:n.n:l.n:' per:l.odllsca:n.n:l.n:' per:.odzlscm:l.n:' per:l.ods SCANN1InE I-‘El'lﬂ'dd s=canning I‘ErlﬁdS
1 1

I

FLS ¥0O

. » > » | >
Condition M0 | : : , ,
& i i i i
—] | | | !
| | | | 1

Condition M | ! I

N ! ! !

| | | |

! ! ! !

: : Condition M3 : :

| | fl | |

- | | | | i
L I I I I

FLS Y0 | X | |

[ I el 1 1

i i i i

342



When MO is from OFF—ON, run ‘PLSR HD0 HD100 K1 Y0’ in the BLOCK to output the
pulse;

When M1 is from OFF—ON, suspend running the BLOCK, the pulse will stop slowly with
slope;

When M3 is from OFF—ON, output the rest pulses.

Please note that by the SBSTOP stops the pulse with slope, there may be still some pulses; in
this case, if run SBGOON K1 KO again, it will output the rest of the pulses.

9-7. BLOCK flag bit and register

1. BLOCK flag bit:
Address | Function Explanation

SM300 | BLOCKUI running flag

SM301 | BLOCK2 running flag

SM302 | BLOCKS running flag 1: running

0: not running

SM399 | BLOCKZ100 running flag

2. BLOCK flag register:
Address | Function Explanation

SD300 BLOCKUI running instruction

SD301 BLOCK2 running instruction

SD302 BLOCKS running instruction BLOCK use this value when

monitoring

BLOCK100 running
instruction

If GBLOCK is used, it will occupy SM399 and SD399.

SD399

343



10 Special Function Instructions

This chapter mainly introduces PWM (pulse width modulation), precise timing, interruption

etc.

Special Function Instructions List:

Mnemonic | Function Circuit and soft components G(Erhapt
Pulse Width Modulation, Frequency Detection
Output pulse with the
PWM specified duty cycle and }HH PWM \ S1 \ S2 \ D \ 10-1
frequency
FROM Fixed pulses frequency }HH{ FRQM| s1| D | s2 | s3 || 4020
measurement
Time
STR Precise Time —H—' STR ‘ D1 ‘ D2 ‘ 10-3
Interruption
El Enable Interruption 10-4-1
Dl Disable Interruption 10-4-1
IRET Interruption Return 10-4-1
10-1. Pulse Width Modulation [PWM]

1. Instruction’s Summary
Instruction to realize PWM pulse width modulation

PWM pulse width modulation [PWM]
16 bits PWM 32 bits -
instruction instruction
execution normally ON/OFF coil suitable XD/XL (except
condition models XD1/XL1/XDH)
hardware - software -
requirement requirement
2. Operands
Operands | Function Type
S1 specify the duty cycle value or soft 32 bits, BIN
component’s ID number
S2 specify the output frequency or soft 32 bits BIN
component’s ID number
D specify the pulse output port bit

3. Suitable Soft Components

344




Operands System Constant | Module
Word D" | P | ED| m* | 0" | PX| DY | pM* | Ds™ | KH ID | QD
S1 o |[eo ° . °
S2 ° ° ° ° °
Operands System
Bit XY [s ]t ] Dom
D °

*Note: D includes D, HD; TD includes TD HTD; CD includes CD HCD HSCD HSD; DM
includes DM DHM; DS includes DS DHS. M includes M HM SM; SincludesS HS; T
includes THT ; Cincludes C HC

Function and

- ® @
P% PWM ‘ K100 ‘ D10 YO ‘

Duty cycle n: 1~65535
Output pulse f: 1~100KHz
XD series PLC PWM output need transistor type terminal:

PLC model PWM terminal
XD2-16T/RT -24T/RT -32T/RT -48T/RT -60T/RT YO0. Y1
XD3-16T/RT -24T/RT -32T/RT -48T/RT -60T/RT Y0. Y1
XD5-16T -24T/RT -32T/RT -48T/RT -60T/RT YO0. Y1
XD5-24T4 -32T4 -48T6 -60T6 YO. Y1. Y2, Y3
XDM-24T4 -32T4 -60T4 -60T10 YO. Y1. Y2. Y3
XDC-24T -32T -48T -60T Y0. Y1
XD5E-30T4 -60T10 YO. Y1. Y2. Y3
XDME-60T10 YO. Y1. Y2, Y3
XL3-16T YO0. Y1
XL5-32T4. XL5E-32T4. XLME-32T4 YO. Y1. Y2, Y3

Duty cycle of PWM output =n /65535><100%

PWM use the unit of 0.1Hz, so when set S2 frequency, the set value is 10 times of the actual
frequency (10f). E.g.: to set the frequency as 72 KHz, and then set value in S2 is 720000.
When X0 is ON, output PWM wave; When X0 is OFF, stop output. PMW output doesn’t
have pulse accumulation.

>
In the left graph:
TO=1/f
———— t/T0=n/65535

345



Note: it needs to connect 1K ohm amplification resistor between output terminal and common
terminal when using PWM instruction.

Example

o =)

@ @ @

brightness 25% brightness 50% brightness 75%

s @y @

brightness 100% start stop
PR =

There is a LED drived by DC24V. It needs to control the brightness of the LED. In order to
decrease the power loss of wave collector, turn ON the switch at the moment it is OFF, then
turn it OFF. This process will cycle. Connet a transistor between the power supply and LED.
The pulse signal will input from the transistor base terminal. The current between base and
emitter is pulse. The LED input voltage is proportional to the duty ratio. The LED input
voltage will be changed by changing the duty ratio. There are many methods to change the
value. The normal way is pulse width modulation (PWM) which means only changing the ON
holding time but not changing the ON frequency.

This example applies the PWM technology to the LED brightness adjustment. The controller
can accpet 24V PWM control signal. The brightness range includes 25%, 50%, 75%, 100%.
The brightness is controlled by the PWM duty ratio.

Element explanation:

PLC Explanation Mark
component
X0 Start button, X0 is ON when pressed.
X1 Stop button, X1 is ON when pressed.
X2 25% brightness button, X2 is ON when
pressed.
X3 50% brightness button, X3 is ON when
pressed.
X4 75% brightness button, X4 is ON when
pressed.
X5 100% brightness button, X5 is ON when
pressed.
HDO PWM duty ratio register
HD2 PWM frequency register Defaulted
100Hz

Program:
346



] | MOV K100 HD2 =
X0
N | MSET MO0 ML H
X1
M | MOV KO HDO —
S ZRST MO M1 I
MO M2 M3 M4 M5
— — MOV K8192 HDO =
M2 M3 M4 M5
By MOV K16384 HDO -
M2 M3 M4 M5
A ] MOV K24576 HDO =
M2 M3 M4 M5
] MOV K32767 HDO I
M1
[l ]

| PWM HDO HD2 Y0

Program explanation:
1. HDO will control the LED voltage. The voltage = 24*HD0/32767, pulse output frequency
is 100Hz.
Press start button, X0 is ON, M0, M1 is ON, the LED brightness adjustment starts.
X2 is ON, HD0=8192, HD0/32768=0.25, the LED brightness is 25%.
X3 is ON, HD0=16384, HD0/32768=0.5, the LED brightness is 50%.
X4 is ON, HD0=24576, HD0/32768=0.75, the LED brightness is 75%.
X5 is ON, HD0=32768, HD0/32768=1, the LED brightness is 100%.
Press shut down button, X1 is ON, HDO is reset, shut down the PWM trigger condition,
LED voltage is OV.

N o g kM~ owbd

10-2. Frequency measurement [FRQM]

1. Instruction list
Measure the frequency.

Frequency measurement [FRQM]

16 bits - 32 bits FRQM

instruction instruction

execution Normally ON OFF coil suitable XD/XL (except

condition models XD1/XL1/XDH)

hardware - software -

requirement requirements

2. Operand

Operands | Function Type
Sl Sampling pulse numbers 32 bits, BIN
S2 The display precision 32 bits, BIN
D Measurement result 32 bits, BIN
S3 Pulse input terminal bit

347



3. Suitable component

Operand System Constant | Module
Word D[M|ED| | CD | DX| DY | DM | DS | KH D QD
S1 ° ° ° °
S2 o | o ° ° °
Operand System
Bit X|Y|M|S|T|[C]|Dum
D °

*Note: D includes D HD; TD includes TD HTD; CD includes CD HCD HSCD HSD; DM
includes DM DHM; DS includes DS DHS.
M includes M, HM, SM; S includes S, HS; T includes T, HT; C includes C, HC.

Function
and Action
- & & (@
P% FRQM \ K20 \ D100 \ X0 \ K1 \
e The sampling pulse numbers can be adjusted according to the frequency, the higher the

frequency, the bigger the sampling pulse numbers

o Measurement result, the unit is Hz

e Display resolution: only can set to 1, 10, 100, 1000, 10000

e When MO is ON, FRQM collects 20 pulses from X0, and records the sampling time. The
result of sampling numbers dividing by sampling time will be saved in D100. The
measurement process will repeat. If the measurement freqeuncy is less than the
measurement range, the result is 0

e The measurement precision is 0.001%

The pulse input terminal for FRQM:

Model X terminal | Max frequency (Hz)
X0
16 1/0 X3 10K
X6
X0 80K
XD2 24/32 1/0 X3
X6 10K
X0
48/60 1/0 X3 80K
X6 10K
X0 80K
16/24/32 1/0 X3 10K
XD3 X6
X0 80K
48/60 1/0 X3
X6 10K
XD5 16/24/32 1/0 X0 80K

348



X3
X6
X0
24T4/32T4/48T4/60T4 X3
I/0 X6
X11
X0
48/60 1/0 X3 80K
X6 10K
X0
X3
48T6/60T6/60T10 1/0 X6 80K
X11
X0
X3
24T4/32T4/60T4 1/0 X6 80K
X11
X0
X3
60T10 1/0 X6 80K
X11
X0
X3
XDC 24/32/48/60 1/0 X6 80K
X11
X0
X3
XD5E 30T4/60T10 1/0 X6 80K
X11
X0 80K
XL3 16 1/0 X3

X6 10K
X0
X3
XL5 32T41/0 X6 80K
X11
X0
X3
XL5E 32T41/0 X6 80K
X11
X0
X3
XLME 32T41/0 X6 80K

X11

10K

80K

XDM

Example

Asynchronous motor drives the conveyor to transfer the work piece. It needs to real-time
display the work piece moving speed. The diameter of the transmission shaft is 100mm, the
gear numbers on the transmission shaft are 100, the speed unit is m/min.

349



proximity switch

X0

I gear number=100

work piece

E=1001mun

asy nchronous motor

Component explanation:

PLC Control explanation Mark
component
X0 Proximity switch, to count the gear numbers
MO Start signal
D16 Speed register (float number)
Program:
MO

FROM K20 DO X0 K1

DFLT DO D2

EMUL KO0.1 K3.14 D6

EMUL D4 D6 D10

|
—
—— EDIV D2 KI100 D4
—
]
-

T T T T 7T T

EMUL D10 K60 D16

Program explanation:
1. Set ON the start signal MO0, to run the frequency meansurement program
2. Transform the frequency to float number, then it is divided by 100 (gear numbers per
rotation), the result is shaft rotate numbers per second (float number).

350



3. Calculate the diameter of the transmission shaft and save in register D6 (float number),
then calculate the transfer distance per second and save in D10 (float number).
4. the transfer distance per second multiply by 60 is the speed (m/min).

10-3. Precise Timing [STR]

1. Instruction List
Read and stop precise timing when precise timing is executed

Precise timing[STR]
16 bits - 32 bits STR
instruction instruction
execution edge activation Suitable XD/XL (except XDH)
condition models
hardware - software -
reguirement reguirements
2. Operands
Operands | Function Type
D1 Timer Number bit
D2 specify timer’s value or soft component’s ID | 32 bits, BIN
number
3. Suitable Soft Components
Operands system constant module
- | |ED | m | o | DX | DY | pv* | Ds* | KH D | QD
Word D2 ° ° ° ° °
Operands system
Bit XY M* S* T* C* Dnm
D °
D1 °

*Note: D includes D HD; TD includes TD HTD; CD includes CD HCD HSCD HSD; DM
includes DM DHM;

DS includes DS DHS.

M includes M HM SM; SincludesS HS; Tincludes THT ; Cincludes C HC.

Function
and Action

<Precise timing>, <Precise timing reset>

351



A | RsT \ ETO \

Timer’s number. Range: ETO~ET30 (ETO, ET2, ET4...... all number should be even)
Timing value

Precise timer works in unit of 1ms.

Precise timer 32 bits, the counting range is 0~+2,147,483,647.

When executing STR, the timer will be reset before start timing.

When X0 turns from OFF to ON, ETO starts timing. ETO will be reset and keep its value 100
when accumulation time reaches 100ms; If X0 again turns from OFF to ON, timer T600 turns
from ON to OFF, restart to time, when time accumulation reaches 100ms, T600 reset again.

See graph below:
o || |

ETO

100ms 100ms

& It

When the pre-condition of STR is normally open/closed coil, the precise timer will set ON
immediately when the timing time arrives and reset the timing, and cycle back and forth.

<read the precise timing>, <stop precise time>

o

4 IbMov | ETO DO ® \When X0 changes from OFF to ON, move the
current precise timing value into DO
immediately, it will not be affected by the scan
cycle;

MO
N sTOP ETO ® \When MO char.wges Trom (?FF to ON, EXECL.J'[e
STOP instruction immediately, stop precise
timing and refresh the count value in ETDO. It
will not be affected by the scan cycle;

352



Precise Timing Interruption

® When the precise timing reaches the count value, it will generate an
interruption tag, interruption subprogram will be executed.

® Can start the precise timing in precise timing interruption;

® Every precise timer has its own interruption tag, as shown below:

Interruption Tag corresponding to the Timer:

Timer’s No | Interruption Tag | Timer’s No | Interruption Tag
ETO 13000 ET10 13005
ET2 13001 ET12 13006
ET4 13002 p...... ...
ET6 13003 ET22 13011
ET8 13004 ET24 13012
X0
HW% STR \ ETO \ K100 \ When X0 changes from OFF to ON,
ETO ETO will start timing. And ETO reset
! @ when accumulation time is up to
Mo 100ms; meantime generates an
i } RST \ ETO \ interruption, the program jumps to

interruption tag 13000 and execute the

subprogram.

13000

SMO0
1 Y

o

1 M

Example 1

The filling machine controls the filling capacity by controlling the liquid valve open time (it is
3000ms in this application). To improve the filling capacity precision, the liquid valve open
time can be controlled by precise timing.

353



Component explanation:

=l B,
ﬁiﬂ__-JEDI_I_JLé ¥
Eiisiiid
| e E |

Filling machine

PLC Control explanation Mark
component
X0 Start button, X0 is ON when the button is pressed
ETO Precise timer
YO0 Control the liquid valve, YO ON when the valve
opened, YO OFF when the valve closed
Program:
X0 YO
—i (8 r——
STR ETO K3000 H
ETO YO0
— | (R yr———m
RST ETO

Program explanati

1. When X0 is ON, the liquid valve YO and precise timer ETO open at once.
2. Shut down the liquid valve YO and precise timer ET0 when the time arrived.

Example 2

on:

The precise timer interruption can produce the following pulse wave. The Y2 ON time is
500ms, the pulse period is 1000ms.

X0 |

1000ms

354




Component explanation:

PLC Control explanation Mark
component
X0 Start button, X0 is ON when button is pressed
Y2 Pulse output terminal
MO Internal auxiliary coil
ETO Precise timer
Program:
X0
| SR | ETO | K500 |
X0 |
— | RST | ETO
13000
SMO Y2 Y2
— C S
L{ PLS | Mo |-
MO Y2 Y2
—— C R
SMO
- STR | ETO | K500 |
END

Program explanation:

1. When X0 is ON, the precise timer interruption will work, Y2 will output the pusle wave.

2. When X0 is OFF, shut down the precise timer interruption, Y2 stop outputting.

Example 3

As the FRQM calculating the time for fixed pulse numbers, we will change the way to
calculate the pulse numbers in fixed time.

O

encoder

power supply
z__

shield layer
355

[



Component explanation:

PLC Control explanation Mark
component
MO Start button, X0 is ON when pressed
ETO Precise timer
HDO Precise timer setting value (unit: ms)
HSCO High speed counter
D10 The measured frequency (unit: s)
Program:
MO
—f———— STR ETO HDO |
MO
—l— RST ETO H
MO
— CNT HSCO K999999999 P

DMOV HSCO DO }

HSML% DFLT D0 D2 |

| DFLT HDO D4 |
~—| EDIV K1000 D4 D6 |-
— EMUL D2 D6 D8 |-
— DINT D8 D10 |
-~ DMOV K0 HsCO |-
HSML{ STR ETO HDO -

Program explanation:
1. Set the high speed counter sampling period register HDO, the unit is ms.
2. Set ON MO to start the precise timer interruption and high speed counter, calcuate the
frequency
3. The frequency range is 0-80KHz, the precision is 0.005%.

356



10-4. Interruption [EI], [DI], [IRET]

XD/ XL series PLC have interruption function, including external interruption and timing
interruption. By interruption function we can deal with some special programs. This function
is not affected by the scan cycle.

10-4-1. External Interruption

The input terminals X can be used to input external interruption. Each input terminal
corresponds with one external interruption. The input’s rising/falling edge can activate the
interruption. The interruption subroutine is written behind the main program (behind FEND).
After interruption generates, the main program stops running immediately, turn to run the
correspond subroutine. After subroutine running ends, continue to execute the main program.

Subprogram

[

Note: The external interruption of XC series PLC cannot be activated by rising edge
and falling edge at the same time; but XD/XL series PLC supports rising edge and
falling edge activation meantime.

Input Interrupt

External Interruption’s Port Definition

XD1/XD2/XD3/XD5/XL1/XL3 series 16 1/0

Input P(_)ipter No. _ !Disable t_he
- Rising Falling interruption

terminal . . . X .

Interruption | interruption | instruction

X2 10000 10001 SM050

X3 10100 10101 SM051

X4 10200 10201 SM052

X5 10300 10301 SM053

X6 10400 10401 SM054

X7 10500 10501 SMO055

XD1 series 32 1/0, XD2/XD3 series 24/32/48/60 1/0O, XD5 series, XDM series,
XDC series, XD5E series, XDME series, XL5 series, XL5E, XLME series

Inout Pointer No. Disable the
pul Rising Falling interruption
terminal . . . . .
Interruption | interruption | instruction
X2 10000 10001 SMO050
X3 10100 10101 SMO051
X4 10200 10201 SMO052

357



X5 10300 10301 SMO053
X6 10400 10401 SMO054
X7 10500 10501 SMO055
X10 10600 10601 SMO056
X11 10700 10701 SMO057
X12 10800 10801 SMO058
X13 10900 10901 SMO059

Note: when the interruption ban coil is ON, the external interruption will not execute.

Interruption Instruction

Enable Interruption [El], Disable Interruption [DI], Interruption Return [IRET]

IE |

7

0100

=
EEI

i
g.

¢

interruption range

J

anoa nterruption 1

o]

® |If use EI instruction to allow

interruption, then when scanning the
program, if interruption input
changes from OFF to ON, then
execute subroutine M. 2. Returnto
the original main program.

Interruption pointer (I****) should
be behind FEND instruction;

PLC is usually on the status that
allows interruption.

Note: In interrupt subroutine, only simple instructions such as set, reset, transmission and
operation can be written, which can be executed in a scanning cycle. Other instructions such
as sending pulses, timing (except for precise timing), communication and other instructions

that need to be continuously executed are not supported.

358



Interruption’s Range Limitation

¢

interruption
allowed

100
g.

forbidden

¢

Disable the Interruption

- -—

.
allowed

e

11

-

interruption
forbidden

® By programming DI instruction, can
set interruption disabled area;

® Allow interruption input between
EI~DI

® If interruption forbidden is not
required, please program only with El,
and program with DI is not required.

® FEvery input interruption is
equipped with special relays
(SM50~SM69) to  disable
interruption.

® In the left program, if use MO to
set SM50 “ON”, then disable the
interruption 0.

END
Example 1
B :
origin A (X0 B (XD C (X2

The positions of A, B, C are unknown. The speed of the three segments are different. The
application can be perform by PLSF instruction and external interruption. We can install three
proximity switch at postion A, B, C, and connect the signal to PLC input terminal X0, X1,
X2. (suppose X0, X1, X2 are external interruption terminal, the related rising edge
interruption ID are 10000, 10100, 10200. The PLC external interruption terminal please refer
to “external interruption terminal definition). The pulse terminal is YO, the direction terminal



is Y2. To improve the speed changing precision, the acceleration and deceleartion time are 0.
The speed will switch by external interruption.

Segment Frequency setting | Pulse numbers
value (Hz)

Origin ---- A 10000 999999999
A----B 30000 999999999
B ----- C 20000 999999999
Acceleration 0
and deceleratoin
time

Note: as the pulse numbers of each segment is unknown, the pulse numbers should set large
enough to ensure the object can move to the proximity switch. The STOP instruction will be
run by external interruption when the object gets to position C.

Component explanation

PLC Control explanation Mark
component
MO Start button, PLSF will send pulse when the

button is pressed
HDO the PLSF pulse frequency register

Program

360



SM2
—f— DMOV K10000 HDO |+

MO
i E— PLSF HDO K1 YO —

FEND

10000

SMO
—f—— DMOV K30000 HDO

IRET

10100

SMO0
—f— DMOV K20000 HDO

IRET

10200
SMO MO

STOP Y0 Ki =

IRET

END

Program explanation

1. SM2is ON, set HDO to 10000, set on M0, PLSF instruction will send 10000Hz pulse,
the object will move from origin to A.

2. When the object touches A, X0 will be ON at once, the external interruption 10000 will
work, HDO is set to 30000, the object will move from A to B with the speed of 30000Hz.

3. When the object touches B, X1 will be ON at once, the external interruption 10100 will
work, HDO is set to 20000, the object will move from B to C with the speed of 20000Hz.

4. When the object touches C, X2 will be ON at once, the external interruption 10200 will
work, MO is set OFF, the pulse sending will stop at once.

Example 2

The diagram is the product packing machine. The robot will pack the product when 30
products are detected, the robot and counter will be reset after packing completed. To
improve the working efficiency, the product sending speed is very fast, the sensor X2 detects
the product time is 8ms, PLC input terminal filter time is 10ms, the normal counter cannot
detect the products. We can use the external interruption to count the products.

361



&

ﬁmmmmmmm%pm

X1
-
Component explanation:
PLC Control explanation Mark
component
X2 Product counting photoelectric sensor, X2 is ON when
the product is detected
X1 Robot action complete sensor, X1 is ON when the
action is completed
Co 16-bit counter
YO0 Robot
Program:
MO YO0
— | ¢ r—
X1 MO
il (R
Y0
(R O>——
RST CO |+
FEND
10000
SMO
} CNT CO K30 H
LC{O MO
| (S ) —
IRET
END

Program explanation:
1. In the external interruption program, count the X2 input, when the X2 is 30, set ON
MO
2. In the main program, it controls the Y0 according to the MO state.
3. When the robot action is completed, X1 changes from OFF to ON once, RST works,
YO0 and CO are reset, MO is OFF, wait for the next packing process.
362




10-4-2. Timing Interruption

Function and Action

Under the circumstance that the main program execution cycle is very long, when you
have to handle with special program or execute specific program every once in a while
when program is scanning in sequence control, the timing interruption is very useful. It is
not affected by PLC scan cycle and executes timing interruption subroutine every N ms.

- o D
FEND

14010

SMO0
—iF——— INC DO

IRET

® Timing interruption is open status in default, just like other interruption subroutines, it
should be written behind the main program, starts with 140xx, ends with IRET.

® There are 20 channels of timing interruptions, representation: 140**~I59**(***’means
interruption time; Unit is ms. E.g: 14010 means executing once the first timing
interruption per 10ms.

Interruption No

XD, XL series timing interruption:

Interruption | Interruption Interruption | Interruption Explanation
number ban number ban

instruction instruction
140** SMO070 150** SM080
141** SM071 I51** SM081
142** SM072 I52** SM082 ** means the timing
143** SMO073 153** SMO083 interruption time, the range
144** SM074 154** SM084 is
145** SMO075 I55** SM085 1~99, the unit is ms.
146** SMO076 156** SM086
147** SMO077 I57** SM087

363



148**
[49**

SMO078
SMO079

158**
I159**

SM088
SMO089

Interruption range’s limitation

Timing interruption is usually on ‘allow’ status.

® Can set interruption allow and forbidden area with EI. DI instructions. As shown in
below pictures, all timing interruptions are forbidden between DI and El, and allowed
beyond DI~EI.

© > Interruption allowed

© > Interruption forbidden

El

-

Interruption allowed

14010

Interruption forbidden

DO

IRET

IlI lIlHl

Interruption Forbidden

Interruption

Allowed ® The first 3CH  timing

Interruption
Program

364

interruptions are equipped with
special relays (SM070~SM079).

In the left example, if use MO to
set SM070 “ON”, then forbid
timing interruption forbidden.



11 Common Questions and Answers

This chapter mainly introduces XD/XL series PLC common questions and answers.

Q1: How to connect PLC with PC?

Al:

If your PC is desktop computer, you can use our company special DVP or XVP cables to
connect PC and PLC (Usually PORT?1) as general commercial desktop computer has 9 needle
serial port. After connecting DVP correctly, power on PLC, click ‘Config Software

ComPort == ‘ , the following window will jump out:

Config Software ComPort

Serial Fart(C) Bandrate (B)

comi | [ Eime faaih arial Fart () 4800EFS () 9RO0OBES
(¥) 19200BFS () 35400BFS
() 115200BF3

[]Touch Win USE Fort

Farity(E) Other =zat
() Honel ) 0dd () Even Databitz: 8 ,Stepbits:1

Communication Error

[ Automatic Detection ] I 0K l [ Cancel ]

Choose correct communication serial port according to your PC actual serial port.; baud rate
selects 19200BPS, parity check selects even parity, 8 data bits, 1 stop bit; you can also click
‘check’ button directly in the window, and communication parameters will be selected by
PLC itself. ‘Connect PLC successfully’ will be displayed on the left bottom of window as
below:

Config Software ComPort |E|.

Serial Port(C) Baudrate(B)

Blue Tooth Serial Port ) 4800BPS () 96D0BPS

@ 15200BPS) 38400BPS
["] Touch Win USE Port

i 115200BPS
Parity(P) Cther set
() Norme™) Odd @ Even Databits:2 |, Stophits:1
Connect To PLC Succeeded
Automatic Detection l [ QK ] ’ Cancel

Then it means that PLC has been connected to PC successfully!
Usage method of notebook PC with 9-pin serial port is the same with desktop PC’s.

365



If the notebook does not have 9-pin serial port, users can use USB converter to realize
connection between PLC and notebook USB port. Make sure to install USB converter drive
software (Xinje special USB converter module COM-USB is recommended, USB converter
drive software can be downloaded on Xinje official website)!

Q2: PC cannot connect PLC via RS232 port, it shows offline status?

A2:

Several possible reasons:

Users may changed the communication parameters of PORT1 in PLC (Do not change Portl
communication parameters, or it may lead to connection between PC and PLC failure!)
USB converter driver software was installed incorrectly or USB converter cable is not good
PORT1 communication of PLC is damaged

The download communication cable brand is not Xinje XVVP cable.

Solutions:

At first, use Xinje XVP cable to connect PC and PLC;

After confirming the connection cable is the Xinje special XVP cable and USB convertor has
been used, you can use it to try to connect desktop PC with 9-needle serial port to PLC. If the
desktop PC can be connected correctly, please change the USB converter cable with higher
performance or install the USB converter serial driver software again.

If PLC can not connect with desktop computer correctly either, you can use ‘stop PLC when
reboot’ function to stop PLC and recover the PLC to factory setting, operating method is as
follow:

Power on PLC and connect PLC by DVP cables, then click ‘online” button on PLC editing
software menu;

¥iew Configure Optien
SEERIERCRON: (W=
Click ‘Stop when PLC reboot’ from the drop-down menu;

Download Data

gj Fun
QJ Stop

l Stop PLC When Eeboot |

h Ladder Monitor

Following window will jump out;

366



5top PLC while reboot &

PIC need reboot

Sending command now

By this time, cut off PLC power for 2-3s and power on again, then a ‘PLC has been stopped
successfully’ window will normally jump out; if the window do not jump out after power on,
try again a few times until the information window of successful stop jump out.

Information | 3 |

| PLC stop success

Then click ‘configure’ button ;
Online Option '
IERENDN:
Click ‘Reset PLC’ in the drop-down menu;

Motion Settings
Operand Data List

Keep BRegisters Settings

Rezet FLC

By this time, ‘Reset PLC’ information window will jump out and it means that all steps of
‘Stop when PLC reboot’ have been finished.

PLC Initialize =

:I PLC Initialize Success

If initialize PLC unsuccessfully after you trying a few times or the following window jumps
out after clicking ‘Reset PLC”:

367



[ | Offline, Can't PLC Initialize

oK
In both cases, use PLC system update tool to update PLC system, and PLC and PC will be
connected successfully if system is updated (For more steps about system update, please refer
to Q3 related content).

If update of the desktop computer with 9-pin serial port fails, it is very likely that PLC
communication port is damaged, and please contact manufacturer or agent.

Q3: XD/XL series PLC system upgrade

A3:

When does PLC need update usually?

PLC software is in a continuous upgrade stage; if software and hardware version do not
match, PLC will not support those upgraded function. About which PLC version the
instruction support, please refer to instruction summary in this manual or appendix 2 ‘special
function version requirement’;

When users change the communication parameters, PLC and PC can not connect.

When users use ‘program confidential download’ function, however, forget the password
(Note: PLC program will disappear after system update ! ).

How to update XD/XL series PLC?

PLC update tool:

‘XD series PLC download program tool’ and ‘system file” (*.sys file)

Close all the programs which may occupy the serial port

Cut off the power of PLC, open the XD series update tool (if user use this tool at the first
time, please open the enrollment first)

368



EDEFIPLCFRIA (v1)

XD FUPLE]

Click "Open File", choose the PLC model for updating. (Note: XD3_16.sys fit for PLC
model XD3-16, XD3_60.sys fit for PLC model XD3-32 and XD3-60):

kg ?IX]
EHIAE L) | msFEEFESFVE L0 (012, 11.08) | v ¥ e m-
) HDEEroRiR RN
J SEEHTAND
Recent = 1316 =y=
T % —
LA
\//
HRIr
58
FEANE R
«
<
FL4EE
IS W) ¥D3_B0. sy= v AF Q)
TR (1) Text Documents (k. sys) v il

EDEHMFELCFRIHA (¥1)
x4 HESH

Set the parameters:

369



Click “set parameter”, it will show the parameter window:

B0 : Com L) 5
iENEEE STRO0 w
PLCF#sHihk
PLCTFEiHhE - H (1673
LEE st R H et
TFEI e
AR HbhE H (16731
SETRHAE - H (16
= BRil

L

AT 1L FE e

el e ~l

RNEEE 1 STEOD - TEEY
FLC 3tk

PLCTF kil : H 1Bl

oz s = Hi1es3El)
TFEEIC L

sEratht - H e

SEEHIL - H C1e5EH10

W= il

Note: set the com port, the baud rate is default setting, no need to change.
Click “download”, the window will show below words:

IDEFIPLCTFR I A (V1)

&0 COM1, 115200, Even, &, One

370



Power on the PLC, the update tool will show below words:

EDEHPLCFE LA (V1)

B[ COML, 115200, Even, 8, One

PLC start to update, the updating will take few minutes.

371



IDEMPLCFEIA (¥1)

IOASFF
IOAEFF
IOATFF
I0ASFF
JOKIFF

0y 1 g g T g 0y

i

B0 COML, 115200, Even, 5, One

EDEFIPLCFHT A (¥1)

B0 COML, 115200, Ever, 8, One

After finishing the update, cut off the PLC power, take off the short jumper, then power on
the PLC again.

PLC hardware version
The PLC hardware version can be seen in “CPU detail” on the left window in XDPpro
software (PLC online status)

PR p—

.7 PLC Status

----- {* Scan Cyde
.8l Clock Details
i.... 3 Error Details

----- _} Recaord

372



PLC Details ==

=-_d PLC Status

-8 CPU Detail Seral: XT3

= i‘@[ BD Details

-1l Expansion Details Model:  ¥C3-32

b4+ Scan Cycle

o @ Clock Details PLC HW Version: Vi3

. Error Detail

# rsaE Suitable Software Version: Vild

Short jumper
XD, XL series PLC no need to short the jumper when updating.
Note:

Do not cut the power of PL.C when it is updating. If it show the error “send data failed,
ID not match...) please contact us for help.
The PLC program will be deleted after updating.

Q4: The bit soft component function.

Ad:

Continuous 16 coils consist of a word, E.g: DMO a word consist of 16 coils (bits) MO~M15 is
as below:

DMO:

| M15 [M14 | M13| M12| M11] M10 [M9 [M8 [M7 [M6 [ M5 |[M4[M3]| M2] M1] MO |
We can use bit in the register directly.

Example 1:

M100
PT% MOV K3 DMO }—‘ When M100 is from OFF to ON,

MO M1 are ON, M2—M15 are OFF

The other mode is bit operation of fixed register. E.g: DO0.0 is the first bit of 16 bits in register
DO. Similarly, D0.1 is the second bit and so on, as shown below:

DO:

| D0.15 | D0.14 |D0.13 [D0.12 | D0.11| D0.10| D0.9 | D0.8 | D0.7 | D0.6| DO.5 | D0.4 [D0.3 | D0.2 [D0.1| DO.O |

Similarly, we can use bit in register DO.

373



Q5: What’s the use of execution instruction LDD/OUTD etc?

A5:

When PLC executes program, state of input point state will map to image register. From then
on, PLC will refresh input state at the beginning of every scan cycle; if we use LDD
instruction, then the state of input point will not need map to image register; the same with

output point (OUTD).

LDD/OUTD instruction usually apply to the occasion that 1/O need refresh immediately,
which makes the state of input and output avoid the influence of the scan cycle.

X0 status

LDD X0 input

LD XO0 input

e

scanning
period

<>

Input point X0 sequence chart of LDD and LD

Q6: Why the output LED keeps flashing when using ALT instruction?

AB6:

For ALT and many calculation instructions, these instructions will execute every scanning
period when the condition is fulfilled (for example, the condition is normal ON coil). We
recommend that the condition is rising edge or falling edge.

Q7: Why the M and Y cannot output sometime?

AT:

Output mainly has two ways: 1. OUT instruction; 2. SET instruction. The coil will keep
outputting if there is no RST instruction.
Usually in the program, one coil M or Y should use the same output way. Otherwise, the coil

cannot output.
For example:

MO

YO

el

M1
=l

—_—

T

YO

MO

—

YO0

i

—~

.

MO is ON, M1 is OFF, Y0 cannot output
MO is OFF, M0 is ON, YO will output
Reason: two different coils drive the same
output coil

YO will be ON for one scanning period

374



MO e . . .
) MO is ON, Y will keep outputting

M1 (YR M1 is ON, YO is OFF
)

Q8: Check and change the button battery in the PCB of PLC

A8:

The rated voltage of button battery is 3V. The voltage can be measured by multimeter. If the
value of power-loss retentive register is very large, it means the battery is low. Please change
the button battery. Users can use SM5 and SD5 to detect the power of button batteries in
order to facilitate timely replacement of batteries. See Appendix 1 and Appendix 2 for details.

Q9: Communicate with SCADA software

A9:

If there is no choice for XD/XL series PLC in SCADA software, please choose Modbus-RTU
protocol and communicate through RS485 port. Please refer to XD/XL series PLC instruction
manual chapter 6.

Q10: MODBUS Communication

Al0:

First of all, please ensure that the A and B terminals on the PLC are correctly connected with
the RS485 communication terminals of other devices. To modify the parameters of the PORT
2 of the PLC, the following methods are adopted:

Method 1: Configuration by configuration parameter instruction

For specific instructions, please refer to Chapter 6, Communication Functions of this manual.
The communication parameter settings of different devices are generally different, so it is
important to choose the correct frequency setting mode of communication devices, make clear
the corresponding MODBUS communication address and function code, and some
communication devices need a given operation signal before displaying the setting frequency.
Method 2: Configuration through control panel (refer to Chapter 6 Communication Function
of this manual for specific configuration method).

Q11: The LED light of XD/XL series PLC (PWR/RUN/ERR)
All:

LED light Problem Solution

Check I/O terminal, if there is
short circuit. If the load is too
large for 24V power supply.
Make sure the program is
running inside PLC. Contact us
for help.

1. 1/0O PCB has short circuit
2. load is too large for 24V
3. not click RUN for program

PWR shining, other
LED off.

1. PLC input power supply has
Three LED all OFF short circuit
2. PLC power PCB damaged

Check the input power supply of
PLC. Contact us for help.

375



PWR and ERR light

1. PLC input voltage is not
stable
2. there is dead loop in the

Check the power supply
voltage, check if there is dead
loop in the program. Update the

program hardware of PLC. Contact us for
3. PLC system has problem help.

Q12: the result is not correct when doing floating operation

Al2:

Please transform the integer to floating number. For example: EDIV D0 D2 D10. If the value
of DO and D2 is integer, the result will has error (D10). Please use below instruction to
transform the integer to floating number.

MO
| } FLT DO D6

FLT D2 D8

EDIV D6 D8 D10

Q13: Why the floating numbers become messy code in online ladder monitor window?
Al3:

As the floating number cannot be displayed in online ladder monitoring, please monitor the
floating number in free monitor function.

Open XDPpro software, click online/free monitor. The following window will pop up:

[ PLC1- Free Manitor

:| Menitor |Add Edit Delete Delete All | Upward Downward |

MNum Format

Reg Monitor value

Ward length

Click “add” in the window, the following window will pop up. Set the monitor mode to
“float”. Monitor register set to D10. Then click ok.

‘DataMonitr  [mesa

Monitor Reg: D10 | Num: 1
Monitor Mode Show Mode
i bit @ Float @ Dec IUnsigned
) Word Bin ASCI
) DWord Hex
| oKk || Cancdl

376



Q14: Why data errors after using DMUL instructions?

Al4:

DMUL operation instruction is 32 bit*32 bit=64 bit operation, the result occupies 4 words,
such as: EMUL DO D2 D10, two multiplier both are 32bit (D1,D0) and (D3, D2), the result is
64 bit (D13, D12, D11, D10), so D10~D13 will be occupied. If these data registers are used
latter, operation will error.

Q15: Why the output point action errors after PLC running for a while?
Al5:
It’s possible that output terminal is loose, please check.

Q16: Why expansion module does not work while power indicator is ON?

Al6:

It is likely the connection of module strips and PLC pins or CPU is not good. Compare the
CPU and expansion in cross contrast way to find the problems.

Q17: Why the signal input but cannot see the high speed counter working?

AlT7:

If high-speed counting is to be carried out, in addition to connecting high-speed pulse to the
input of high-speed counting of PLC, the corresponding high-speed counting program should
be written with functional instructions. For details, please refer to the relevant content of
Chapter 5 of this manual.

Q18: C language advantages compared to ladder chart?

Al8:

(1) XD/XL series PLC supports almost all C language functions. When it comes to complex
mathematical operations, the advantage of C language is more obvious.

(2) Enhance the confidentiality of the program (when using file-advanced storage mode, C
language can not upload);

(3) C language function block can be called in many places and different files, which greatly
improves the efficiency of programmers.

Q19: What’s PLC output terminal A, B?
Al19:
PLC output terminal A, B are RS485 terminals of PORT2 on PLC.

Q20: What’s the difference of sequence function BLOCK trigger condition: rising edge
triggered and normally closed conduction?

A20:

Rising edge triggered: when the condition is triggered, block executes in order from top to
bottom; Normally closed conduction: when the condition is triggered, Block will execute in

377



order from top to bottom, return to the top and execute again until the normally closed
conduction breaks off. The cycle stops when the last one finished.

Mo M800
— SBLOCK | — SBLOCK |
— Instruction 1 | — Instruction 1 |
— Instruction 2 | — Instruction 2 |
— Instruction 3 | — Instruction 3 |
. SBLOCKE v ] SBLOCKE |
From up to down, run the instruction from up to down, cyclic run the instruction

one by one

Q21: What are the download modes of XD/XL series PLC and what are their
characteristics?

A21:

XD/ XL series PLC has three download modes, which are:

Common download mode

In this mode, you can easily download the program from the computer to the PLC or upload
the program from the PLC to the computer. It will be very convenient to use this mode when
debugging the equipment.

Password Download Mode

You can set a password for the PLC. When you upload the program from the PLC to the
computer, you need to enter the correct password. In the advanced password option, you can
also check the function of "download the program needs to be decrypted first" (Note: This
operation is dangerous, if you forget the password, your PLC will be locked!). This download
mode is suitable for users when they need to keep the device program secret and they can call
out the device program at any time.

Secret download mode

In this mode, the program on the computer can be downloaded to the PLC, no matter what
way the user can upload the program in the PLC to the computer; at the same time, the user
program can be downloaded confidentially, which can occupy less internal resources of the
PLC, greatly increase the program capacity of the PLC, and can have a faster download
speed; after using this download mode, the program will be completely unable to recover.

Q22: What kinds of confidentiality methods do XD/XL series PLCs have?

A22:

Xinje PLC has three methods of confidentiality: (1) importing and exporting downloaded
files; (2) secret downloading; (3) password downloading.

Import and export download files: After saving the PLC program in this way, users can
download and use the program, but they can not view and edit the program.

Secret download: After secret downloading to PLC, the program and data in PLC will not be
uploaded, indicating that "the program does not exist".

378



Password download: If you download the program that has set the password to the PLC, you
need to input the correct password when uploading the PLC program; if you check "download
program needs to be decrypted first”, you also need to input the correct password when
downloading the new program to the PLC. Under this mode, you can not modify the clock
information of the PLC, and the confidentiality is stronger.

Q23: what’s the advantage that XD series PLC replaces DVP download cable with
Bluetooth?

A23:

XD series PLC Bluetooth function can perform PLC program download and upload, monitor
and Twin configuration software online simulation. The Bluetooth can replace the cable to
transfer the data.

Note: COM-Bluetooth only fit for XINJE PLC.

M (((( . ))))

Wireless transferring is convenience
than cable for short distance

PC

Control cabinet installed XD
series PLCand COM-Bluetooth

Q24: PLC I/O terminal exchanging

A24:

Sometime the PLC I/O terminals are broken. User don’t have to change the program, PLC I/O
terminal exchanging function can solve the problem. User can exchange the terminal through
XINJE Touchwin HMI. Open Touchwin software, jump to screen no. 60004 (X terminals) or
screen no. 60005 (Y terminals) to set the I/O exchanging.

379



PLCL - /O Set ==

=14 PLC Corfig Filter Time({ms): 10
----- [ Password
""" ﬁ E:SC Senal Port In Port Map | Out Port Map | In Port Property
..... BD
..... oot CAN +0 +1 +2 +3 +4 +5 +8 +7
----- Save Hold Memo| | | ) wp i) 1 o 5 4 5 g T
----- 000 Meodule
_____ 1 110 ro | 10 11 12 13 14 15 16 17
----- o M4 Module w20 20 21 22 23 24 25 26 27
..... Ut
m Wation wan 30 3 32 35 34 35 36 3T
w40 40 41 42 43 44 45 46 47
wa0 =] 51 52 53 54 55 56 57
=N} =] Bl gz B3 G4 BS B BT
wra Ta Tl T2 T3 T4 TS Ki=] T
Fi I 1
| Read From PLC | | Wite ToPLC | | 0K | [ Cancel

XC PLC Input Status

001 2 3 4 5 & 7
5 0
10 11 12 13 14 15 16 17

20 21 22 023 M4 25 26 Output
Fort
30 31 32 33 34 35 36 37
O

40 41 42 43

= fport banned, With¥  [port| Eeplace

Touchwin HMI 1/0 terminal exchanging screen

Q25: What’s the function of XD/XL series PLC indirect addressing?

A25:

Adding offset suffix after coils and data registers (Such as X3[D100], M10[D100],
DO[D100]) can realize indirect addressing function; such as D100=9, X3[D100] represents
X14, M10[D100] represents M19, DO[D100] represents D9; It usually applies to large
number of bit and register operation and storage.

Q26: How does XD/XL series PLC connect to the network?

A26:
XD/XL series PLC can connect to network by Xinje T-BOX, G-BOX, W-BOX, S-BOX, A-
BOX expansion modules or expansion BD boards which have their own communication

380




characteristics. Details please refer to the user manual of communication module or BD
board.

Q27: how to add soft element and line note in XDppro software?
A27:
Soft element note
Open XDPpro software, and move the mouse to the corresponding soft element and right
click the mouse, then menu will pop out:
PLC1 - Ladder |

Madify Reg Comment

Show Mode Comment

x Cut
= Copy
[z} Paste

&4 Search

Replace

Click “Modify reg comment™ to add element notes in below window:

Edit Reg Comment @

MO - |

oK || Cancel

Line note
Line note starts from *;”. Double click the line, then input semicolon and the contents.
MO

1

"ADD NOTE |

381



| PLC1 - Ladder |

n0

o

ADD MOTE

Q28: do not have clock function? Why is the clock inaccurate?

A28:

XD/XL series PLC clock function is optional, and if you want to buy the PLC with clock
function, please confirm when purchasing. Otherwise, the default PLC when it leaves factory
does not have clock function.

If you use a PLC with clock function, check whether the value in register SD13-SD19 is
decimal. If not, you need to convert it into decimal through BIN or TRD instructions.

There are some errors in the clock of XD/XL series PLC. The error is about +5 minutes per
month. Please calibrate it by HMI or directly in the PLC program.

382



Appendix Special soft components

Appendix mainly introduces the functions of XD/XL series PLC special soft element, data
register, FlashROM and the address distribution of expansions for users to search.

Appendix 1. Special Auxiliary Relay

Initial Status (SM0-SM7)

ID Function Description
Coil ON wh R SMO000 k ON
oi when eeps
SMO00 running ] I—! \— when PLC running
ol [
Coil OFF when T SMO001 keeps OFF
SMool running — l_ l_ when PLC running
S
SM002 In|_t|al positive pulse SME | —| SMO002 is ON in first
coil scan cycle
SIE | | |
Initial negative pulse — SMO003 is OFF in first
SM003 .
coil scan cyele scan cycle
When SM4 sets ON, it indicates that there is an error
. in the operation of PLC.
SMO04 | PLC running error (Firmware version V3.4.5 and above supports this
function by PLC)
When the battery voltage is less than 2.5V, SM5 will
SMO005 | Battery low alarm coil | put ON (at this time, please replace the battery as soon
as possible, otherwise the data will not be maintained)
SM007 Power-off memory
data error
Clock (SM11-SM14)
ID Function Description
2 5ms s
SMO011 | 10ms frequency cycle J \_‘ L
5ms
¢ 50ms 5
SMO012 | 100ms frequency cycle

|

50ms

383




SMO013 | 1s frequency cycle J \_[ L
“oss

SMO014 | 1min frequency cycle J \_‘ L
305

Mark (SM20-SM22)

ID Function Description
SMO020 | Zero bit SMO020 is ON when plus/minus operation result is 0
SMO021 | Borrow bit SMO021 is ON when minus operation overflows
SMO022 | Carry bit SMO022 is ON when plus operation overflows

PC Mode (SM32-SM34)

ID Function Description
Retentive redister When SMO032 is ON, ON/OFF mapping memory of
SM032 reieet € registe HM. HS and current values of HT. HC. HD will be
reset.
SMO33 | Clear user’s program m};igdSMOB is ON, all PLC user’s program will be
SM034 | All output forbidden \C/)Vlillt__en SMO034 is ON, all PLC external contacts will be set

Stepping Ladder

ID Function Description

SMO040 | The process is running Set ON when the process is running

384




Interruption ban (SM50-SM90)

ID Address Function Description
SMO050 | 10000/10001 | Forbid input interruption 0 . . .
— - - After executing EI instruction,
SMO051 | 10100/10101 Forb!d !nput !nterrupt!on 1 the input interruption couldn’t
SMO052 | 10200/10201 | Forbid input interruption 2 act independently when M
SMO053 | 10300/10301 | Forbid input interruption 3 acts, even ifﬁhe indterruption is
SM054 | 10400/10401 | Forbid input interruption 4 afllowed.
10 INpUT Interript E.g.: when SMO50 is ON,
""""""""" 10000/10001 is forbidden.
SMO069 | 11900/11901 | Forbid input interruption 19
SMO70 | 140** Forbid timing interruption 0
SMO71 | 141%* Forbid timing interruption 1 After executing El instruction,
7 i the timing interruption
SMO72 | 142** Forbid timing interruption 2 couldn’t act independently
SMO73 | 143** Forbid timing interruption 3 when M acts, even if the
SMO074 | 144** Forbid timing interruption 4 interruption is allowed.
SMO089 | 159** Forbid timing interruption 19
SM090 Forbid all interruptions Forbid all interruptions
High Speed Ring Counter (SM99)
address Function Note
SM99 set ON, SD99 add
SM099 High Speed Ring Counting enable one per 0.1ms, cycle between
0 and 32767
High speed count complete (SM100-SM109)
Address Function Note
SM100 HSCO count complete flag (100 segments)
SM101 HSC2 count complete flag (100 segments)
SM102 HSC4 count complete flag (100 segments)
SM103 HSC6 count complete flag (100 segments)
SM104 HSC8 count complete flag (100 segments)
SM105 | HSC10 count complete flag (100 segments)
SM106 | HSC12 count complete flag (100 segments)
SM107 | HSC14 count complete flag (100 segments)
SM108 | HSC16 count complete flag (100 segments)
SM109 | HSC18 count complete flag (100 segments)

385




High speed counter direction (SM110-SM119)

Address Function Note
SM110 HSCO direction flag
SM111 HSC2 direction flag
SM112 HSC4 direction flag
SM113 HSC6 direction flag
SM114 HSC8 direction flag
SM115 HSC10 direction flag
SM116 HSC12 direction flag
SM117 HSC14 direction flag
SM118 HSC16 direction flag
SM119 HSC18 direction flag
High speed counter error (SM120-SM129)
address Function Note
SM120 HSCO error flag
SM121 HSC2 error flag
SM122 HSCA4 error flag
SM123 HSC6 error flag
SM124 HSCS error flag
SM125 HSC10 error flag
SM126 HSC12 error flag
SM127 HSC14 error flag
SM128 HSC16 error flag
SM129 HSC18 error flag
Communication (SM140-SM193)
Address Function Note
Serial | SM140 Modbus instruction execution When the instruction starts to
port 0 flag execute, set ON
When execution is complete, set
OFF
SM141 X-NET instruction execution When the instruction starts to
flag execute, set ON
When execution is complete, set
OFF
SM142 Free format communication When the instruction starts to
sending flag execute, set ON
When execution is complete, set
OFF
SM143 Free format communication When receiving a frame of data
receive complete flag or receiving data timeout, set
ON.
Require user program to set OFF
Serial | SM150 Modbus instruction execution Same to SM140
port 1 flag

386




SM151 X-NET instruction execution Same to SM141
flag
SM152 Free format communication Same to SM142
sending flag
SM153 Free format communication Same to SM143
receive complete flag
SM160 Modbus instruction execution Same to SM140
Serial flag
port2 | SM161 X-NET instruction execution Same to SM141
flag
SM162 Free format communication Same to SM142
sending flag
SM163 Free format communication Same to SM143
receive complete flag
Serial | SM170 Modbus instruction execution Same to SM140
port 3 flag
SM171 X-NET instruction execution Same to SM141
flag
SM172 Free format communication Same to SM142
sending flag
SM173 Free format communication Same to SM143
receive complete flag
Serial | SM180 Modbus instruction execution Same to SM140
port 4 flag
SM181 X-NET instruction execution Same to SM141
flag
SM182 Free format communication Same to SM142
sending flag
SM183 Free format communication Same to SM143
receive complete flag
Serial | SM190 Modbus instruction execution Same to SM140
port 5 flag
SM191 X-NET instruction execution Same to SM141
flag
SM192 Free format communication Same to SM142
sending flag
SM193 Free format communication Same to SM143
receive complete flag
Sequence Function BLOCK (SM240-SM399)
ID Function Description
SM300 | BLOCKUI running flag SM300 will be ON when block1 is running
SM301 | BLOCK2 running flag SM301 will be ON when block2 is running
SM302 | BLOCKS running flag SM302 will be ON when block3 is running
SM303 | BLOCKA4 running flag SM303 will be ON when block4 is running
SM304 | BLOCKS running flag SM304 will be ON when blocks is running
SM305 | BLOCKG® running flag SM305 will be ON when block6 is running

387




SM396 | BLOCKS97 running flag SM396 will be ON when block97is running

SM397 will be ON when block98 is

SM397 | BLOCKS98 running flag running

SM398 will be ON when block99 is

SM398 | BLOCKA99 running flag running

SM399 will be ON when block100 is

SM399 | BLOCKZ100 running flag running

Error check (SM400-SM412)

ID Function

Description

SM400 1/0 error

ERR LED keeps ON, PLC don not run and output, check
when power on

Expansion module
communication
SM401 | error

BD communication
SM402 | error

SM405 | No user program

Internal code check wrong

SMA406 | User program error

Implement code or configuration table check wrong

SM407 | SSFD check error

ERR LED keeps ON, PLC don not run and output, check
when power on

SM408 | Memory error

Can not erase or write Flash

SM409 | Calculation error

SM410 | Offset overflow

Offset exceeds soft element range

FOR-NEXT
SMA411 | overflow

Reset when power on or users can also reset by hand.

SM412 | Invalid data fill

When offset of register overflows, the return value will be
SM372 value

Error Message (SM450-SM463)

Function Description

SM450 | System error check

SM451 | Hardfault interrupt flag

SM453 SD card error

SMA454 | Power supply is cut off

SM460 Extension module 1D not match

SM461 BD/ED module ID not match

SM462 Extension module communication overtime

SM463 BD/ED module communication overtime

388




Expansion Modules, BD Status (SM500)

ID Function Description
Module status read is
SM500 | finished
Appendix 2. Special Data Register
Battery (SD5~SD7)
ID Function Description

It will display 100 when the battery voltage is 3V,
if the battery voltaeg is lower than 2.5V, it will
display 0, it means please change new battery at
once, otherwise the data will lose when PLC

SD005 Battery register

power off.
SD007 Power-off memory data
error type
Clock (SD10-SD019)
ID Function Description

SD010 Current scan cycle 100us, us is the unit
SD011 Min scan time 100us, us is the unit
SD012 Max scan time 100us, us is the unit

SD013 Second (clock)

0~59 (BCD code)

SD014 Minute (clock) 0~59 (BCD code)

SD015 | Hour (clock) 0~23 (BCD code)

SD016 | Day (clock) 0~31 (BCD code)

SD017 | Month (clock) 0~12 (BCD code)

SD018 | Year (clock) 2000~2099 (BCD code)

SD019 | Week (clock) 0(Sunday)~6(Saturday)(BCD code)
Flag (SD020-SD031)

ID Function Note

SD020 | Model type

SD021 | model (low-8) series Chigh-8)

SD022 | Compatiable system version (low) system version Chigh)

SD023 | Compatiable model version (low) model version Chigh)

SD024 | Model info

SD025 | Model info

389




SD026 | Model info
SD027 | Model info
SD028 | Suitable software version
SD029 | Suitable software version
SDO030 | Suitable software version
SD031 | Suitable software version
Step ladder (SD040)
ID Function Description
SD40 | Flag of the executing process S
High Speed Counting (SD100-SD109)
ID Function Description
SD100 | Current segment (No. n segment) HSCO00
SD101 | Current segment (No. n segment) HSC02
SD102 | Current segment (No. n segment) HSC04
SD103 | Current segment (No. n segment) HSCO06
SD104 | Current segment (No. n segment) HSCO08
SD105 | Current segment (No. n segment) HSC10
SD106 | Current segment (No. n segment) HSC12
SD107 | Current segment (No. n segment ) HSC14
SD108 | Current segment (No. n segment) HSC16
SD109 | Current segment (No. n segment) HSC18
High speed counter error (SD120-SD129)
ID Function Note
SD120 HSCO error info
SD121 HSC2 error info
SD122 HSC4 error info
SD123 HSC6 error info
SD124 HSC8 error info
SD125 HSC10 error info
SD126 HSC12 error info
SD127 HSC14 error info
SD128 HSC16 error info
SD129 HSC18 error info

390




communication (SD140~SD199)

ID

Function

Note

Serial
port 0

SD140

Modbus read write
instruction execution result

0: correct

100: receive error

101: receive overtime
180: CRC error

181: LRC error

182: station error

183: send buffer overflow
400: function code error
401: address error

402: length error

403: data error

404: slave station busy
405: memory error (erase
FLASH)

SD141

X-Net communication
result

: correct

: communication overtime
. memory error

: receive CRC error

SD142

Free format
communication send result

: correct
10: free format send buffer
overflow

A OWNEF O

SD143

Free format
communication receive
result

0: correct

410: send data length overflow
411: receive data short

412: receive data long

413: receive error

414: receive overtime

415: no start character

416: no end character

SD144

Free format
communication receive
data numbers

In bytes, there are no start and stop

characters

......

Serial
port 1

Modbus read write
instruction execution result

0: correct

100: receive error

101: receive overtime
180: CRC error

181: LRC error

182: station error

183: send buffer overflow
400: function code error
401: address error

402: length error

403: data error

404: slave station busy
405: memory error (erase

FLASH)

SD151

X-Net communication
result

0: correct
1: communication overtime

391




2: memory error
3: receive CRC error

SD152 Free format 0: correct
communication send result | 410: free format send buffer
overflow
SD153 Free format 0: correct
communication receive 410: send data length overflow
result 411: receive data short
412: receive data long
413: receive error
414: receive overtime
415: no start character
416: no end character
SD154 Free format In bytes, there are no start and stop
communication receive characters
data numbers
SD159
SD160 Modbus read write 0: correct
instruction execution result | 100: receive error
101: receive overtime
180: CRC error
181: LRC error
Serial 182: station error
port 2 183: send buffer overflow
400: function code error
401: address error
402: length error
403: data error
404: slave station busy
405: memory error (erase
FLASH)
SD161 X-Net communication 0: correct
result 1: communication overtime
2. memory error
3: receive CRC error
SD162 Free format 0: correct
communication send result | 410: free format send buffer
overflow
SD163 Free format 0: correct
communication receive 410: send data length overflow
result 411: receive data short
412: receive data long
413: receive error
414: receive overtime
415: no start character
416: no end character
SD164 Free format In bytes, there are no start and stop
communication receive characters
data numbers
SD169
Serial | SD170~SD17
port3 |9

392




Serial | SD180~SD18
port4 |9
Serial | SD190~SD19
port5 |9
Sequence Function Block (SD300-SD399)
ID Function Description
SD300 | Executing instruction of BLOCK1 The value will be used when BLOCK monitors
SD301 | Executing instruction of BLOCK?2 The value will be used when BLOCK monitors
SD302 | Executing instruction of BLOCK3 The value will be used when BLOCK monitors
SD303 | Executing instruction of BLOCK4 The value will be used when BLOCK monitors
SD304 | Executing instruction of BLOCKS5 The value will be used when BLOCK monitors
SD305 | Executing instruction of BLOCK®6 The value will be used when BLOCK monitors
Executing instruction of
SD396 | BLOCK97 The value will be used when BLOCK monitors
Executing instruction of
SD397 | BLOCK98 The value will be used when BLOCK monitors
Executing instruction of
SD398 | BLOCK99 The value will be used when BLOCK monitors
Executing instruction of
SD399 | BLOCK100 The value will be used when BLOCK monitors
Error Check (SD400-SD413)
ID Function Note
SD400
Extension module no. of
SD401 | communication error Means module no.n is error
BD/ED module no. of
SD402 | communication error
SD403 | FROM/TO error type
SD404 | PID error type
SD409 | Calculation error code 1: divide by 0 error
2: MRST, MSET front operand address less than
back operand
3: ENCO, DECO data hits of encoding and
decoding instructions exceed the limit.
4: BDC code error
7: Radical sign error
SD410 | The number of offset register
D when offset crosses the
boundary
SD411

393




Invalid data fill value (low 16

SDA412 | bits)
Invalid data fill value (high
SD413 | 16 bits)
Error Check (SD450-SD452)
ID Function Description
1: Watchdog act (Default 200ms)
2: Control block application fail
SD450 3: Visitillegal address
Hardware error type:
1: Register error
2: Buserror
SD451 3: Usage error
SD452 Hardware error
SD453 SD card error
SD454 Power-off time
SD460 Extension module 1D not match
SD461 BD/ED module ID not match
SD462 Extension module communication overtime
SD463 BD/ED module communication overtime
Expansion Modules, BD Status (SD500-SD516)
ID Function Description
Module number
Expansion modules:
SD500 #10000~10015
BD: #20000~20001
ED: #30000
Expansion module, BD /ED
SD501~516 | status 16 registers
Module info (SD520-SD823)
ID Function Explanation Note
SD520~SD535 | Extension module info Extension module 1 Each
............ . . e extension
SD760~SD775 | Extension module info Extension module 16 module, BD,
SD776~SD791 | BD module info BD module 1 ED occupies
SD792~SD807 | BD module info BD module 2 16 registers
SD808~SD823 | ED module info ED module 1

394




Expansion Module Error Information

ID Function Description
SD860 | Error times of module read
Module address error.
Module accepted data length error.
SD861 | Error types of module read Modul_e CRC parity error when PLC is Expansio
accepting data. n module
Module ID error. 1
Module overtime error.
SD862 | Error times of module write
SD863 | Error types of module write
SD864 | Error times of module read
Module address error.
Module accepted data length error.
SD865 | Error types of module read Modul_e CRC parity error when PLC is Expansio
accepting data. n module
Module ID error. 2
Module overtime error.
SD866 | Error times of module write
SD867 | Error types of module write
SD920 | Error times of module read
Module address error.
Module accepted data length error.
Module CRC parity error when PLC is Expansio
SD921 | Error types of module read accepting datar.J y n module
Module ID error. 16
Module overtime error.
SD922 | Error times of module write
SD923 | Error types of module write
SD924 | Error times of module read
SD925 | Error types of module read BD
SD926 | Error times of module write module 1
SD927 | Error types of module write
SD928 | Error times of module read
SD929 | Error types of module read BD
SD930 | Error times of module write module 2
SD931 | Error types of module write
SD932 | Error times of module read
SD933 | Error types of module read ED
SD934 | Error times of module write module 1
SD935 | Error types of module write

395




Version info (SD990~SD993)

ID Function Explanation Note
SD990 Firmware version date | Low 16-bit
SD991 Firmware version High 16-bit
compilation date
SDggp | FPGA version Low 16-bit
compilation date
SDog3 | TPGA version High 16-bit
compilation date
Appendix 3. Special Flash Register
Special FLASH data register SFD
* means it works only after repower on the PLC
| filtering
ID Function Description
SFDO* Input filter time
SFD2* Watchdog run-up time, default value is 200ms
I Mapping
ID Function Description
. OxFF means terminal
100 corresponds to Input terminal O corresponds
*
SFD10 von t0 X** number bad,_ Oxl_:E means
terminal idle
SFD11* | 101 corresponds to
X**
SFD12* | 102 corresponds to
X-k-k
SFD73* | 177 corresponds to Default value is 77
X** (Octonary)
O Mapping
ID Function Description
. OxFF means terminal
SED74* 000 corresponds to | Output terminal O correspond bad, OXEE means

Y**

to Y** number

terminal idle

Default value is 0

396




O77 corresponds to

Default value is 77

*
SFD134 Y** (Octonary)
| Attribute
1D Function Description
0: positive logic
SFD138* | 100 attribute Attribute of input terminal O others: negative
logic
SFD139* | 101 attribute
SFD201* | 177 attribute
High Speed Counting
ID Function Description
2: 2times frequency; 4:4 times
SFD320 | HSCO frequency times frequency(effective at AB phase counting
mode)
SFD321 | HSC2 frequency times Ditto
SFD322 | HSC4 frequency times Ditto
SFD323 | HSC6 frequency times Ditto
SFD324 | HSC8 frequency times Ditto
SFD325 | HSC10 frequency times Ditto
SFD326 | HSC12 frequency times Ditto
SFD327 | HSC14 frequency times Ditto
SFD328 | HSC16 frequency times Ditto
SFD329 | HSC18 frequency times Ditto
bit0 corresponds to HSCO, bitlcorresponds to
Bit selection of HSC absolute | HSC2, and so on, bit9 corresponds to HSC18
SFD330 . .
and relative (24 segment) 0: relative
1: absolute
Interrupt circulating of 24 bit0 corresponds to HSCO, bitlcorresponds to
SFD331 segments high speed I(;I.SC_Z, Iand S0 on, bit9 corresponds to HSC18
counting = single
1: loop
bit0 corresponds to HSCO, bitlcorresponds to
. HSC2, and so on, bit9 corresponds to HSC18
SFD332 | CAM function 0: do not support CAM function
1: support CAM function

Expansion Module Configuration

status (#15#16)

ID Function Explanation

SFD340 Extension module configuration Configuration Status of Extension
status (#1#2) Modules 1 and 2

SEp34p | EXtension module configuration Configuration Status of Extension
status (#3#4) Modules 3 and 4

SFD347 Extension module configuration Configuration Status of Extension

Modules 15 and 16

397




BD module configuration status

Configuration Status of BD Modules 1

SFD348 | (414 and 2

SFD349 E(D#ROdUIe configuration status Configuration Status of ED Module 1
SED350 | Extension module configuration

. Configuration of Extension Module 1
SFD359

SFD360 | Extension module configuration

: Configuration of Extension Module 2
SFD369

SFDS00 . . . Configuration of Extension Module

: Extension module configuration 16

SFD509

SFD510

: BD module configuration Configuration of BD Module 1
SFD519

SFD520

: BD module configuration Configuration of BD Module 2
SFD529

SFD530

: ED module configuration Configuration of ED Module 1
SFD539

Communication

ID Function Note

SED600 CoOM1 f_ree format communication 0: 8-bit 1: 16-bit
buffer bit numbers

SEDe10 | COM2 free format communication 0: 8-bit 1: 16-bit
buffer bit numbers

SED620 COM3 f_ree format communication 0: 8-bit 1: 16-bit
buffer bit numbers

SEDE30 | ©OM4 free format communication 0: 8-bit 1: 16-bit
buffer bit numbers

SED640 COM5 f_ree format communication 0: 8-bit 1: 16-bit
buffer bit numbers

398




Appendix 4. PLC resource conflict table

When PLC is used in practice, conflicts may arise because some resources are used at the
same time. This section will list the resources that may cause conflicts in each PLC model.
This part mainly refers to high-speed counting, accurate timing and pulse output.

Accurate
timing

High speed counting

Pulse
output

XD2-16, XD3-16, XD5-16, XL3-16

ETO

ET2

ET4

ET6

ET8

HSCO

ET10

HSC2

ET12

HSC4

ET14

YO0

ET16

YO0

ET18

Y1

ET20

Y1

ET22

ET24

XD3-24/32/48/60, ZG3-30

ETO

ET2

ET4

ET6

ET8

ET10

ET12

HSCO

ET14

HSC2

ET16

HSC4

ET18

YO

ET20

YO

ET22

Y1

ET24

Y1

XD5-24/32/48/60, XDM-24/32/48/60, XD5

E-30/60, XDME-60, XL5-32, XL5E

32

ETO

ET2

HSC6

ET4

HSC4

ET6

HSC2

ET8

HSCO

ET10

Y3

ET12

Y3

ET14

Y2

ET16

Y2

ET18

Y1

ET20

Y1

ET22

YO0

ET24

YO0

XDC-24/32/48/60

399



ETO - - - HSC6 - -

ET2 HSC4

ET4 HSC2

ET6 HSCO

ET8 Y3
ET10 Y3
ET12 Y2
ET14 Y2
ET16 Y1
ET18 Y1
ET20 YO0
ET22 YO0
ET24

¥ 1: This form should be read horizontally. Any two resources in each row cannot be used at the same time.

Otherwise, it will cause conflict.

Appendix 5. PLC function configuration list

This part is used to check each model’s configurations. Via this table, we can judge products

type easily.

o Selectable x Not support  Support

Model UsSB 230 485 R4S Extension | Extension extlgﬁ];tion | hi= e el Pulse output ) Externgl
module BD ncremental | AB (T/RT) interruption
ED mode phase
XD1 series
XD1-10 x 2 x x x x x x x <
XD1-16 2 x x x = x x
XD1-24 2 N x x x x x 10
XD1-32 x 2 N x x x x x x x 10
XD2 series
XD2-16 2 N x x x 1 3 3 2 6
XD2-24 2 N x x 1 1 3 3 2 10
XD2-32 2 N x x 1 1 3 3 2 10
XD2-48 2 N x x 2 1 3 3 2 10
XD2-60 x 2 N x x 2 1 3 3 2 10
XD3 series
XD3-16 1 1 N x 10 x 1 3 3 2 6
XD3-24 1 1 N x 10 1 1 3 3 2 10
XD3-32 1 1 N x 10 1 1 3 3 2 10
XD3-48 1 1 N x 10 2 1 3 3 2 10
XD3-60 1 1 N x 10 2 1 3 3 2 10

400



XD5 series

XD5-16 1 1 N x 16 x 1 3 3 2 6
XD5-24 1 1 N x 16 1 1 3 3 2 10
XD5-32 1 1 N x 16 1 1 3 3 2 10
XD5-48 1 1 N x 16 2 1 3 3 2 10
XD5-60 1 1 N x 16 2 1 3 3 2 10
XD5-24T4 1 1 N x 16 1 1 4 4 4 10
XD5-32T4 1 1 N x 16 1 1 4 4 4 10
XD5-48T4 1 1 N x 16 2 1 4 4 4 10
XD5-48D4T4 | 1 1 N x 16 2 1 8 8 8 10
XD5-48T6 1 1 N x 16 2 1 6 6 6 10
XD5-60T4 1 1 N x 16 2 1 4 4 4 10
XD5-60T6 1 1 N x 16 2 1 6 6 6 10
XD5-60T10 1 1 N x 16 2 1 10 10 10 10
XDM series
XDM-24T4 1 1 N x 16 1 1 4 4 4 10
XDM-32T4 1 1 N x 16 1 1 4 4 4 10
XDM-60T4 1 1 N x 16 2 1 4 4 4 10
XDM-60T4L | 1 1 N x 16 2 1 4 4 4 10
XDM-60T10 1 1 N x 16 2 1 10 10 10 10
XDC series
XDC-24 x [2] A x 16 1 1 4 4 2 10
XDC-32 N 16 1 1 4 4 2 10
XDC-48 x [2] A x 16 2 1 4 4 2 10
Model UsB 230 485 R4S Extension | Extension extlgﬁ]:ion I RO ETEIE] Pulse output _ Externql
module BD ED ”Crrsg:jee”tal AB phase (T/RT) interruption
XDC series
XDC-60 ‘ x ‘ 2 ‘ N ‘ x ‘ 16 2 1 4 4 ‘ 2 ‘ 10
XD5E series
XD5E-24 x 1 |2 16 1 1 3 3 2 10
XD5E-30 x 1 v |2 16 1 1 3 3 2 10
XD5E-48 x 1 N 16 2 1 3 3 2 10
XD5E-60 x 1 N 16 2 1 3 3 2 10
XD5E-30T4 x 1 N 16 1 1 4 4 4 10
XD5E-60T4 x 1 N 16 2 1 4 4 4 10
XD5E-60T6 x 1 v |2 16 2 1 6 6 6 10
XD5E-60T10 x 1 N 16 2 1 10 10 10 10
XDME series
XDME-30T4 x 1 N 16 1 1 4 4 4 10
XDME-60T4 x 1 N 16 2 1 4 4 4 10
XDME-60T10 | 1 N 16 2 1 10 10 10 10
XDH series
XDH-60T4 ‘ x ‘ 1 ‘ N ‘ 2 ‘ 16 x x 4 4 4 10
XL1 series

401



XL1-16 ‘ x ‘ 271 ‘ N ‘ x‘ x x = = < = 6
XL3 series

XL3-16 1 1 N 10 x 1 2 6

XL3-32 1 1 N 10 x 1 2 10
XL5 series

XL5-16 1 N 16 x 1 6

XL5-32 1 N 16 x 1 10

XL5-32T4 1 1 N 16 x 1 4 4 4 10
XL5E series

XL5E-16 x 1 v |2 16 x 1 3 3 2 6

XL5E-32 x 1 v |2 16 x 1 3 3 2 10

XL5E-32T4 x 1 v |2 16 x 1 4 4 4 10

XL5E-64T6 x 1 v |2 16 x 1 6 6 6 10
XLME series

XLME-32T4 ‘ x ‘ 1 ‘ N ‘2‘ 16 x 1 4 4 4 10

Note:

1. The XL1-16T with hardware version below H4 has only one RS232 port (COM1).

2: all models are equipped with clock function as standard.

402



XINJE

WUXI XINJE ELECTRIC CO., LTD.
4th Floor Building 7,No. 100 Dicui
Road,Wuxi, China

214072

Tel: (510) 85134139

Fax: (510) 85111290

Email: fiona.xinje@vip.163.com

Web: www.xinje.com

403



