
User Manual

Version 7.3

OpenPCS Programing
System

2 / 297

OpenPCS Programing System

Inhaltsverzeichnis

Content

1 A Quick Tour through OpenPCS

 13

1.1 Installation ... 13

1.2 Hardware and Software Requirements .. 13

1.3 Starting OpenPCS .. 13

1.4 OpenPCS Samples .. 14

1.5 Guided Tour .. 15

Guided Tour: Intro ... 151.5.1

Sample Program .. 151.5.2

Executing code ... 171.5.3

Monitoring code .. 191.5.4

Control Data Analyzer .. 211.5.5

Online Edit ... 211.5.6

1.6 Additional ... 23

Adding Hardware Support .. 231.6.1

Templates .. 241.6.2

XML-Import/Export .. 241.6.3

About this manual ... 251.6.4

More Information ... 251.6.5

2 OpenPCS Tools

 26

2.1 OpenPCS Framework .. 26

OpenPCS Framework: Introduction .. 262.1.1

Output Window ... 262.1.2

2.2 Browser ... 27

Browser: Introduction .. 272.2.1

Browser: Overview .. 272.2.2

Projects .. 312.2.3

Files ... 322.2.4

Resources and Tasks ... 322.2.5

OPC - I/O .. 342.2.6

Compiler .. 352.2.7

Online ... 352.2.8

Other Browser Features .. 382.2.9

2.3 Catalog .. 40

Catalog ... 402.3.1

Variable Catalog .. 412.3.2

3 / 297

OpenPCS Programing System

Inhaltsverzeichnis

2.4 Declaration Editor .. 42

Declaration Editor: introduction .. 422.4.1

Declaration Sections .. 422.4.2

Structure of a Declaration Line .. 432.4.3

Elementary Data Types .. 442.4.4

Directly represented variables .. 452.4.5

Derived datatypes ... 462.4.6

Declaration of array datatypes ... 472.4.7

Declaration of structured datatypes .. 472.4.8

Declaration of enumeration datatypes ... 482.4.9

2.5 Assignment Editor .. 48

Assignment Editor: Introduction ... 482.5.1

2.6 IL Editor ... 49

IL Editor: Introduction .. 492.6.1

Structure of Instruction List .. 502.6.2

Instructions in IL ... 502.6.3

IL Editor Online ... 502.6.4

2.7 ST Editor ... 51

ST Editor: introduction ... 512.7.1

Instructions in ST .. 512.7.2

Expressions in ST .. 512.7.3

Comments in ST .. 522.7.4

ST Editor Online .. 522.7.5

Tooltips for structs and elements of structs ... 532.7.6

AutoComplete / AutoDeclare .. 532.7.7

2.8 Ladder Diagram Editor ... 53

Ladder Editor: introduction .. 532.8.1

Ladder Logic: introduction ... 542.8.2

Network .. 542.8.3

Operators .. 542.8.4

Coils ... 552.8.5

Contact ... 552.8.6

Control Relay .. 562.8.7

Functionblocks and Functions .. 562.8.8

Ladder Editor Online ... 562.8.9

Check over Variable ... 572.8.10

AutoComplete / AutoDeclare .. 582.8.11

2.9 CFC Editor .. 58

Introduction CFC Editor .. 582.9.1

Working with Blocks ... 582.9.2

Connections ... 592.9.3

Margin Bars .. 592.9.4

CFC Editor Online .. 602.9.5

4 / 297

OpenPCS Programing System

Inhaltsverzeichnis

Advanced CFC topics ... 602.9.6

Compound Blocks .. 732.9.7

2.10 SFC Editor .. 75

SFC: introduction .. 752.10.1

Elements of a sequential function chart ... 762.10.2

Steps and initial steps .. 772.10.3

Transitions ... 782.10.4

Jumps ... 782.10.5

SFC Editor Online .. 782.10.6

Common errors .. 792.10.7

Selecting Elements .. 812.10.8

Advanced SFC topics ... 822.10.9

2.11 FBD Editor .. 83

Introduction FBD Editor .. 832.11.1

Working with Blocks ... 832.11.2

Connections ... 842.11.3

Margin Bars .. 852.11.4

Advanced .. 862.11.5

2.12 Test and Commissioning .. 89

Test and Commissioning: Introduction ... 892.12.1

Start and Stop ... 892.12.2

Watch variables .. 892.12.3

Set variables .. 892.12.4

Force Variables ... 892.12.5

Working with watchlists .. 902.12.6

2.13 Control Data Analyzer ... 91

Control Data Analyzer .. 912.13.1

Oscilloscope ... 922.13.2

Trigger .. 922.13.3

2.14 SmartSIM ... 93

Overview SmartSIM ... 932.14.1

Interrupt Tasks ... 932.14.2

2.15 OPC Server ... 94

About OPC Server ... 942.15.1

Remote OPC Server ... 942.15.2

2.16 Online Server .. 96

Online Server: Overview ... 962.16.1

Online Server Setup ... 962.16.2

2.17 Hardware drivers ... 99

Hardware drivers: Overview ... 992.17.1

2.18 Compiler ... 99

Compiler: Overview .. 992.18.1

5 / 297

OpenPCS Programing System

Inhaltsverzeichnis

Instruction List Compiler ... 992.18.2

Linker .. 1002.18.3

Make ... 1012.18.4

2.19 Licence Editor ... 102

Licence Editor: Overview ... 1022.19.1

Usage without Licence Key .. 1032.19.2

3 Advanced Topics

 103

3.1 Runtime issues ... 103

Multitasking .. 1033.1.1

Interrupts .. 1043.1.2

Optimisation Settings ... 1043.1.3

Multiple Resources ... 1043.1.4

Variable Address .. 1053.1.5

Performance ... 1053.1.6

Adjusting order of cyclic tasks ... 1053.1.7

3.2 Native Code Compiler .. 106

Native Code .. 1063.2.1

Direct Calls ... 1073.2.2

Exception Handling in native code ... 1073.2.3

Unknown instructions ... 1073.2.4

Span segments ... 1073.2.5

NCC Intel Protected Mode ... 1073.2.6

NCC Infineon C16x (huge model) ... 1083.2.7

NCC Motorola 68K .. 1083.2.8

NCC Hitachi H8/300H .. 1083.2.9

NCC Motorola DSP563xx .. 1083.2.10

NCC Intel Real Mode ... 1083.2.11

NCC Motorola PowerPC ... 1083.2.12

NCC ARM ARM Mode ... 1083.2.13

NCC ARM THUMB Mode ... 1083.2.14

3.3 Documentation .. 108

Crossreference .. 1083.3.1

Cross-Reference (per variable) ... 1093.3.2

Print IEC61131 Configuration .. 1093.3.3

CFC Crossreference .. 1093.3.4

Print-Options .. 1123.3.5

Active Document Server ... 1123.3.6

3.4 Libraries ... 113

Library: Overview .. 1133.4.1

Create a Library .. 1133.4.2

Install a Library ... 1143.4.3

Adding a Library to a project .. 1143.4.4

6 / 297

OpenPCS Programing System

Inhaltsverzeichnis

Uninstall Library ... 1153.4.5

3.5 CANopen .. 116

CANopen: introduction .. 1163.5.1

CANopen network variables .. 1163.5.2

Configuration process ... 1183.5.3

Insert a DCF-file into OpenPCS ... 1203.5.4

Declaration of CANopen network variables .. 1203.5.5

Synchronisation ... 1213.5.6

CANopen constants .. 1233.5.7

3.6 IEC61131-3 ... 124

IEC61131-3 Details .. 1243.6.1

IEC61131-3 Compliance Statement ... 1273.6.2

3.7 Online Features ... 150

Breakpoints .. 1503.7.1

Online Edit .. 1503.7.2

Save System .. 1513.7.3

Error Logs .. 1523.7.4

4 Reference

 152

4.1 Keywords (by category) .. 152

IEC61131-3 Standard Function Blocks .. 1524.1.1

IEC61131-3 Standard Functions ... 1524.1.2

IEC61131-3 operations ... 1534.1.3

OpenPCS Functions and Function Blocks .. 1534.1.4

Data Types .. 1544.1.5

Declaration Keywords ... 1544.1.6

Instruction List Instructions ... 1554.1.7

Structured Text Keywords ... 1564.1.8

CANopen .. 1564.1.9

Others ... 1574.1.10

4.2 Keywords (A..Z) .. 158

")" (Right-paranthesis-operator) ... 1584.2.1

*_TO_BOOL .. 1594.2.2

*_TO_STRING ... 1594.2.3

ABS .. 1594.2.4

ACOS .. 1604.2.5

ACTION ... 1604.2.6

ADD .. 1604.2.7

ADD (time) ... 1604.2.8

AND .. 1614.2.9

ANDN .. 1614.2.10

ANY .. 1614.2.11

ANY_BIT .. 1614.2.12

7 / 297

OpenPCS Programing System

Inhaltsverzeichnis

ANY_DATE .. 1614.2.13

ANY_INT .. 1624.2.14

ANY_NUM ... 1624.2.15

ANY_REAL .. 1624.2.16

ARRAY ... 1624.2.17

ASIN ... 1634.2.18

Assignment ... 1634.2.19

AT .. 1634.2.20

ATAN .. 1644.2.21

BOOL ... 1644.2.22

BOOL_TO_* .. 1644.2.23

BY .. 1654.2.24

BYTE ... 1654.2.25

CAL ... 1654.2.26

CALC ... 1654.2.27

CALCN ... 1654.2.28

CAN_ENABLE_CYCLIC_SYNC ... 1654.2.29

CAN_GET_CANOPEN_KERNEL_STATE .. 1664.2.30

CAN_GET_LOCAL_NODE_ID .. 1664.2.31

CAN_GET_STATE ... 1674.2.32

CAN_NMT ... 1674.2.33

CAN_PDO_READ8 ... 1684.2.34

CAN_PDO_WRITE8 ... 1684.2.35

CAN_RECV_BOOTUP ... 1694.2.36

CAN_RECV_BOOTUP_DEV ... 1694.2.37

CAN_RECV_EMCY ... 1704.2.38

CAN_RECV_EMCY_DEV .. 1704.2.39

CAN_REGISTER_COBID .. 1714.2.40

CAN_SDO_READ8 ... 1724.2.41

CAN_SDO_READ_STR .. 1724.2.42

CAN_SDO_WRITE8 ... 1734.2.43

CAN_SDO_WRITE_STR .. 1744.2.44

CAN_SEND_SYNC ... 1754.2.45

CAN_WRITE_EMCY ... 1754.2.46

CASE ... 1764.2.47

CD .. 1764.2.48

CDT .. 1764.2.49

CLK ... 1774.2.50

CONCAT ... 1774.2.51

CONFIGURATION .. 1774.2.52

CONSTANT ... 1774.2.53

COS .. 1774.2.54

CR .. 1774.2.55

CTD .. 1784.2.56

8 / 297

OpenPCS Programing System

Inhaltsverzeichnis

CTU .. 1784.2.57

CTUD .. 1794.2.58

CU .. 1794.2.59

CV .. 1794.2.60

D(DATE) .. 1794.2.61

D(Action Qualifier) ... 1804.2.62

DATE ... 1804.2.63

DATE_AND_TIME ... 1804.2.64

DELETE .. 1804.2.65

DINT ... 1804.2.66

DIV ... 1804.2.67

DIV (time) .. 1814.2.68

DO .. 1814.2.69

DS .. 1814.2.70

DT .. 1814.2.71

DWORD .. 1814.2.72

ELSE ... 1814.2.73

ELSIF .. 1824.2.74

EN .. 1824.2.75

END_ACTION ... 1824.2.76

END_CASE .. 1824.2.77

END_CONFIGURATION ... 1824.2.78

END_FOR .. 1824.2.79

END_FUNCTION ... 1824.2.80

END_FUNCTION_BLOCK ... 1824.2.81

END_IF .. 1834.2.82

END_PROGRAM .. 1834.2.83

END_REPEAT ... 1834.2.84

END_RESOURCE ... 1834.2.85

END_STEP .. 1834.2.86

END_STRUCT .. 1834.2.87

END_TRANSITION .. 1834.2.88

END_TYPE .. 1834.2.89

END_VAR .. 1834.2.90

END_WHILE .. 1844.2.91

ENO .. 1844.2.92

EQ .. 1844.2.93

ET .. 1844.2.94

ETRC ... 1844.2.95

EXIT ... 1854.2.96

EXP ... 1864.2.97

EXPT ... 1864.2.98

F_EDGE .. 1864.2.99

F_TRIG .. 1864.2.100

9 / 297

OpenPCS Programing System

Inhaltsverzeichnis

FALSE ... 1874.2.101

FBD ... 1874.2.102

FIND ... 1874.2.103

FOR .. 1884.2.104

FROM .. 1884.2.105

Function .. 1884.2.106

FUNCTION BLOCK ... 1894.2.107

GE .. 1894.2.108

GetDateStruct .. 1904.2.109

GETSYSTEMDATEANDTIME .. 1904.2.110

GetTaskInfo .. 1904.2.111

GetTime ... 1914.2.112

GetTimeCS ... 1914.2.113

GetVarData .. 1924.2.114

GetVarFlatAddress ... 1924.2.115

GT .. 1934.2.116

IF ... 1934.2.117

IL ... 1944.2.118

IN ... 1944.2.119

INITIAL_STEP ... 1944.2.120

INSERT .. 1944.2.121

INT ... 1954.2.122

Interval ... 1954.2.123

JMP ... 1954.2.124

JMPC ... 1954.2.125

JMPCN ... 1954.2.126

L(Action Qualifier) .. 1964.2.127

LD .. 1964.2.128

LD (Ladder Diagram) ... 1964.2.129

LDN ... 1964.2.130

LEFT ... 1964.2.131

LE ... 1964.2.132

LEN ... 1974.2.133

LIMIT .. 1974.2.134

LINT .. 1974.2.135

LN .. 1974.2.136

LOG .. 1984.2.137

Lreal ... 1984.2.138

LT .. 1984.2.139

Lword .. 1984.2.140

MUX .. 1984.2.141

MAX .. 1984.2.142

MID ... 1994.2.143

MIN ... 1994.2.144

10 / 297

OpenPCS Programing System

Inhaltsverzeichnis

MOD .. 1994.2.145

MOVE .. 2004.2.146

MUL .. 2004.2.147

MUL (time) ... 2004.2.148

N (Action Qualifier) .. 2004.2.149

NCC .. 2014.2.150

NE .. 2014.2.151

NEG .. 2014.2.152

NOT .. 2014.2.153

OF .. 2014.2.154

On .. 2014.2.155

OPC .. 2014.2.156

OR .. 2024.2.157

ORN .. 2024.2.158

P(Action Qualifier) .. 2024.2.159

POINTER .. 2024.2.160

POU .. 2034.2.161

Priority .. 2034.2.162

PROGRAM ... 2034.2.163

PT .. 2034.2.164

PV .. 2034.2.165

Q(Parameter) .. 2034.2.166

Q1 .. 2034.2.167

QD .. 2034.2.168

QU .. 2034.2.169

R(Action Qualifier) .. 2044.2.170

R(eset) .. 2044.2.171

R_EDGE .. 2044.2.172

R_TRIG .. 2044.2.173

R1 .. 2054.2.174

READ_ONLY .. 2054.2.175

READ_WRITE ... 2054.2.176

RED_SHOWROLE .. 2054.2.177

REAL ... 2054.2.178

REAL_TO_* .. 2054.2.179

Release .. 2064.2.180

REPEAT .. 2064.2.181

REPLACE .. 2074.2.182

Resource .. 2074.2.183

RESUME ... 2074.2.184

RET ... 2084.2.185

RETAIN .. 2084.2.186

RETC ... 2084.2.187

RETCN ... 2084.2.188

11 / 297

OpenPCS Programing System

Inhaltsverzeichnis

RETURN ... 2094.2.189

RIGHT .. 2094.2.190

ROL ... 2094.2.191

ROR .. 2094.2.192

RS .. 2104.2.193

RTC .. 2104.2.194

S(Action Qualifier) ... 2114.2.195

S(et) ... 2114.2.196

S1 .. 2114.2.197

SD .. 2114.2.198

SEL ... 2114.2.199

SEMA .. 2114.2.200

SETSYSTEMDATEANDTIME .. 2114.2.201

SFC .. 2124.2.202

SHL ... 2124.2.203

SHR .. 2124.2.204

SIN ... 2124.2.205

Single .. 2124.2.206

SINT ... 2134.2.207

SL .. 2134.2.208

SQRT .. 2134.2.209

SR .. 2134.2.210

ST .. 2144.2.211

ST (Structured Text) ... 2144.2.212

STEP ... 2144.2.213

STN .. 2144.2.214

STRING .. 2144.2.215

STRING_TO_* ... 2154.2.216

STRUCT ... 2154.2.217

SUB .. 2164.2.218

SUB (time) ... 2164.2.219

TAN .. 2164.2.220

Task ... 2174.2.221

THEN ... 2174.2.222

TIME ... 2174.2.223

TIME_OF_DAY ... 2174.2.224

TIME_TO_* .. 2174.2.225

TO .. 2184.2.226

TOD .. 2184.2.227

TOF .. 2184.2.228

TON .. 2194.2.229

TP .. 2194.2.230

Transition ... 2204.2.231

TRUE ... 2204.2.232

12 / 297

OpenPCS Programing System

Inhaltsverzeichnis

TRUNC ... 2204.2.233

TYPE ... 2204.2.234

UDINT ... 2214.2.235

UINT ... 2214.2.236

ULINT .. 2214.2.237

UNTIL .. 2214.2.238

USINT ... 2214.2.239

VAR .. 2214.2.240

VAR_ACCESS .. 2214.2.241

VAR_INPUT ... 2224.2.242

VAR_OUTPUT .. 2224.2.243

VAR_IN_OUT ... 2224.2.244

VAR_GLOBAL ... 2224.2.245

VAR_EXTERNAL ... 2224.2.246

VARINFO .. 2224.2.247

WHILE ... 2234.2.248

WITH .. 2234.2.249

WORD .. 2234.2.250

WSTRING ... 2244.2.251

XOR .. 2244.2.252

XORN .. 2244.2.253

4.3 Errors and Warnings .. 224

How to Read Error Message ... 2244.3.1

General Errors ... 2254.3.2

Syntax Errors .. 2254.3.3

Linker Messages .. 2644.3.4

Compiler Messages ... 2704.3.5

Make Messages ... 2804.3.6

4.4 Shortcuts ... 280

Common Shortcuts ... 2804.4.1

Editor depending Shortcuts .. 2814.4.2

Index 283

13 / 297

OpenPCS Programing System

A Quick Tour through OpenPCS

1 A Quick Tour through OpenPCS

1.1 Installation

OpenPCS is delivered on CD-Rom. The CD auto-starts a screen where you can select
the software you want to install. If auto-start is not activated or does not work,
please start the SETUP.EXE from the subdirectory
SOFTWARE\OPENPCS\<language>\.

At the end of you the installation, you will be asked if you want to install hardware
drivers. If you got those with your PLC, enter the path to the hardware driver, else
click "Quit". When you have got drivers for your PLC, you also got a licence key for
OpenPCS. See Licence Editor for how to insert a licence key.

If you have not got a hardware driver nor a licence key, OpenPCS is still full
functional, but restricted to "SIMULATION".

Note: Installations to substituted drives are not supported by Windows XP.

1.2 Hardware and Software Requirements

OpenPCS requires a PC with at least:

· Pentium II, 1GHz

· 512 MB RAM

· 180 MB of free disk space

· CD-ROM and 1024*768 resolution

· Winows 2003, Windows XP SPII or Windows Vista 32bit

To support your specific PLC, more requirements may hold (e.g. more memory), and
you may need additional hard- or software (e.g. interface cards, cables). If in doubt,
consult the manual of your PLC.

1.3 Starting OpenPCS

Start Windows and choose Start->Programs->infoteam OpenPCS 2008->infoteam
OpenPCS 2008 in the start-menu; this will open the OpenPCS-Framework. If the
project is created by OpenPCS versions prior to 7.0, the user will be asked to
convert project files into UTF-8 format.

14 / 297

OpenPCS Programing System

A Quick Tour through OpenPCS

The screen is divided into 5 regions:

1. The top region with the menus and toolbars

2. The Project-Browser

3. The Editor-Window

4. The diagnostic output window

5. The Catalog-Window

The last opened project is displayed by default at start-up.
An overview on delivered samples in given in the editor window, therefore it may
differ from the shown screenshot.

1.4 OpenPCS Samples

OpenPCS comes with a variety of sample projects. When you start OpenPCS the
first time a Startup-Screen with a list of sample projects will be displayed. Click on
one of these and it will be opened.

Coffee Emulates a coffee brewer. The programm will be
explained in detail on the following pages

ControlX Demonstrates the common languages IL, ST, SFC
and Ladder Diagram

BookExam Example programm of the Book IEC61131-3:
Programming Industrial Automation Systems by
Karl-Heinz John and Michael Tiegelkamp

If the startup-screen isn't displayed you can find the sample projects in the sample
folder of your OpenPCS directory.

15 / 297

OpenPCS Programing System

A Quick Tour through OpenPCS

Notes:

1. Each sample project comes with a description that will automatically be shown
when the project is opened.

2. The samples you see may vary due to OEM dependencies done by Brand Labelling
OpenPCS.

1.5 Guided Tour

1.5.1 Guided Tour: Intro

The guided tour hands the user a step-by-step introduction into the programming
system OpenPCS.
The coffee sample is delivered with OpenPCS and is located in the OpenPCS sample
directory.
The sample simulates a coffee machine and controls its flow. Both procedures are
split into two tasks. The simulation of the machine is done via a sequential function
chart (SFC) called coffee.sfc. Therefore timed routines are used which map the
physics of the brewer. A ladder diagram called control.ldd controls the tasks. Two
declaration files globvar.poe and IO_Definitions.poe are necessary for the interaction
of both tasks. The division into tasks is visible in the resource tab in the project
browser, where the resource brewer consists of the two aforementioned tasks and
definitions. Unfolding the tree shows the respective variables. The screenshot
shows the relations between the files and the resources.

To add new files to a resource the user needs to right-click onto a file within the
project browser and select "Link To Active Resource". A green check mark will be
visible within the icon if the file is linked to the resource.

The Guided Tour is split into two sections. The first introduces the reader into the
sample program and explains the used routines. The second part deals with
compiling, executing and monitoring the program within OpenPCS.

1.5.2 Sample Program

A coffee brewer can be modeled with five states. A mandatory initial state called
machine ready and the states water full, water hot, coffee ground and coffee
finished as illustrated below. The programming coffee.sfc is based on these states.
As the illustration shows grinding the coffee and heating the water can be done
simultaneously.

16 / 297

OpenPCS Programing System

A Quick Tour through OpenPCS

Visualization via Iconics GraphWorkX illustrates the brewer. Illustrated is the chart
coffee.sfc simulating the brewer as well as displays showing the temperature and
water level. The states water hot and coffee ground are combined in a stated called
Hot and Ground.

17 / 297

OpenPCS Programing System

A Quick Tour through OpenPCS

1.5.3 Executing code

Please open the sample project coffee.var.
To execute the application, we need to compile it and transfer the code to the
controller first. To build the code for the controller select PLC->Build Active

Resource from the menu bar. In the output window, you will see the compilation
proceed. The end of the output should look similar to the following:

After compilation finished successfully, your code needs to be transferred to your
controller. Now select PLC->Online to Connect to the resource. OpenPCS will

detect, that your application needs to be downloaded and will prompt your
permission to do so:

If a problem occurs, OpenPCS prints the error in the same window. The manual of
OpenPCS hands a complete overview on all errors and hands possible solutions to
the user.

Accept that with "yes". You will see a progress bar while the code is being
transferred, but for this small example it should be finished very quickly. When
download has finished, you will see that OpenPCS automatically opened another of
its tools, the "Test and Commissioning". This is proof that OpenPCS is online:

In this introduction, we are not using a real hardware controller. Instead, we are
using the Windows Simulation tool that comes with OpenPCS, named SmartSIM,
which OpenPCS starts automatically when downloading the program:

18 / 297

OpenPCS Programing System

A Quick Tour through OpenPCS

Use PLC-> Coldstart in the menu (or press the red arrow in the toolbar) to start

execution of your code.

After starting the execution the following screen should be visible. The coffee
brewer is initialized and the init-step is colored red.

Go to SmartSIM and activate the first input ("button"). The variable "start" turns to
TRUE, as can be seen in the watchlist at the bottom of the screen, and the
machine starts. Moreover, the SFC activates step "Fill_Water" which is now colored
red.

19 / 297

OpenPCS Programing System

A Quick Tour through OpenPCS

Another coffee cannot be brewed until the first cup is done.

1.5.4 Monitoring code

Now that your application is running, go back to the Project window in the upper
left and activate the Resource tab. This tab offers an overview on the resources,
its tasks and variables. Click all the small plus signs to open the entire tree under
the resource entry. This will reveal the "instance tree", showing all instances of
programs and function blocks and all variables that you used in your program:

20 / 297

OpenPCS Programing System

A Quick Tour through OpenPCS

Double-click some of the variable entries (white boxes with black dot), and see the
corresponding variables added to the watch list in the Test & Commissioning:

Go back to SmartSIM and modify the inputs to see the effect in the watch list.

OpenPCS supports "online edit", for further information see Online Edit in the user
manual.

Note: if SmartSIM does not stop when you set a breakpoint, you probably did not
set optimization settings properly. Be sure your resource is configured for "size only".

21 / 297

OpenPCS Programing System

A Quick Tour through OpenPCS

1.5.5 Control Data Analyzer

The Control Data Analyzer hands the programmer the possibility to observe the
development of variables over time. The Analyz er can be started via View ->
Control Data Analyzer. This option is online available whole being online. The
screenshot illustrates the complete process of brewing a coffee. The water will be
filled into the tank (yellow line), and then heated (red). Simultaneously the coffee
gets grinded. When both steps are finished, the coffee gets brewed.

1.5.6 Online Edit

Online Edit (or Online Change) is a feature whereby program changes are applied to
the PLC without the need to restart it. The following Steps need to be done in order
to run Online Edit.

The program must be compiled and running on the PLC. The source is opened in an
editor window.

The Editor can be switched from Monitor Mode (green colored symbol) to Edit Mode
(red colored symbol) and back via PLC->Online/Edit or the corresponding button of

the toolbar

Implement the desired changes and close the Edit Mode via PLC->Online/ Edit

again. The screenshot below illustrates changes in the desired water level from 100
to 555.

22 / 297

OpenPCS Programing System

A Quick Tour through OpenPCS

OpenPCS prints a dialogue to accept and download the changes

If the changes are accepted, OpenPCS recompiles the necessary unit and
downloads them to the PLC without stopping the running cycle. The changes have
bearing on the next cycle.

OpenPCS prompts a message in the output window, if the update is finished

23 / 297

OpenPCS Programing System

A Quick Tour through OpenPCS

Remark: The Changes will not be persistent on the PLC. Therefore you need
SaveSystem, an optional target system feature.

1.6 Additional

1.6.1 Adding Hardware Support

Adding Hardware Support

All Automation Network member companies are providing target drivers (*.cab files)
for installing support for their hardware/controller. It is possible to install different
target drivers for different controllers from different manufactures in one installation.

To install a target driver, select Extras -> Tools -> Driver Install....

First, specify the directory (e.g. X:\ for CD-ROM) for the target driver, then select
the driver you want to install and thereafter click "Install".

24 / 297

OpenPCS Programing System

A Quick Tour through OpenPCS

Target drivers can contain hardware definitions, communication drivers, help files,
libraries, templates for projects, resources, program files, etc. Please see the
information provided with the target driver or the information provided by your PLC
manufacturer.

1.6.2 Templates

OpenPCS 2006 supports file and project templates, to minimize the effort of creating
solutions for specific tasks. Templates optimized to support particular PLCs can be
provided by the manufacturer of the PLC as part of a target driver. Templates can
be used for resources, tasks, declarations, projects, program files, etc.

Note: Templates provided by one manufacturer may be incompatible with the
hardware of a different manufacturer.

1.6.3 XML-Import/Export

OpenPCS supports the PLCOpen standard XML-Import/Export for IEC 61131-3
projects. The XML export/import provides a way to export an entire project to a
single XML file, and also to import a project from a XML file.

To export a project, use "Project->XML-Export...". In the dialog, select a folder
where to place the XML file. The filename of the XML file can not be selected, it will
be the same as the name of the project. The export of the following files is
supported:

1. ST

2. IL

3. SFC

4. Declarations for global variables

5. Declarations for direct global variables

The export of the following files is currently not supported:

1. Ladder

2. FBD

3. CFC

4. Files with user defined data types

5. Files for OPC variables

6. Subdirectories

7. Files in subdirectories

8. Non-OpenPCS files (e.g. PDF, DOC, ZIP, etc.)

For import, use " Project->XML-Import...". Select the XML file you want to import
and thereafter choose a directory where to create a new project to contain the
imported files.

To create a backup of your projects, it is recommended not to use the XML export
function, because OpenPCS has its own backup function. Use Project->Backup...

25 / 297

OpenPCS Programing System

A Quick Tour through OpenPCS

to create a backup. Select where to save the backup file (.BAK). You can restore a
project by using Project->Restore... and selecting the .BAK file you want to
restore.

The OpenPCS backup function saves all files within a project.

Remark: SFC files created with an OpenPCS version earlier than 5.2.0 must be
resaved with a current OpenPCS version, because since 5.2.0 OpenPCS uses a XML
file format for SFC files.

1.6.4 About this manual

This manual is organized in 4 main chapters:

Chapter 1 you have already read, gives a short introduction into the most common
features of OpenPCS. If you have never used OpenPCS before, be sure to read this
chapter.

Chapter 2 details on all OpenPCS tools, starting with all the different editors, plus
the compiler and all not so visible tools. Read this to get an overview over features
tool by tool.

Chapter 3 gives in-depth information on some Advanced Topics, most of these
affecting more than one of the tools. Read this to get background information and
an in-depth understanding of how to make best use of OpenPCS.

Chapter 4 is the Reference, find all keywords, functions of OpenPCS, all compiler
messages and warnings plus many more items listed in alphabetical order here. Use
this chapter to quickly locate pieces of information.

The index will help you find all the information. The user manual - printed or in
electronic PDF format - has the same contents as the electronic online help. So if
you can't find what you are looking for in the manual, try using the search function
in the help file.

1.6.5 More Information

This is a user manual for the software OpenPCS only, not a training guide. If you
need more information, we recommend to consult the installed user manual. For
further reading:

1. Programming Industrial Automation Systems, by Karl-Heinz John and Michael
Tiegelkamp, available in German ISBN 3-540-66445-9, English ISBN3-540-67752-6,
and Chinese

2. infoteam Software, producer of OpenPCS, does offer on-site training courses on
OpenPCS, IEC61131-3, Motion Control, Real-Time programming and related issues.
Contact info@infoteam.de for pricing and availability.

Note: Please consider the homepage www.infoteam.de for further reading and
additional downloads.

26 / 297

OpenPCS Programing System

OpenPCS Tools

2 OpenPCS Tools

2.1 OpenPCS Framework

2.1.1 OpenPCS Framework: Introduction

The OpenPCS Framework hosts most of the tools of OpenPCS. Generally, the
OpenPCS Framework will look similar to the following:

The project is shown in the Project-Browser on the left side. The editor-pane is
located in the centre. Most editors will use split screen technology to edit
declarations in the upper pane and instructions in the lower pane. While declarations
look the same for all programming languages, instructions vary widely. The OpenPCS
Framework can host many files at the same time.

Diagnostic messages will be shown in the output window at the bottom.

2.1.2 Output Window

The output window is located at the bottom of the OpenPCS Framework and used
to display diagnostic messages.

27 / 297

OpenPCS Programing System

OpenPCS Tools

2.2 Browser

2.2.1 Browser: Introduction

The Project-Browser is the File Manager of OpenPCS. Using the Browser, you will
organize your work into files and projects. From the Browser, you will create and
edit files, compile, download and monitor your application:

The Browser user interface consists of four different windows (panes):

1. The File-Pane

2. The Resource-Pane

3. The OPC-I/O-Pane (optional)

4. The Library-Pane

5. The Help-Pane

2.2.2 Browser: Overview

2.2.2.1 File-Pane

The File-Pane contains a directory-tree with all your source files, collected under the
current project (1). These are the files that you write yourself, with one of the

28 / 297

OpenPCS Programing System

OpenPCS Tools

editors of OpenPCS, or with different applications. All directories (2) and files (3)
under the current project-path are shown.

2.2.2.2 Resource-Pane

The Resource-Pane contains the instance tree, named "Configuration". It shows
your controllers as resources (1), the tasks running in these controllers (2), the
instances of functions and function blocks available within these, and all variables
(3) defined in these. The active resource is shown with a green Button.

In the instance tree, there are only "links" to files and objects defined in the File-
Pane: Tasks are referencing POUs of type PROGRAM, global variables are referencing
global declaration files etc.

29 / 297

OpenPCS Programing System

OpenPCS Tools

2.2.2.3 OPC - I/O-Pane

The OPC-I/O Pane contains the tree of locally available OPC-DA address spaces.

On the root level (1) it lists all the OPC-DA servers currently registered on the
working PC. Underneath the root level you can find several layers of nested OPC
folders (2) structuring the address space of the selected OPC-DA server. Finally, as
leafs in the tree, there are the OPC-Tags (3) representing the I/O values of the
OPC-DA server.

Since using the OPC-I/O Pane only makes sense for targets supporting OPC-I/O, you
can enable or disable the display of this pane via the "Extras -> Browser Options..."
dialog box.

Note:Non-local OPC-Servers are currently not supported. The infoteam OPC Server
(infoteam.PadtOpcSvrDA) is not available in this list.

2.2.2.4 Library-Pane

The Library-Pane (Lib) contains a tree with all installed libraries of the project. You
can install new libraries with Project -> Library->Install New...

30 / 297

OpenPCS Programing System

OpenPCS Tools

You can use a library in a project by selecting it and choosing Project -> Library-
>Use in current project. The libraries that are currently used in the project are
shown with a red symbol.

2.2.2.5 Help-Pane

The Help-Pane contains help-topics.

31 / 297

OpenPCS Programing System

OpenPCS Tools

2.2.3 Projects

2.2.3.1 Create new project

If you have opened OpenPCS, you can start with the work. The first step is the
creation of a new project. Select Project-> New..., or press the respective button

in the toolbar.

Please note:

1. The name of an OpenPCS project should not contain blank (space) characters or
special characters. Plus, for easy updates, it is recommended that you store your
application separate from OpenPCS. To give an example, C:\PROJECTS is a good
location to store your projects.

2. A subdirectory, which has the same name as your project, will be created
automatically at the location you have entered. This directory contains all files
which belong to your project.

2.2.3.2 Check project consistency

If you have any problems with your project, OpenPCS supplies you with the Project-
>Check ... dialog. It looks automatically for inconsistencies in the project files and
tells you which are inconsistent enabling you to open them. The Project-
Consistency-State-window has four buttons:

1. Repair: Fixes a POU name inconsistency.

2. Open All: Opens all files, which are currently shown in the window

3. Open: Opens a singe file which was previously selected in the window

4. Close: Closes the Project-Consistency-State-window

The main reasons for inconsistency in project files are, on the one hand, obsolete
POE files (e.g. the POE is older than the ST file), and on the other hand, missing
POE files (to re-check for these inconsistencies, close the window and go to
Project->Check ... again).

Opening, manually repairing the syntax and saving them again might repair them.

Note: This tool looks primary for inconsistencies and not for syntax errors.

2.2.3.3 Open Project

You have three possibilities to open a project:

In the "File"-menu: Here you find under the item "Recent Projects" a list of the last
opened projects; the file, which you are looking for, could be contained in this list.

By the toolbar: Click on the button "Open Project".

By the menu: Click on " Project ->Open..." in the main menu.

Select the desired project in the dialogbox or look for it in the folders. The project
files have the suffix ".var".

2.2.3.4 Import/Export

It is possible to export your project to a PLCopen standard file with Project-

>Export and to import one with Project->Import.

32 / 297

OpenPCS Programing System

OpenPCS Tools

Note: The current version of OpenPCS supports only exporting/importing of POE, ST,
SFC and MAK-files and the ENV folder.

2.2.3.5 Search within project

All files, which are embedded in the current project, can be searched via Project-
>Search in Files.... The result is given in the output window.

Double-clicking a result will open the document in the editor at the according
position.

2.2.3.6 Refresh project information

Project -> Refresh project information refreshes the project information and
writes the project internal newly. Thus e.g., prototypes are newly read in and
libraries are refreshed.

2.2.4 Files

2.2.4.1 Creating new files

You create files with OpenPCS from within the OpenPCS Framework. Select File->

New to see the many choices:

POU for programs, function blocks and functions, the basic code blocks defined by
IEC61131-3. For each of these, you have the choice between the programming
languages that come with OpenPCS, as far as appropriate.

Declarations for creating resource global, direct global, type and OPC variable
declaration files.

Resources for creating new Resources

In Projects you find template projects with sample configurations.

In Other you find folders, GWX-files and watchlists.

Note: It is possible to find some other template files (or structure) there, depending
on your OEM manufacturer.

2.2.4.2 File Operations

With the File->File submenu you are able to

1. Move a file to another directory

2. Copy a file

3. Rename a file

4. Import a file from another project/location

5. Export a file to another project/location

Note: The action belongs to the file selected in the browser.

2.2.5 Resources and Tasks

2.2.5.1 Resources: introduction

In general, a resource is equivalent to a PLC or a micro controller. A resource
definition consists of a name for identification, the hardware description, i.e.

33 / 297

OpenPCS Programing System

OpenPCS Tools

Information about the properties of your PLC which will be used by OpenPCS, and a
connection name, i.e. Information about the kind of communication between
OpenPCS and the control system.

A resource maintains a list of tasks which are to be run on the control system.

2.2.5.2 Create resource

When creating a new project, OpenPCS will define one resource. If you want to
create additional resources click on File-> New... In the following dialog-box go to

"Others" and choose "Resource".

Press OK and the new resource will appear in the Resource-Pane.

2.2.5.3 Edit resource

To edit a resource, right-click on it and choose "Properties" in the context-menu.

A dialog-box will open, where you can change the following properties:

Under "Hardware Module", select the configuration file corresponding to the
controller you are using. This configuration file should have been provided by the
vendor of your controller. To use the windows simulation SmartSIM, use "SmartSIM".

Under "Network Connection", select the communication connection to connect to
your target. Use PLC-> Connections to define new connections or to see or modify

the properties of connections defined. The network connection is pre-selected as
"Simulation" to work with the PLC-Simulation of OpenPCS.

Check "Enable Upload" to pack the sources of your application onto the target. This
is helpful if at the end of debugging you want to save the project on the controller
for later use by other service personnel.

"Generate Mapfile": after generating the code three text files will be created in
which you find linker information. These files will be saved in the resource directory
named "Pcedata.txt", "PceVars.txt" and "PceSegs.txt". Some other features of
OpenPCS (GetVarAddr) need this feature to be enabled, so you better do not
disable it without good reason.

For a description of optimization settings, see Optimisation Settings in Advanced
Topics.

34 / 297

OpenPCS Programing System

OpenPCS Tools

2.2.5.4 Add Task

In general, a task is equivalent to a program plus the information how the program
can be executed. The definition of a task consists of the name, the Information
about the execution of the task and a POU of type PROGRAM which should be
executed in this task.

To add a task, mark the program you want to create the task of, and choose PLC->

Link to resource.

After adding of the task, you can double-click it in the Resource-Pane to change the
task specifications.

Note that the task name depends on the program name, and can't be changed. To
complete the task definition, you must specify the information, how the task can be
executed: Cyclic , Timer controlled , Interrupt controlled. Task type, priority and
time control the execution of this task and in co-operation with other tasks. To do
this, right-click on the task and choose "Properties". For more information, see
Multitasking.

2.2.5.5 Active Resource

With every OpenPCS project, there may be many "resources" , see the Advanced
Topics section for how to best work with multiple resources. However, in order to
make OpenPCS more user friendly and easier to use, there is at any time exactly
one active resource. In the Browser, this will be shown with a green icon.

Many user commands - like compile, go online, download etc. - implicitly use the
"active resource". So even when having many resources in one project, you will not
have to specify which resource to use with these commands. If you want to use a
different resource than the one currently active, right-click this other resource and
select "set active" from the context menu.

2.2.6 OPC - I/O

2.2.6.1 OPC - I/O: Introduction

With the OPC-I/O browser pane you can browse the tree of locally available OPC-DA
address spaces and use it to assign any leaf item of the tree to a global variable
definition in the assignment editor.

Thus you are able to use any values supplied by an OPC-DA server as a global input
or output variable within your PLC program.

2.2.6.2 About OPC

OPC means OLE for Process Control and is a series of standards specifications
created by the OPC Foundation.

OpenPCS currently supports the Data Access Specification (OPC-DA) Version 2.0

For further information on OPC, please consult the web page of the OPC Foundation
at

http://www.opcfoundation.org

http://www.opcfoundation.org

35 / 297

OpenPCS Programing System

OpenPCS Tools

2.2.7 Compiler

2.2.7.1 Build active resource

Build only those parts of your resource that have changed since last build due to
modifications. Invoked by PLC->Build active resource.

OpenPCS will automatically build anything as necessary when going online, but it is
good practice to recompile from time to time when programming to detect errors as
early as possible.

2.2.7.2 Rebuild active resource

To rebuild all tasks of your active resource choose PLC->Rebuild active resource
from the menu. This will completely recompile all parts of the active resource.

2.2.7.3 Rebuild all resources

Like "Rebuild active resource" but will rebuild all - active and inactive - resources.

2.2.8 Online

2.2.8.1 Going Online

To get into online mode, either double-click the resource you want to go online with,
choose PLC-> Online or press the "go-online" button in the toolbar to go online with

the active resource.

Repeat this to go offline again.

2.2.8.2 Download

OpenPCS will automatically prompt whenever a download seems necessary. If you
like, you can at any time invoke a download yourself by using PLC-> PC->PLC

(Download).

it is possible to download the project during runtime (without stopping the PLC), If
the current project already is on the resource. But so the download is not
persistent. This mostly matches the Online Edit functionality.

If your PLC supports the Save System feature, we offer you the ability to
persistently download your project without stopping the PLC.

Note: The usual download mode, stopping the PLC, is persistent anyway.

2.2.8.3 Watching variables

To add variables to the watch list of the Test&Commissioning, open the resource
tree of your application and double-click any of the variables:

36 / 297

OpenPCS Programing System

OpenPCS Tools

2.2.8.4 Starting Online Editor

Going online opens all your open POUs in online mode. To start the Editor in online
mode for specific function block instances of your application, open the resource
tree and locate the instance that you wish to monitor and double-click it.

OpenPCS supports "online edit", for further information see Online Edit in the user
manual.

Note:

Do not confuse an instance of your code (located under "Configuration" in the
Browser) with the source code of that block, located under "Project Files" in the
Browser.

2.2.8.5 Hardware information

This menu is only available in the online-mode. You get information about the used
hardware.

Mark the active resource and select the menu item PLC->PLC info.

2.2.8.6 Resource information

This menu is only available in the online-mode. The project name, the resource
name, and the version number (which is internal created and assigned to a specific
compilation) are displayed.

37 / 297

OpenPCS Programing System

OpenPCS Tools

You can display the resource info by marking the resource and selecting the menu
item PLC->Resource info.

2.2.8.7 Upload

OpenPCS supports uploading of projects from your controller to your PC. Therefore,
it is not necessary to have the source code of your project when updating your
PLC, because you can upload the project.

To enable this feature, the "enable upload" box has to be checked in the resource
properties before compiling and downloading a resource to the PLC as shown in the
figure below:

For uploading the project, make sure that the resource properties are set as
described above, and not connect to any PLC. Then go to PLC-> PC<= PLC.

Now you have to choose the connection to the PLC for uploading the project.

38 / 297

OpenPCS Programing System

OpenPCS Tools

After that, you will be asked, where to save the project (make sure that the project
doesn't exist already):

The uploaded project will be opened automatically.

2.2.8.8 Erase

This is only available in online mode. To remove the entire program from the PLC
select PLC->Erase from the menu or click the corresponding button in the toolbar.

Note: The exact reaction varies depening on the implementation of the OEM
manufacturers of your PLC. If you want to know more about it, ask them.

2.2.9 Other Browser Features

2.2.9.1 Resource global variables

In OpenPCS, there are two kinds of global resource variables:

Global variables: these are variables without hardware-addresses, e.g. for
intermediate results.

Direct global variables: these are variables with direct hardware-addresses together
with the IO-declarations. These represent the interface to the hardware.

To create a new file with resource global variables, select File-> New->

Declarations-> Global or File-> New-> Declarations-> Direct Global . Edit these

files, and link them to the resources you want to use them with.

2.2.9.2 Type definitions

By default, there is a file to hold user defined data types (usertype.typ) with each
OpenPCS project. To have your own data types, edit this file or create respective
files of your own. To use those data types with any resource, add the file to the
respective resource.

2.2.9.3 Add files

OpenPCS allows to add any kind of file to OpenPCS projects. Use File->File-

>Import... and select the file of your choice. Beside files you have written with the

editors of OpenPCS (IL, LD, FBD, ST, CFC, SFC) it is possible to import type
definition and type declaration files as well as resources. Further more it is
practicable to register files in one project, even if they were created by other
programs, for example by: Microsoft Word, Microsoft Excel, Microsoft Project,
AutoCAD.

39 / 297

OpenPCS Programing System

OpenPCS Tools

Select the desired file type in the popup menu and open the corresponding
directory. There you can select the file you want to copy. A multiple selection is
possible when you keep pressing the left mouse button, the "Shift"- or the "Ctrl"-key.
 This files will be copied in the current directory of the browser and can be edited
by a double click.

2.2.9.4 Browser Options

With Extras->Options->Browser, set Browser Options:

General:

"Show only OpenPCS file types": If the checkbox is filled, only OpenPCS file types
are shown by the browser. All other files are hidden except of the types listed in
"Additional file types".

"Don't show SFC variables" If the checkbox is filled, all variables with "_" as the
first character are hidden in the resource tree.

"Don't show Tab captions" If the checkbox is filled, the tabs of the browser panes
have only an icon and no caption.

Extended Settings:

"Enable OPC Browserpane" This checkbox is used to hide or show the OPC
Browserpane.

"Enable OPC Configuration Compiler" This checkbox is used to generate
automatically the OPC database.

"Enable GWX Embedded in OpenPCS" This checkbox is used to enable opening
GWX files in the OpenPCS Framework.

"Save Watchlist" This checkbox is used to enable auto saving of the watchlist
when going offline

"Display Line Number in Text Editor" This checkbox is used to enable display of
line number in text-based editors.

Compiler:

"Compiler output level" This drop down menu is used to limit the amount of
compiler error messages (for most details use 0).

"Warn if less than given percentage of PLC memory is left for resource" This
checkbox is used to enable warnings about low memory of the PLC with the current
resource. The minimal free memory can be set as percentage.
Note: this option is hardware specific. It depends on support of OEM.

"Warn if less than given percentage of max. segment size is left" This
checkbox is used to enable warnings about large segments in the current resource.
The minimal free memory in segments can be set as percentage.

"Use input list as parameter" This checkbox is used to set the compiler to pass
input file list in parameter. Default behaviour is to read the input file list in a file.

2.2.9.5 CFC/FBD Options

Set the view options of the CFC and FBD editor via Extras->Options->CFC Editor.
Changes show effect after new opening of a CFC or FBD file.

Block width in %: changes the width of a function block. 100 corresponds to the
default width. The width may be set between 1 and 1000.

40 / 297

OpenPCS Programing System

OpenPCS Tools

Margin width in %: changes the width of the margin. 100 corresponds to the
default width. The width may be set between 1 and 1000.

2.2.9.6 Setting fonts and color

With the Extras->Font/Color dialog it is possible to set the appearance of the text
editors used by the IL, ST, SFC, Ladder and FBD editors.

Note: The current version of OpenPCS provides only setting the font and size.

2.2.9.7 Custom Tools

The Browser provides one button in its toolbar to start an OEM specific tool.

OEMs of OpenPCS can configure OpenPCS to start any particular tool with this
button. By default, the licence Editor will be launched.

2.2.9.8 Exclude from Project

It is possible to exclude subfolders from the project. Exluded folders are ignored in
your project. You cannot navigate in excluded folders. This can be used e.g. to
exclude subversion folder or documentation folder etc.

To exclude a folder from your project, choose Exclude from Project in the context
menu of the corresponding folder.

2.3 Catalog

2.3.1 Catalog

The Catalog is a tool to insert function blocks to your programs. The Catalog is
visible below the project browser. If it is not there, go to View->Catalog.

With the catalog, you can insert function blocks to your programs by using drag'n
drop.

A double-click on an entry within the table opens the help on the function block.

Using the Catalog, you don't have to write the names or go through the menues to
insert a function block

41 / 297

OpenPCS Programing System

OpenPCS Tools

2.3.2 Variable Catalog

The Variable Catalog is part of the Catalog. All global variables are shown in the
Variable_Catalog. You can see their names, data types, addresses, comments (if
available) and their scopes. At the moment the used flag is only supported by the
CFC-Editor.

The Variable_Catalog enables you to insert global variables to your program by
drag'n drop and also to filter global variables. When using drag'n drop, typos will not
happen any longer. You can filter names, data types and also scopes, to see which
variables are available and to get known the data type without looking for the
definition.

Just insert the name and you will see all variables that fit to your input. You can
also use asterisks (e.g. write "*A*" to the name field and you will get all variables
which have an "A" in their names) and also use a combined filtering: First enter a
name and then change the dataype.

When you create new global variables, they will not automatically be shown after
saving the global variables file. Use a right-click into the variable grid and select
refresh to update the Variable_Catalog.

42 / 297

OpenPCS Programing System

OpenPCS Tools

2.4 Declaration Editor

2.4.1 Declaration Editor: introduction

The declaration editor is hosted by the OpenPCS framework. Enter declarations as
defined by IEC61131 here.

IEC61131-3 requires all data objects to be declared as variables. A set of different
declaration sections is available to define variables on different scopes. IEC61131-3
comes with a set of predefined data-types, the so called elementary data types.
And, there are some means to define user-defined, so called derived data types,
using structures, arrays and enumerations.

With most variables, storage is assigned by the compiler, without any programmer
activity. For inputs, outputs, markers and potentially more types of variables, the
programmer may specify a memory location, using directly represented variables.

Declarations are entered in text-form just as defined by IEC61131-3.

2.4.2 Declaration Sections

Variables are declared in different sections of variables, so-called declaration blocks.
A declaration block starts with a keyword and ends with END_VAR (e.g.,
VAR_GLOBAL ... END_VAR).

VAR_INPUT: If a variable block should only be read inside a POU, you must declare
this variable as input-variable. It thereby isn't allowed to modify this variable in this
POU. An input-variable can be used for the parameter transfer in a function or
function block.

VAR_IN_OUT: An input-/ output-variable is accessed under the same name by a
function block. The variable gets a reference (pointer) to the transferred variable
and its memory location during the parameter transfer by the block-call. Because a
write-operation has a direct effect to the content of an In_Out-variable, it isn't
allowed to use a write-protected type for the transferred variable as INPUT-variables
or variables with attribute CONSTANT.

VAR_OUTPUT: The Output-variables are declared in the function block that use
them for the return of values. The calling POU can access them.

VAR_GLOBAL: A variable should be declared as global variable in the POU
"program" if this variable should be valid in this POU and in the function blocks called
by this POU. This variable must be declared as external variable (VAR_EXTERNAL) in
all function blocks which intend to use this variable.

VAR_EXTERNAL: If a declared global variable will be used inside a function block,
this variable must be declared as external variable inside this function block.

VAR: A local variable is only valid inside the POU in which it was declared. The
declaration of local variables can be supplemented by the attributes "RETAIN" or
"CONSTANT", or by an address.

TYPE : The keyword "TYPE" is used for declaration of user defined (derived) data
types with local scope in the POU-types "program" and "function block", or with
global scope in the type definitions.

According to the POU-type only certain variable-sections can be used:

A POU of type Program may use Type, Local, Global and External

A POU of type Function block may contain Type, Input, Output, In_Out, Local and
External

43 / 297

OpenPCS Programing System

OpenPCS Tools

A POU of type Function max use Type, Input and Local.

CONSTANT may be used as a modifier to the keyword (e.g. VAR_GLOBAL
CONSTANT) to declare all variables declared in this section as not to be modified by
the application. The compiler will issue a warning if such a variable is used in a
context where it will or could be modified.

RETAIN may be used as a modifier to the keyword (e.g. VAR RETAIN) to declare all
variables in this section as retentive, i.e. these variables will not be re-initialized on
hot- or warm-start. If the target system supports retentive memory, this will result
in the variable keeping their values over power failures.

OPC: The var qualifier OPC allows a user, to mark dedicated variables, to become
part of the variable table, already within the declaration editor of OpenPCS. It can
be used within the declaration of the following sections:

VAR (local variables)

VAR_GLOBAL (resource and task global variables)

VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT (input and output variables)

VAR_EXTERNAL (external variables)

Hereby these sections can be part of a program, function block or function.

Supported are the following data types of variables:

USINT, UINT, UDINT, SINT, INT, DIN, BOOL, BYTE, WORD, DWORD, REAL, LREAL
STRUCT, ARRAY

Not allowed are declarations of instances of function blocks (i.e. InstanceFB1 :
FB1;).

The var qualifier "OPC" can be mixed with the other var qualifiers "CONSTANT" and
"RETAIN". This allows declarations like:

VAR CONSTANT OPC

 var1 : INT;

END_VAR

Supported is the following syntax:

CONSTANT OPC

OPC CONSTANT

RETAIN OPC

OPC RETAIN

Not allowed, since "RETAIN" and "CONSTANT" cannot be mixed, are sequences like
"CONSTANT RETAIN OPC".

The variable table provides symbol information in the runtime system. This is used
by the OPC server SmartLINK to provide OPC tags.

2.4.3 Structure of a Declaration Line

A declaration line has the following form, where optional parts are set in [square]
brackets, and expressions are set between <sharp> brackets:

<variable name> [AT <Address>]: <Type> [:= <Initial value>]; [(* <Comment> *)]

First the variable name is given, followed by a colon. Behind the colon is the type,
and eventually the hardware address introduced by the attribute "AT". Should the
variable have a definite value on start, this value will be given after a ":=". A line
ends always with a semicolon (;). The line can be commented, and comments are
set between (* and *).

Example:

44 / 297

OpenPCS Programing System

OpenPCS Tools

Expvariable1 AT %I0.0: BOOL; (* variable of type BOOL at the address
%I0.0 *)
Expvariable2 : BOOL := TRUE; (* variable of type BOOL with the start
value TRUE *)

An exception is the direct address without variable names (these variables will be
referenced by the address):

AT <Address> : <Type> [:= <Initial value>]; [(* <Comment> *)]

In this case the variable name is omitted, therefore the address statement is not
optional.

Example:

AT %I0.0 : BOOL (* At the address %I0.0 is a data of type BOOL *)

The second way of addressing should be avoided for the sake of clarity, because
the meaning of the variable relates to the variable name mostly. This is important if
other people should read or edit this POU.

Some Examples:

Variable with no initial value: InterMedSum : INT;

Variable with initial value: Pieces : INT := 5;

Directly represented variable without name and with no initial value: AT %Q0.0 :
BOOL;

Directly represented variable with name and with no initial value: Valve AT %Q0.2 :
BOOL;

Example function block: Counter1 : CTU;

Note:

1. Initial Values can only be given as literals. It is not possible to use other variables
to initialize variables during declaration.

2. The significant length of a variable name is 64

3. It is not possible to initialize variables in process image

2.4.4 Elementary Data Types

keyword name range size in bits

BOOL "Boolean" 0 (FALSE), 1 (TRUE) 1 or 8

SINT "Short Integer" -128 to +127 8

USINT "Unsigned Short
Integer"

0 to 255 8

INT "Integer" -32 768 to +32 767 16

DINT "Double Integer" -2.147.483.648 to
+2.147.483.647

32

UINT "Unsigned
Integer"

0 to 65 535 16

UDINT "Unsigned Double
Integer"

0 to 4.294.967.295 32

REAL "Real number" +/-3.4E+/-38 32

45 / 297

OpenPCS Programing System

OpenPCS Tools

LREAL "Long real
number"

+/-1.8E+/-308 64

TIME "Time duration" t#-596h31m23s648ms
to
t#596h31m23s647ms

32

DATE "Day, Month,
Year (only)"

d#0001-01-01 to
d#11759222-01-20

32

TIME_OF_D
AY

"Time of day
(only)"

tod#00h00m00s000ms to
tod#23h59m59s999ms

32

DATE_AND_
TIME

"Date and Time" 64

STRING "Character String"

length of string plus
2 bytes

WSTRING "2-byte-character
String"

length of wstring
plus 2 bytes

BYTE "Sequence of 8
bits"

0 to 255 8

WORD "Sequence of 16
bits"

0 to 65535 16

DWORD "Sequence of 32
bits"

0 to 4294967295 32

See also Constants

2.4.5 Directly represented variables

Directly represented variables are those variables that are mapped to a certain
input, output or memory address specified by the programmer. The keyword AT is
used to declare this, and the address is specified in a string starting with a percent
sign (%).

Example: directly represented variables

Declaration of a directly represented variable with and without a symbolic name

PROGRAM dirvar1

VAR

AT %I0.0 : BOOL;

MyInput_1 AT %I0.1 : BOOL;

MyResult : BOOL;

END_VAR

LD MyInput_1

AND %I0.0

ST MyResult

END_PROGRAM

It is strongly recommended to use symbolic names for directly represented variables,
as this eases rewiring to different addresses. Changing address I0.0 without usage
of symbolic names means that you have to do the change in both sections,

46 / 297

OpenPCS Programing System

OpenPCS Tools

declaration and program. With usage of a symbolic name, here "MyInput_1" you just
change the address e.g. to "I0.1" within the section of declaration.

Note: Directly represented variables may only be defined in POUs of type "program".

OpenPCS does not support the mapping to a physical PLC address (using AT%) for
variables of types ARRAY, STRUCT and STRING.

If directly represented variables are declared global within the program POU, they
may be used as external variables within an invoked function block. An alternative is
to pass the variables to the function block as VAR_IN_OUT parameters. This is
possible however for PCS outputs, markers and communication files RD, SD.

OpenPCS supports the following directly representable addresses:

I: Digital-Input

Q: Digital-Output

M: Marker

Which of these addresses are available depends on the hardware of the project.

As "size", these symbols may be used:

X, or nothing: (Bit), Size=1 Bit; Example: %IX0.0 or %I0.0

B (Byte), Size=8 Bit; Example: %IB0.0

W (Word): Size=16 Bit; Example: %QW0.0

D (Double Word) Size=32 Bit; Example: %ID0.4

L (Long Word) Size=64 Bit; Example: %IL0.0

2.4.6 Derived datatypes

Derived data types are defined by the manufacturer of your controller, or by
yourself. These new data types are defined using keywords TYPE ... END_TYPE
based on the elementary data types. After definition, they may be used just like
predefined or elementary data types.

Example: Derived data types

In the following sample code, a new data type is defined to represent a "Pressure"
value

TYPE
Pressure : INT;

END_TYPE

VAR
PreValvePressure: Pressure;

END_VAR

It is possible to combine different data types in a derived data type. Arrays and
structs can be integrated as well. The following example defines a struct A. The
struct itself consists of another struct called B and an integer array of size 5. Three
new data types are derived within B: Stationname as string and Value1, Value2 as
doubles.

47 / 297

OpenPCS Programing System

OpenPCS Tools

TYPE
 A :
 STRUCT
 B :
 STRUCT
 Stationname : STRING
 Value1 : DOUBLE
 Value2 : DOUBLE
 END STRUCT
 Arr_5_INT:ARRAY [1..5] OF INT;
 END_STRUCT
END_TYPE
VAR
 Data1: A;
END_VAR

2.4.7 Declaration of array datatypes

Arrays contain multiple elements of the same data type. The keyword ARRAY is used
to define an array. Each element of an array can be an elementary variable.

Example: Array data type

Type Arr1 will hold five elements of type INT

PROGRAM feld
TYPE
 Arr_5_INT:ARRAY [1..5] OF INT;
END_TYPE

VAR
 Arr1 : Arr_5_INT;
END_VAR
 .

END_PROGRAM

2.4.8 Declaration of structured datatypes

A structure holds multiple elements of same or different data types, elementary.
Keyword STRUCT is used to define a structure. The individual elements of a
structure are called members of that structure, and are accessed by writing the
structure, followed by a dot and the name of the member.

Example: Structured data type

PROGRAM struktur

TYPE
 RobotArm :
 STRUCT
 Angle_1 : REAL;

 Angle_2 : REAL;

 Grip: BOOL;

 Length: INT;

END_STRUCT;
END_TYPE

VAR
 Robot1 : RobotArm;

 Robot2: RobotArm;

48 / 297

OpenPCS Programing System

OpenPCS Tools

END_VAR

LD Robot1.Grip

.

.
END_PROGRAM

2.4.9 Declaration of enumeration datatypes

A variable of an enumerated data type can take any one of a fixed list of values.
The list of legal values is listed in the declaration of the enumeration data type,
separated by commas. An initial value may be given after the closing ")"; if no initial
value is given, the first value will be the default.

Example: Enumeration data type

Data type TrafficLight can be "red", "yellow" or "green". "Yellow" shall be the
default.

TYPE TrafficLight:
(red,
yellow,
green):= yellow;

END_TYPE

VAR
MainRoad : TrafficLight;
CrossRoad : TrafficLight;

StopCar: BOOL;

END_VAR

In the instruction part of that POU, the defined enumerated values can be used:

Example: IL

LD MainRoad
EQ red
ST StopCar

2.5 Assignment Editor

2.5.1 Assignment Editor: Introduction

The Assignment Editor is hosted in the OpenPCS framework. It is displayed as a
document editor window.

49 / 297

OpenPCS Programing System

OpenPCS Tools

It is used to assign global variables to I/O ports, such as a value tag on an OPC-DA
server.

The Editor is realised as a grid table, each row representing a variable assignment.
The meaning of the columns is described as follows:

Name Valid name of the IEC variable to be assigned

IEC-Type IEC type of the variable to be assigned.

Address Address of the external data item to be assigned. The format depends
on the type of the item to be assigned. In case of OPC, this column
will contain the fully qualified OPC tag name.

OPC Type OPC specific type of the tag to be assigned.

R/O When checked, indicates that the variable shall be declared as read-
only. When unchecked, the variable is readable and writable.

Comment Optional textual comment on the assignment. It is just stored in the
assignment document but not used by the compiler and other tools.

You can either manually enter the names of the OPC-Tags in the "Address"-Field or
use the OPC-I/O Browser pane to browse the address space and assign the tags
wanted using the menu items Edit -> Add tag or Edit -> Assign Tag.

Edit / Add tag (or double-click): Inserts a new declaration line into the assignment
editor for the OPC tag currently selected in the browser pane. If this OPC tag is
already defined within the assignment editor, the definition line is made the current
line in the assignment editor.

Edit / Assign tag: Assigns the tag from the browser pane to the currently selected
line of the assignment editor. This works only if exactly one line is currently
selected.

Using one of these functions, the OPC type of the assigned tag is automatically
determined and set to the "OPC Type" column. As the default IEC variable name, the
final component of the OPC tag name is used and can be changed by the user as
wanted. The IEC type of the variable has to be specified manually by the user.

2.6 IL Editor

2.6.1 IL Editor: Introduction

The IL-Editor is hosted in the OpenPCS framework. In the upper part of the IL-Editor,
enter the declarations of the POU. In the lower pane, enter IL instructions:

The IL-Editor supports bookmarks (to mark locations of interest for easy navigation
while editing a file) and Breakpoints.

50 / 297

OpenPCS Programing System

OpenPCS Tools

2.6.2 Structure of Instruction List

An IL-line has the following form, when optional parts are set in [square] brackets,
and expressions are set between <sharp> brackets:

[<Label>:] <Operator> <Operand1> [,<Operand2>,<Operand3>,...] [(* <Comment>
*)]

At the beginning is a label if the line represents a jump target. After that an
operator is placed followed by the operands and separated by commas. Comments
are enclosed by (* and *).

Example:

Start: LD a (* Load a in the register *)

ADD b (* Add b to the register *)

ST c (* store result to variable c *)

A call to a function block instance is done using operator CAL and CALC
respectively; the operand is the instance name, followed by arguments supplied in
parentheses:

[<Label>:] CAL/CALC <Instance name>(

 [<Input1>:=<Value1>,<Input2>:=<Value2>,...]

 |

 [<Variable1>:=<Output1>,<Variable2>:=<Output2>,...]

)

The parameter transfer consists of two parts. In the first part the parameters are
transferred to the function block by setting values to the INPUT- and IN_OUT-
variables respectively. The variables, which get no value, retain the value of their
last call and their initial value respectively. Separated by a "|" from the first part,
output parameters are specified.

2.6.3 Instructions in IL

For a list of all instructions supported in IL, please see the reference section,
Instruction List Keywords.

2.6.4 IL Editor Online

To debug and monitor code written in IL, use the IL Editor in monitor mode.

There are mainly three ways to debug and monitor IL code:

1. Use Breakpoints to stop execution, single-step through your code. Use this to
understand, follow and find problems in the logic flow of the application.

2. Move the mouse cursor over a variable and see a tiny "toolbox" appear,
displaying the variable's name, type and value. The value is permanently
updated. Use this to quickly examine the current value of different variables
within a region of your code, with or without stopping execution, at a breakpoint
or while single-stepping.

3. Use the watch list in the Test+Commissioning to monitor a set of variables, which
may be from any part of your applications. Use this to keep an eye on a set of
variables while examining different parts of your application's code.

51 / 297

OpenPCS Programing System

OpenPCS Tools

4. OpenPCS supports "online edit", for further information see Online Edit in the user
manual.

2.7 ST Editor

2.7.1 ST Editor: introduction

The ST-Editor is hosted in the OpenPCS framework. In the upper part of the ST-
Editor, enter the declarations of the POU. In the lower pane, enter ST instructions:

The ST Editor supports bookmarks (for marking lines of interest while editing a file)
and Breakpoints.

2.7.2 Instructions in ST

Code written in ST is a sequence of ST-instructions. ST-instructions are terminated
with a semicolon.

Linefeeds are not significant, i.e. more than one instruction can be on one line, and
one instruction can use one or more line.

For a list of all instructions supported in ST, please see the reference section,
Structured Text Keywords.

By pressing TAB twice after keywords FOR, WHILE, REPEAT, IF and CASE, template
ST code is inserted. It looks like:

2.7.3 Expressions in ST

Operands known in ST are:

Literal variables, e.g. 14, "abc", t#3d_5h

Variables, e.g.: Var1, Var[2,3]

Function Call, e.g.: Max(a,b)

52 / 297

OpenPCS Programing System

OpenPCS Tools

While operators are parts of ST-language, expressions are constructions which must
be constructed by aid of ST-elements. Operators need operands to build
expressions.

Parentheses ()

function call

Exponentiation **

Negation -

Complement NOT

Multiplication *

Division /

Modulo MOD

Addition +

Subtraction -

Comparison <, >, <=, >=

Equality =

Inequality <>

Boolean AND &, AND

Boolean
exclusive OR

XOR

Boolean OR OR

2.7.4 Comments in ST

Like all modern programming languages, ST supports comments. A comment is any
text included between "(*" and "*)", e.g.

 (* Comments are helpful *)

The compiler will ignore comments when generating executable code, so your
program will not accelerate in any way if you omit comments. Comments may span
multiple lines, e.g.

 (* This comment
 is long and
 needs more than one
 line

 *)

2.7.5 ST Editor Online

To debug and monitor code written in ST, use the ST Editor in monitor mode.

There are mainly three ways to debug and monitor ST code:

1. Use Breakpoints to stop execution, single-step through your code. Use this to
understand, follow and find problems in the logic flow of the application.

2. Move the mouse cursor over a variable and see a tiny "toolbox" appear,
displaying the variable's name, type and value. The value is permanently
updated. Use this to quickly examine the current value of different variables

53 / 297

OpenPCS Programing System

OpenPCS Tools

within a region of your code, with or without stopping execution, at a breakpoint
or while single-stepping.

3. Use the watch list in the Test+Commissioning to monitor a set of variables,
which may be from any part of your applications. Use this to keep an eye on a
set of variables while examining different parts of your application's code.

4. OpenPCS supports "online edit", for further information see Online Edit in the user
manual.

2.7.6 Tooltips for structs and elements of structs

It is now possible to watch the whole structure information in any depth in the ST
Editor tooltips.

If the Editor is in the "Edit" mode, the struct and it's first level members will be
shown with data type information. In the "Online" mode, the values will be shown
behind the resolvable members.

2.7.7 AutoComplete / AutoDeclare

If a variable is typed, which is not declared, and CTRL-SPACE (RETURN in Ladder
editor) is used, the declaration dialog will appear.

If there is already a variable with the given name, nothing happens.

If a variable is typed, which is the first part of a declared one, the declared variable
will be inserted at the given position.

If there is a couple of variables available, a list will appear and the user can
navigate with UP-arrow and DOWN-arrow to the entry he wants. Pressing RETURN in
that case will insert the variable at the current position. Pressing ESCAPE will hide
the list and return back into normal edit mode.

2.8 Ladder Diagram Editor

2.8.1 Ladder Editor: introduction

The Ladder-Editor is hosted in the OpenPCS framework. In the upper part of the
Ladder-Editor, enter the declarations of the POU. In the lower pane, enter Ladder
instructions.

54 / 297

OpenPCS Programing System

OpenPCS Tools

2.8.2 Ladder Logic: introduction

The basic principle of Ladder Logic is currency flow through networks. Generally,
Ladder Logic is restricted to processing Boolean signals (1=True, 0=False).

A Network is restricted by so called margin connectors to the left and to the right
within the Ladder Editor. The left margin connector has the logical value 1 (current).
There are connections that conduct currency to elements (variables) that conduct
currency to the right hand side or isolate depending on their logical state. The result
of the procedure depends on the arrangement of elements and the way they are
connected (AND = serial; OR = parallel).

Networks consist of the following graphical objects:

Connections (horizontal or vertical lines, and soldered points).

Contacts, Coils, Control Relays

Function blocks and Functions

Jumps (Graphical elements for control flow).

2.8.3 Network

The instruction section of the Ladder Diagram Editor is subdivided into so called
networks, which help structuring the graphic.

A network consists of: Network label, Network comment and Network graphic.

Network label: Each network that may be a jump target from within another
network will automatically be assigned a preceding alphanumerical identifier or an
unsigned decimal integer. By default, networks will be numbered. This numbering of
all networks will be automatically updated whenever a new network is inserted. The
numbering simplifies finding a certain network an corresponds to line numbers of
textual programming languages.

Network comment: The Network Comment is represented as a square area in the
ladder diagram. To enter a commentary text, double click on this square. The
comment is always placed below the network label. Note that the first network
additionally contains a ladder diagram comment above the network label and the
network comment.

Network graphic: The network graphic consist of graphical objects, which may be
graphical symbols or connections. Connections transport data between graphical
symbols, which process the data at their inputs and transfer the processed data to
their outputs. Note that the connections may also cross.

2.8.4 Operators

Within a ladder diagram, the term operator designates the graphical objects
contact, coil and jump.

Contacts: A contact associates the value of an incoming connection with the value
of an assigned variable. The kind of association depends on the type of contact.
The result value will be transferred to the connection on the right hand side. There
are triggers and interruptors (The Boolean value of the variable will not be
changed).

Coils: Coils serve to assign values to output variables of networks. A coil copies the
state of the connector on its left hand side to its connector on its right hand side
without any changes. Furthermore, the coil saves a function of the state or the
transition of the left connector into a Boolean variable.

55 / 297

OpenPCS Programing System

OpenPCS Tools

Jump: Jumps manipulate the control flow of programs. They make it possible to
directly invoke certain networks in a defined order. When encountering a jump
operator, control flow continues at a different network. Thus, jumps are an
exception from the basic principle that networks are always processed in a top
down fashion.

2.8.5 Coils

The output variable is always situated to the right hand side of the network and is
connected to the right currency rail.

1. The result of the logical connection will directly be assigned to the output
variable.

2. The output variable will be assigned the negation of the result of the logical
connection.

3. The result of the logical connection will "permanently set" the output variable: If
the result of the logical connection is "1", the output variable will be set to "1".
If, however, the result of the logical connection is "0", this will have no
implications.

4. The result of the logical connection will "permanently reset" the output variable:
If the result of the logical connection is "1", the output variable will be set to "0".
If, however, the result of the logical connection is "0", this will have no
implications.

5. Jump operations manipulate control flow. With jumps, networks may be executed
only if certain conditions hold. Jumps may be conditioned by a binary combination
result, or unconditioned, i.e. obligatory. The jump target must always be the
beginning of a network, designated by its network label.

6. Return jumps stop program execution within the current POU, and continue at
the point where the POU was invoked from. Return jumps may be conditioned by
a binary connection result, or unconditioned.

2.8.6 Contact

There are two contact symbols for Boolean input variables:

56 / 297

OpenPCS Programing System

OpenPCS Tools

1. Left is the contact symbol for a variable that must have the value "1" to make
the corresponding Boolean connection true. If the variable is associated with a
physical address, the state "1" corresponds to a released interruptor or a pressed
trigger.

2. Right is the contact symbol for a variable that must have the value "0" to make
the corresponding Boolean connection true. If the variable is associated with a
physical address, the state "0" corresponds to a pressed interruptor or a released
trigger.

2.8.7 Control Relay

Control relays are contacts that are inserted in front of coils. Control relays may be
used as breakpoints in manual execution, for example. There can always be one
control relay before each coil only.

Insert-> Control Relay: Use this command to insert a control relay additional to
the logical symbol.

2.8.8 Functionblocks and Functions

To insert Function Blocks or Functions to a network, click on a connection and use
Insert -> Functionblock... or Insert -> Function... to insert it at this position. You
can then choose the desired block or function from a list of available
blocks/functions. Only predefined functions can be chosen.

Attention:

A function block: can only be added to a network if it satisfies the following criteria:

· The first input-parameter of the block has to be of type BOOL and has to have the
name "EN". If this parameter is set to FALSE in a network, the corresponding block
won't be started or even get parameters passed.

· The first output-parameter of the block has to be of type BOOL and has to have
the name "ENO". This parameter has to be set to TRUE if the block has worked
correctly and without errors.

2.8.9 Ladder Editor Online

When you have the Ladder Editor in monitor mode, it will automatically start
displaying live values of contacts, coils, function and function block inputs and
outputs as far as possible.

If the online editor can't get a value of a variable from the runtime system, it will
display "-!-".

Displaying values in the online editor of variable types, that use more than 4 bytes
(strings, arrays, structs), is not supported by the current version of the Ladder
Editor. To view them use the Test and Commissioning.

57 / 297

OpenPCS Programing System

OpenPCS Tools

OpenPCS supports "online edit", for further information see Online Edit in the user
manual.

2.8.10 Check over Variable

The Ladder Editor contains a comment check method, that marks comments if the
semantic of a program has changed. To mark comments that might be wrong,
OpenPCS pre-writes "[CHECK!]" to such comments. Then it's up to you to check if
these comments are still correct.

The reason therefore is that when using the ladder editor, it is possible to replace a
function (block) by a contact with a variable or vice versa. This changes the
semantic of the program and so the comments above the function (block) or
variable might be wrong.

To illustrate this, look at the following figures. Choose a function that you want to
be replaced by a contact with a variable. Select it with the right mouse button and
choose "Insert Variable" from the contex menu.

After replacing this function by a contact, the comment above the function is
changed. Now, there's pre-written "[CHECK!]".

58 / 297

OpenPCS Programing System

OpenPCS Tools

The main reason herefore is, that the semantic of the program has changed, but the
comment is still the same. This is a hint, to verify if this comment's still correct.

2.8.11 AutoComplete / AutoDeclare

If a variable is typed, which is not declared, and CTRL-SPACE (RETURN in Ladder
editor) is used, the declaration dialog will appear.

If there is already a variable with the given name, nothing happens.

If a variable is typed, which is the first part of a declared one, the declared variable
will be inserted at the given position.

If there is a couple of variables available, a list will appear and the user can
navigate with UP-arrow and DOWN-arrow to the entry he wants. Pressing RETURN in
that case will insert the variable at the current position. Pressing ESCAPE will hide
the list and return back into normal edit mode.

2.9 CFC Editor

2.9.1 Introduction CFC Editor

The OpenCFC® Editor (Continuous Function Chart Editor) is an engineering tool used
to create automation programs graphically.

The main elements of a CFC chart are Blocks (firmware blocks, user defined blocks,
compound blocks), that can be freely arranged on the chart, Margin Bars (left and
right), which provide links to IEC61131 variables and virtual links within the chart,
and connections, to connect one output (block or margin bar) to one or more inputs
(block or margin bar).

2.9.2 Working with Blocks

To add blocks to your CFC chart, use Insert->Block for firmware or user-defined
blocks, Insert->Textblock for text blocks, or Insert->CompoundBlock for compound
blocks.

The mouse cursor will change, click the chart where you want to insert the new
block.

59 / 297

OpenPCS Programing System

OpenPCS Tools

To re-arrange blocks, select the blocks and drag-and-drop them to their new
location.

When adding new blocks or moving existing blocks, the CFC Editor will make room by
moving aside existing blocks as appropriate.

To remove blocks from your chart, select them and press DEL.

Click twice on a block give it an alias name.

2.9.3 Connections

To connect two objects, first select the output object (output of a block, or item
on the left margin bar), then select the input (input of a function block, or item on
the right margin bar), then press Insert->Connection.

OpenPCS also supports Multiple Connections

2.9.4 Margin Bars

Margin Bars connect the logic contained in the CFC chart to other parts of the same
CFC chart, or to other parts of the application or the process to be controlled.

To configure any element of the margin bar, right-click it and select "Properties" from
the context menu:

In Name, enter the name of the object. This should be a valid IEC61131-3 variable
name.

60 / 297

OpenPCS Programing System

OpenPCS Tools

If you want the CFC-Editor to declare a variable for this margin bar object, select
IEC61131-Variable. Otherwise, if you select "CFC-Connector", the object is used only
virtually, and all information is immediately propagated to the connected outputs.
This may be more economic in runtime and memory consumption, but it prevents
online monitoring.

For IEC61131-3 variables, select the declaration section from the combo-box. The
selection offered here depends on the type of block and the type of margin bar. For
some kinds of variables, you may choose to select a physical address or an initial
value.

For CFC-connectors, you can choose "compound block connector", i.e. a connection
from within a compound block to the outside, "(connect to) internal connector", i.e.
virtually connecting one entry on the right margin bar back to one on the left margin
bar. "Internal connector" and "connect to internal connector" are similar, but the
first is only available on a right margin bar (where internal connectors are defined),
whereas the latter is available only at a left margin bar, where internal connectors
may be used.

2.9.5 CFC Editor Online

When you have the CFC Editor in monitor mode, it will automatically start displaying
live values of blocks, connections and margin bar entries as far as possible.

If the online editor can't get a value of a variable from the runtime system, it will
display "-!-".

OpenPCS supports "online edit", for further information see Online Edit in the user
manual.

2.9.6 Advanced CFC topics

2.9.6.1 Text Block

Use Insert->Textblock to insert a text block into your chart. A text block is only for
documentation purposes and does not add anything to the code being executed.

2.9.6.2 Using constants as inputs

To use a constant value as the input to a block, select the input (or margin bar
entry), right click it with the mouse, select "properties" and enter the constant
value in the edit field "value" on sheet "default value".

2.9.6.3 Execution Order

The arrangement of the blocks on a chart is directly related to the sequence of
execution: Blocks are executed first column first from top to bottom, then second
column top to bottom, and so on. To modify execution sequence, rearrange the
blocks as required.

61 / 297

OpenPCS Programing System

OpenPCS Tools

Compound blocks will be executed as a whole at that moment in the execution order
where the compound block is located. The contents of the compound block will be
executed in itself following the same rules. This is very similar to subroutines in
modern programming languages.

The CFC-Editor offers you several possibilities for printing. Use File->Print to print the
current level of a chart, and File->Print All to print all levels of the loaded CFC chart.

2.9.6.4 Multiple Connections

The CFC editor supports connections between one output and multiple inputs To
create a multiple connection first create a connection between the desired output
and one input. Now, mark the next input and click in the output. The connection,
created in the first step and the output are now marked. Choose Insert-
>Connection to create the multiple connection between the output and the two
inputs. You can now add more inputs the same way.

To remove an input from a multiple connection, mark the input and hit the delete-
key. Only the connection between this input and the output will be removed.

2.9.6.5 Replacement of Blocks

The CFC editor supports the replacement of a firmware or user-defined block by a
block of another type by selecting the block(s) and choosing Edit->Replace Block
from the menu.

A dialog box analogue to the Insert->Block dialog will appear, allowing the user to
select the desired new block type from a list of known firmware and user-defined
blocks.

62 / 297

OpenPCS Programing System

OpenPCS Tools

Additionally the user may check the option "automatically replace all instances of
the block type in current plan", which causes the replacement of all instances (even
the non-marked ones) of the currently marked block's block type inside the entire
CFC-plan.

After selection of a new block type, another dialog box is shown, allowing the user
to map the connectors of the old and new block type for reconnection after
replacement. The left column of the displayed table lists the connectors of the old
block type together with the type and kind (VAR_INPUT/VAR_OUTPUT) of the
connector (*1). The right-hand column displays a list of adequate connectors of the
new block type.

The user can assign a corresponding connector for each connector of the old block
type. Note, that each connector of the new block may only assigned once.

If a connector shall or can not be reconnected, "do not reconnect automatically"
can be chosen.

After clicking OK the CFC editor replaces the block(s) by (a) block(s) of the new
block type and rewires the connectors as specified in the assignment dialog.

(*1): VAR_IN_OUT connectors will show twice in the list of connectors: Once as
VAR_INPUT& and once as VAR_OUTPUT&. The "&" marker signals, that the
connector actually represents an VAR_IN_OUT parameter.

2.9.6.6 Finding Errors in CFC

The CFC Editor will locate you close to the location of an error if you double-click
the respective error message in the output window of the framework.

2.9.6.7 Block specific help

It is possible to get a block specific help. Right-click on the block, you want help for,
and select the menu-item "Show documentation". If OpenPCS finds no reference,
you will be prompted. If one reference is found, it will be displayed and if more than
one reference you will be prompted to choose which one to display.

2.9.6.8 Extensible inputs

The following CFC (and FBD) functions are extensible. This means we can add one
ore more inputs as a copy of the first input:

AND, ANDN, OR, ORN, XOR, XORN, MUL, ADD, MUX, MIN, MAX, CONCAT

Appending an input is done via selecting one of those functions and calling
(context) menu entry "Append Input". If you want to delete again an added input,
select input and call (context) menu entry "Delete Input".

2.9.6.9 Functions with negatable inputs

For all of the following logical CFC (FBD) functions you can negate each Boolean
input:

AND, ANDN, OR, ORN, XOR, XORN, NOT

Negating an input is done via selecting the input and calling (context) menu entry
"Negate Input". A negation circle is drawn at the connector.

The next call of (context) menu entry "Negate Input" removes the negation.

63 / 297

OpenPCS Programing System

OpenPCS Tools

2.9.6.10 Syntax check at CFC connections

After inline editing values or IEC identifiers on all CFC connectors the user input is
checked for correct syntax: If a constant value is entered that does not fit the
data type of the connector a message like

"Syntax error: Invalid constant for data type xxx."

is shown. Anyway the value is accepted.

2.9.6.11 Connection flag

To reduce the number of connection lines we can suppress single connections and
force so called connection flags via (context) menu entry "Toggle force connection
flag":

Use connection flags for this single connection.

The suppression of connection lines is saved with plan and restored after reloading.

Connection flags are are also used if a connection exists between connectors with
different page numbers. These flags are not visible in the program but if Print
comments and flags (see Print Form) is used for printing the chart these flags can
be printed.

Flags are numbered pagewise in Hex-Format.

64 / 297

OpenPCS Programing System

OpenPCS Tools

2.9.6.12 Copying blocks with inputs

If at least one block is selected, there is a new (context) menu entry active:
"Duplicate blocks". Calling it copies the selected block(s) into the internal plan
clipboard and set editor into duplicate mode - mouse cursor and caret style behave
and look like they do in paste mode: Everywhere you click or press space bar the
duplicate(s) of the block(s) is/are inserted and all input connections are duplicated.
Until you right-click the mouse, press ESCAPE or click into a "no-paste-allowed" area,
the editor stays in duplicate mode so you can insert more duplicates.

2.9.6.13 Alias names

The user can enter alias names for blocks to mark and quick find special blocks.
Alias names for functions and function blocks are drawn and inline editable above
the block body. Alias names for compound blocks are drawn and inline editable
within the block body.

2.9.6.14 Masking of unused connectors

For more clarity there is a new (contex) menu entry "Toggle Unused Connectors".
Calling it hide/shows all unused block connectors. Unused connectors are
connectors without any connections and values.

65 / 297

OpenPCS Programing System

OpenPCS Tools

Unused connectors are not shown.

If unused connectors are hidden

1. we cannot find them by searching.

2. we cannot navigate onto neither by mouse nor by keyboard.

3. we still can find them by double clicking on a compiler/syntax error/warning.

2.9.6.15 Global ID

For each object (block, connector) a global ID is assigned to be uniquely addressed.
For blocks this ID is displayed below the name of the block. The global ID can also
be displayed via tooltip.

66 / 297

OpenPCS Programing System

OpenPCS Tools

2.9.6.16 Keyboard handling for CFC and FBD editor

2.9.6.16.1 Fundamentals for keyboard usage

For keyboard navigation, a small caret is displayed which shows the current input
focus for the user.

The CFC/FBD editor can be used with mouse an keyboard simultaneouly. The cursor
will not follow the caret. The form of the cursor will not automatically change due
to the state of the caret. The state of the cursor will of course follow the position
of the cursor and not the position of the caret

2.9.6.16.2 Caret and selection

The current selection follows the caret. Exceptions or special cases are:

If the caret is navigated to an empty grid cell, the selection is canceled (nothing is
selected).

To detach the caret position from the current selection for generating a connection,
the caret must be navigated while <shift>-key is pressed. As the <shift>-key is
released the selection is enlarged by the element at the current caret position
(aquivalent to a left-click on the element in the caret). The current implementation
takes care that only permitted states of selections can be made.

Multiple selections with other elements can be made using <ctrl> while navigating.
(Multiple selections consisting of isolated blocks is not allowed.)

2.9.6.16.3 Representation of the caret

The caret is always visible. Even if the element, on which the caret is located, is
selected.

In special cases the caret is represented in a different way.

The caret is always visible even if the selection is done by mouse.

The caret can not be switched off.

The caret will not be printed.

2.9.6.16.4 Positioning of the caret

The caret is positioned at the marked point by left or right mouse click.

follows in general the selection by mouse.

2.9.6.16.5 Caret position by selected moves

It must be grantueed that (even in co-use of mouse and keyboard) there is always a
valid caret position. The caret position is defined for the following actions which
remove the element at a valid caret position:

Selection by mouse: The caret follows in general the selection by mouse and
automatic functions

Removing/cutting a block: Thereafter the caret will expand to the whole grid cell
which was occupied by the removed/cutted block.

Removing/cutting a set of blocks: Thereafter the caret will select the left upper grid
cell which was occupied by the set of blocks.

Removing/Cutting the input of a block: The caret will jump to the input that is
above the removed/cutted input. If there isn't any, the caret will expand to the
whole block.

67 / 297

OpenPCS Programing System

OpenPCS Tools

Removing/cutting a network: The caret will jump to the network above the
removed/cutted network. If there isn't any, the caret will jump to next possible
network below.

Removing/cutting a set of networks: The caret will jump to the network that is
above the uppest network. If there isn't any, it will jump to the first network below.

Decreasing the number of rows in a network: The caret will jump to the grid row
above, the grid column will be the same. The caret refers at first to the grid cell
even if there is a block contained in it.

Caret position after "select all": After the call of "select all", the caret jumps to left
uppest grid cell in the map. The map is scrolled upwards for uncovering the caret.
Internally the same method is called as by using the shortcut <ctrl>+<pos1>.

2.9.6.16.6 Automatic positioning of the caret

After a file is loaded, the caret is placed at the upper left grid cell. The position of
the caret is not saved with the map.

After the entering of a compound block, the caret will be placed at the upper left
grid cell.

By using undo/redo, the caret follows the position which is provided by the
operation. For this purpose, the caret position is saved before undo/redo and will be
restored according to network number and position (row, column). If the network or
the concerning cell doesn't exist anymore, the caret will jump to the next
network/cell above.

Below, the defaults for the positioning of the caret are listed, depending on the
driven CFC/FBD element. How the navigate between these positions is described in
a future chapter (Caret navigation).

Caret in empty grid cells

In empty grid cells, the caret takes the size and position of the whole cell.

Caret and comments

At grid cells with comments, the caret takes the position and size according to the
selected comment.

68 / 297

OpenPCS Programing System

OpenPCS Tools

Caret at the (FBD) network label

At the network label, the caret takes the position and the size according to the
network title line (according to the measures of the selected network label).

Caret at a margin connector

At a margin connector, the caret takes the position and size according to the
measures of the selected margin connector.

Caret in grid cells with blocks

The caret surrounds either the block field or a connector. The size of the caret at a
connector/block corresponds to the selection of a connector/block. The name of an
entity will not be surrounded by the caret.

2.9.6.16.7 Caret navigation

In the following is described how to navigate with the caret inside a CFC/FBD map.

Navigating at margin

At margin, you can jump to the underlying margin element or the element above by
using <UP> or <DOWN> arrow keys.

Navigating between (FBD) networks and network labels

If the caret is on the upper or lower margin connector, you can jump to the network
label of the underlying network or network above by using <UP> or <DOWN> arrow
keys (see picture below).

If the caret is on a grid cell or element in the upper row of a network you can jump
to the network label of the network above by using <UP>

If the caret is on a grid cell or element in the lower row of a network, you can jump
to the network label of the underlying network by using <DOWN>

If the caret is on a network label, you can jump to the left lower grid cell (resp. grid
element or connector) of the network above by using <UP>

69 / 297

OpenPCS Programing System

OpenPCS Tools

If the caret is on a network label, you can jump to the left upper gird cell (resp. grid
element or connector) of the network belonging to the network label by using
<DOWN>. With <RIGHT> or <LEFT> the caret jumps to the upper connecter of the
left or right margin.

Changeover margin to block

By using <RIGHT> or <LEFT> when the caret is located at left or right margin, the
caret jumps to the grid cell resp. element of the grid cell which is opposite to the
margin connector. A margin connector at the level of a connection channel is
always assigned to the grid cell above the connection channel. If the grid cell
contains a block, the caret jumps to the closest connector in consideration of the
starting position (margin connector).

If the caret is positioned on a grid cell or on a block connector besides the margin,
it jumps to the closest margin connector.

Up and down at inputs/outputs

<UP> or <DOWN> navigates the caret to the input or output of a block.
If the caret is located on the lowest input/output, you jump to the underlying grid
cell or the label of the next network by using <DOWN>.

Left and right at inputs and outputs

70 / 297

OpenPCS Programing System

OpenPCS Tools

<LEFT> or <RIGHT> navigates the caret between input/output and the block field
itself.

Observe the behavior of the caret by navigating from the inputs/outputs of a block
to the outputs/inputs of the same block.

For this purpose, the last caret connector row/column is buffered. Thus, a behavior
as in the following picture is possible.

By navigating onto the block field, the caret connector row is not changed and will
be evaluated by the next usage of <RIGHT>. The same behavior happens for the
caret connector column how we will see in one of the following chapters.

For navigating faster between grid cells with blocks, you can jump directly to the
block field by using <ALT> + <UP/DOWN/LEFT/RIGHT>.

Navigating between grid cells

Observe the behavior by navigating between grid cells with blocks. By navigating on
an empty cell or a cell with a comment, the caret is placed on the comment or the
whole grid element with no respect to the starting position. For navigating between
grid cells with blocks, the principle of buffering the caret connector row/column as
described above is essential.

71 / 297

OpenPCS Programing System

OpenPCS Tools

If there is no connector which fits to the current connector row or column (e.g.
JMPC), the caret will jump to the block field.

Navigating along connections

The caret can jump to all connected inputs starting at an output connector. With
the methods defined in the chapter "Methods for navigating the caret", you can
jump from every input connector to all connected output connectors and vice
versa.

Attention: The next output connector is always that one which was connected to
the input connector with respect to time.

For these actions, there are entries in the (context) menu:

Goto Data Source : jump to data source

Goto Next Data Destination : jump to next data sink

Goto Previous Data Destination : jump to previous data sink

2.9.6.16.8 Fast navigation with the caret

Pos1 and End

Pos1 and End refer only to the grid itself (the margin is excluded) and locate the
caret on the grid in the current row far left or far right.

Ctrl+Pos1 and Ctrl+End

Ctrl+Pos1 and Ctrl+End refer only to the grid itself (the margin is excluded) and
locate the caret at the upper left or lower right corner of the grid. I.e. Ctrl+Pos1 in
FBD jumps to the upper left corner of the first network and Ctrl+End to the lower
right corner of the last network.

Page Up/Down

72 / 297

OpenPCS Programing System

OpenPCS Tools

By using Page Up/Down, the visible clip is always aligned to the top edge of a grid
cell. It is scrolled only by the number of visible grid cells.

Automatic post scrolling

While navigating, the visible clip shall always be scrolled in that way, that the caret
(plus a certain amount of tolerance) is visible.

Revoking the selection

The usage of the <ESC> key revokes the current selection but doesn't change the
position of the caret.

Selecting multiple elements

By using <CTRL>+<LEFT/RIGHT/UP/DOWN>, multiple elements can be selected. Still,
only consistent and valid selections are permitted. (e.g.: blocks and border line
connectors cannot be selected at the same time)

Attention: While working with the caret, there is no rectangle selection (rubber
band selection) possible!

2.9.6.16.9 Inline edit at the caret position

If the caret is located on an element, which is inline editable, the element will be
selected and opened in the inline edit modus as soon as the user starts to write an
alphanumeric sign.

There's an ambiguity with regard to the decision for caret and selection: If there's
already another inline editable element selected, that element, which is currently
covered by the caret, is set to the inline edit modus.

2.9.6.16.10 Insertion of blocks by keyboard usage

The insertion of blocks by keyboard works according to the following procedure:

Call the choosing block dialog by shortcut.

Chose the block type to be inserted.

Close the choosing block dialog and the insert modus is automatically activated.

For finally inserting the block, the caret must be moved to the insert position.
Navigation is only allowed between grid cells. The caret will be shown as
described as in "Caret in empty grid cells". (Even if there is a block in it)

If the caret is moved to a position at which inserting a block is not allowed, the
caret will change its figure according to properties for exception situations.

(see caret properties)

If a valid location for inserting a block was chosen, the block is inserted by using
<SPACE> and the caret is placed on the block field.

If an invalid position was chosen and < SPACE > pressed, an event is sent to the
automation suite that the insert operation was not successful. The insert operation
is aborted and the standard caret is shown.

2.9.6.16.11 Moving/copying blocks and margin connectors by keyboard

Blocks can be moved by using <CTRL>+<SHIFT>+<UP/DOWN/LEFT/RIGHT>. As soon
as the <CTRL>+<SHIFT> keys are released, the insert operation at the current

73 / 297

OpenPCS Programing System

OpenPCS Tools

caret position is made (equivalent to releasing the left mouse button while moving a
block/margin connector by mouse). The figure of the caret on invalid positions is
according to inserting blocks.

Margin connectors can by moved by using <CTRL>+<SHIFT>+<UP/DOWN>. As soon
as the <CTRL>+<SHIFT> keys are released, the insert operation at the current
position of the caret is made. (equivalent to releasing the left mouse button while
moving a block/margin connector by mouse). The figure of the caret on invalid
position is according to inserting blocks.

Copying blocks and margin connectors is made by using copy and paste. Thereby
you can only move between grid cells.

2.9.6.16.12 Insert connections by keyboard

For inserting a connection by keyboard, two "compoundable" elements (block
connectors and/or margin connectors) have to be marked by the caret. Afterwards
a new connection can be inserted by using the shortcut for the menu "Insert ->
Connection".

More comfortable and faster: If the shift key is released while two or more
connectors are selected, which allow a connection, this connection is inserted
automatically.

2.9.6.16.13 Keyboard combinations for navigating the caret

Alt + arrow keys: fast navigation for blocks

Ctrl + arrow keys: multiple selection (e.g. connectors or blocks)

Alt + Ctrl + arrow keys: fast multiple selection only for blocks

Shift + arrow keys: release the caret from selection

Shift + Alt + arrow keys: release the caret from selection using fast navigation

Ctrl + shift + arrow keys: moving of blocks or margin connectors

2.9.7 Compound Blocks

2.9.7.1 Compound Blocks: Introduction

Compound Blocks are a way to structure your application

The work area of the CFC-Editor is limited to one page width. By selecting the paper
size, you determine the number of blocks that can be placed horizontally. Vertically,
a function chart can grow unlimited.

Although in fact you are not limited in the length of your CFC chart, it is easy to
loose overview on a too lengthy chart. Compound Blocks are a means to finer
structure your application, hiding groups of logically related blocks inside one
"Compound Block".

Signals between the blocks inside a Compound Block are not visible to the outside.
Outside a Compound Block, only those signals are visible that enter or leave the
Compound Block.

On screen, double-click the Compound Block to see it's contents. Use "View-
>Level up" or in the toolbar to get back to the location where the Compound
Block is being invoked.

74 / 297

OpenPCS Programing System

OpenPCS Tools

Compound Blocks can be nested, i.e. inside a Compound Block you can define, or
use, other compound blocks. The contents of a Compound Block can be edited, you
can add or delete blocks, rewire connections, add, modify or delete connections
leaving or entering the Compound Block.

On screen, the last input and output connector of a Compound Block is shorter than
any other connector, so you can easily distinguish a Compound Block from other
Blocks.

2.9.7.2 Create compound block

To create a new, empty Compound Block,

1. Select "Insert->Compound block..."

2. The mouse cursor changes

3. Click the mouse where you want to insert the new Compound Block

You can now fill the Compound Block first, by double-clicking and editing it just like
any other function chart. Or, add inputs and outputs to the Compound Block first,
editing its contents later using the already provided inputs and outputs then.

Whenever you run out of space on a chart, or think readability would be increased
by more hierarchically grouping, you can collapse some of your already wired blocks
into a Compound Block:

1. Have the Block(s) selected

2. Select "Insert->Compound block..."

3. CFC-Editor will prompt you to verify you want to convert the blocks to a
Compound Block

4. The selected Blocks will be removed from the chart and replaced by a Compound
Block. All signals between these blocks will be moved with the Blocks, all signals
to other blocks will be kept and changed to interface signals of the Compound
Block.

Notes:

Currently there is no support for reverting the process of converting a group of
blocks to a compound block.

2.9.7.3 Adding input or output to compound block

You can edit the contents of a Compound Block just like any other function chart.
When you need to provide additional inputs, or need to provide additional outputs,
you need to change the interface of the Compound Block accordingly. You can do
this from the surrounding (top-down) or from within the Compound Block (bottom-
up).

Top-Down:

1. Any Compound Block has one very last connector which is shorter than the
others. This is always the last connector, one on the left side as an input, one
on the right side as an output.

2. Wire this last input or output

3. As soon as you use this last connector, it will be shown in full length, and
another shorter connector will be added to the end.

75 / 297

OpenPCS Programing System

OpenPCS Tools

Bottom-Up:

1. Double-click a compound block you want to add a connector.

2. Wire a connection of a block inside the compound block to the left or right margin
bar (depending whether you want create an in- or output)

3. Click right on the connector and open the "Properties..." dialog box via the
context menu.

4. Mark the items "CFC-Connector" and "Compound block connector" name it and
close the dialog box by clicking "OK".

If you go one level up by clicking the appropriate symbol you see that another
shorter unused connector has been added to the compound block.

2.10 SFC Editor

2.10.1 SFC: introduction

The SFC-Editor is hosted in the OpenPCS framework. It is separated into three
parts. In the upper part of the SFC-Editor, enter the declarations of the POU. In the
middle part edit the chart and in the lower part edit the code of the elements.

Note: The code language is selected once at the creation of the program. The
current version supports IL and ST .

76 / 297

OpenPCS Programing System

OpenPCS Tools

2.10.2 Elements of a sequential function chart

SFC-plans are a tool for formulation of control flow of technical process, which are
characterised by change of states. Every state transition is coupled on certain
conditions.

The sequential function chart offers the following language elements:

Step: A step contains many actions. Actions contain code fragments. A step, which
is executing, is called "active". If a step is active, the contained actions will
execute. A step can be activated by: switching of a previous transition, a jump
element, setting the initial flag (c.f. initial step).

Initial step: Initial steps are active at the beginning of the program. Positions in the
plan could be marked by initial steps, at which the execution starts on program
start.

Transition: The program flow is controlled temporally and structurally by switching of
transitions. A transition will switch if the transition condition is true and all previous
steps are active. Once the transition switches, all previous steps become inactive
and all following steps become active.

Simultaneous sequences: One transition may set active multiple steps at the same
time, starting a parallel chain. If all previous steps of transition T1 are active and
the transition condition is TRUE, all following steps (e.g., S1, S2) of the
simultaneous sequence will activate.

Convergence of simultaneous sequences: The chains of a simultaneous sequence
are converged into a single transition. If all previous steps (e.g., S1, S2) are active
and the condition of the following transition (T1) is TRUE, all previous steps will be
deactivated while the steps following transition T1 will be activated.

77 / 297

OpenPCS Programing System

OpenPCS Tools

Divergence of sequence selection: Selection of a sequence step chain. If the step
before the divergence is active, all transitions ((e.g., T1, T2) are checked from left
to right. The first transition evaluating to TRUE will switch, deactivating the step
before and activating the step after.

Convergence of sequence selection: The chains of a divergence of sequence
selection are converged into a step. If one of the transitions switches, the steps
before it will be deactivated, and the Step following it will be activated.

Jump: The program flow is continued at another location. The name of the jump is
the name of the activate step if the previous transition (T1) switches.

2.10.3 Steps and initial steps

The code of a step is executed cyclic if and only if this is an active state. In
principle, one can say that the code is surrounded by a loop which is entered if a
previous transition switches, and is left if a following transition switches. If a step
was activated, its code is executed at least one time. Initial steps are always
active at program start that means that no preceding transition is necessary. In
standard, the entry-point into the program is the first element in the chart (initial
step). Every step can be converted into an initial step by activating the control box
"initial step" in the properties window. De-activating this switch will turn the initial
step back into a normal step.

The name of a step must meet following syntax: The first character of the step
name is a letter ("a"-"z", "A"-"Z"); every further character is a letter or a number ("0"
- "9") or a underline ("_"). Valid step names are "Step1" and "S_1", invalid step
names are "_Step1", "1Step" and "Heater off"

Step names have a maximum length of 31 characters. You get more information in
the topic Jumps .

78 / 297

OpenPCS Programing System

OpenPCS Tools

2.10.4 Transitions

Transitions are responsible for the change of the active state of previous step(s) to
the following step(s). Transitions show the possible change in form of a true,
Boolean statement (transition condition).

The code of the transition has to be written so that the current result at the end of
the code is of type BOOL. The transition switches if and only if the accumulator (in
IL), or the corresponding variable (in ST) is TRUE. The communication with other
SFC-elements occurs by local variables.

Example (IL):

(* Transition switches off if temperature is more than 70° C *)

LD variable_of_temperature

GT 70

Example (ST):

(* Transition switches off if temperature is more than 70° C *)

IF variable_of_temperature > 70 THEN

result := true;

ELSE

result := false;

END_IF

trans1 := result;

Note:

1. The last line of a transition code should always load a Boolean value (in IL), or
assign the variable, named like corresponding transition (i.e. trans1) with the
intended result (in ST).

2. The declaration of the variable with the transition name in ST are automatically
generated and not shown. Do not use their names for other variables (only in
ST).

2.10.5 Jumps

Jumps are elements of a SFC-plan for controlling the flow of execution. With the up
to now introduced elements, the activation of the steps happens always from top to
button. For programming of cycles and similar things, a further possibility is
necessary to activate previous steps. Jumps exist to provide this functionality.

The predecessor of a jump element is always a transition. The target of a jump is
always a step. The target of the jump is fixed by giving the jump the same name as
the selected target-step. If a step is given as a target of a jump, its name must be
unique. If a jump-target is not or more than once available, corresponding error
messages are created during the syntax control.

To guarantee the consistency of an SFC-plan, the insertion of a jump is possible
only as the last element of a divergence of sequence selection.

2.10.6 SFC Editor Online

When you have the SFC Editor in monitor mode, it will automatically display status
information. Small red rectangles will be displayed in all active steps. This

79 / 297

OpenPCS Programing System

OpenPCS Tools

information is updated as frequently as possible. However, the target controller may
be too quick for all intermediate states to be displayed.

You can view the contents of steps and transitions while online, but not see status
information for these. If the contents of steps or transitions grows complex enough
to require debugging, it is strongly recommended to move it to individual function
blocks.

OpenPCS supports "online edit", for further information see Online Edit in the user
manual.

2.10.7 Common errors

Errors in the chart of the SFC- Editor are indicated by a red arrow, as soon as the
project is saved. The most common errors are exemplarily schown via the ControlX-
sample enhanced in OpenPCS.

1. Target of jump is not valid

Init1 was defined as target which does not exist within the project. Within the
Output-window, OpenPCS prompts:

Error : "Init1" is not a valid jump target (no Step with the name
"Init1" exists).

Only Steps are valid targets. Thus the same message is prompted, if a transition is
defined as a target.

80 / 297

OpenPCS Programing System

OpenPCS Tools

2. No unique target

Two Steps are named Init. Since the step is chosen as target, OpenPCS cannot
decide which step should be used. It prompts the following message in the output.

81 / 297

OpenPCS Programing System

OpenPCS Tools

Error : The jump target "Init" is ambiguous - the following 2 steps
with the name "Init" exist:

...\CONTROLX\CHART.SFC(10,100,4) : Object : Step "Init"

...\CONTROLX\CHART.SFC(10,100,5) : Object : Step "Init"

3. No valid names

Spaces are not allowed within the name of steps .

Error : The name of the object "No Ladder" contains invalid
characters.

2.10.8 Selecting Elements

2.10.8.1 Marking a single element

Click the left mouse button to mark an element with the mouse showing its code in
the below text editor.

The mark of a single element can be transformed into a neighbour element by aid of
the cursor keys (¬,®,­,¯) of the keyboard.

2.10.8.2 Region marks

Mark one element first, using mouse or keyboard.

Hold the Shift-key pressed, and click another element with the mouse to select an
entire region of the chart.

or hold the Ctrl-key pressed and click other elements to add them to the selection.

In this version are no region marks possible by keyboard.

82 / 297

OpenPCS Programing System

OpenPCS Tools

2.10.8.3 Marking several elements

In order to execute a function on several elements of the SFC-plan, all
corresponding elements must be marked.

Mark one element first, using mouse or keyboard.

Hold the Shift-key pressed, and click another element with the mouse to select an
entire region of the chart.

or hold the Ctrl-key pressed and click other elements to add them to the selection

In this version are no region marks possible by keyboard.

2.10.9 Advanced SFC topics

2.10.9.1 Exception handling

During an execution of a SFC-program, situations could happen which require a
specific change to execution logic in the program. The modelling of this "exception
handling" is possible with additional standard plan elements (transitions, jumps,
steps), but reduce the clarity of the program.

The SFC-editor offers macros for the solution of this problem on the IL-level to
activate or inactivate steps purposefully.

The following commands are available:

@ACTIVATE_STEP(StepName) /* Activating of a step */

@DEACTIVATE_STEP(StepName) /* Inactivating of a step */

@DEACTIVATE_ALL_STEPS() /* Inactivating of all steps */

These macros manipulate the internal execution control so that the given steps will
be (in-)activated in the next cycle additionally.

Attention: If the above commands are used in the IL-code, unsure or not
executable networks could arise!

Note: The current version does not support those commands for the ST editor.

2.10.9.2 Finding error position

Edit -> Goto IL Line: Use this command to find the necessary code fragment in the
SFC-plan by a number of an incorrect line in the generated POE file. The number of
an incorrect line is taken down in the OpenPCS-system during the compiling.

2.10.9.3 Using languages other than IL / ST

SFC expects code written in steps and transitions to be in IL or ST. To use other
languages (Ladder Diagram, CFC, FBD), write your code to a function block (or
function, if applicable) and invoke an instance of that function block from within the
step or transition.

Remember to declare an instance of that function block in the declarations of your
SFC program.

You can reuse one instance of such a function block in different steps and
transitions, or use different one, as required by your application. With more complex

83 / 297

OpenPCS Programing System

OpenPCS Tools

code, this will not only yield a cleaner structure of your application, but also reduce
memory consumption and increase the ability to debug.

2.11 FBD Editor

2.11.1 Introduction FBD Editor

The FBD-Editor (Function Block Diagram Editor) is an engineering tool used to create
automation programs graphically.

The FBD-Editor is hosted in the OpenPCS framework. In the upper part of the FBD-
Editor, enter the Declarations of the POU.

The main elements of a FBD chart are Blocks (functions, functionblocks, operators),
that can be freely arranged on the chart, Margin Bars (left and right), which provide
links to IEC61131-variables and Connections to connect one output (block or margin
bar) to one or more inputs (block or margin bar).

2.11.2 Working with Blocks

To add blocks to your FBD chart, use Insert->Function, Insert->Functionblock for
firmware or user-defined blocks, or Insert->Textblock for documentation. You can
also press the right mouse button within the instruction pane and select "Insert
Function", "Insert Functionblock", "Insert Textblock" or "Insert Operator" from the
popup menu.

84 / 297

OpenPCS Programing System

OpenPCS Tools

The mouse cursor will change, click the chart where you want to insert the new
block.

To re-arrange blocks, select the blocks and drag-and-drop them to their new
location.

When adding new blocks or moving existing blocks, the FBD Editor will make room by
moving aside existing blocks as appropriate.

To remove blocks from your chart, select them and press DEL.

2.11.3 Connections

To connect variables, functions, function blocks etc. just left click the margin bar or
the node at function etc. symbols. The margin bars or nodes highlighted you
connect with menu "Insert" and there "Connection" or just use the short cut [CTRL]
[B]. The new connection now is selected and therefore red. Without selection it will
be black.

1. Left click

2. Do the connect

3. See the connection

85 / 297

OpenPCS Programing System

OpenPCS Tools

To select a connection just left click on one of its ends (margin bar or node). A
selected connection can be deleted just with [DEL] or right click on margin bar or
node and selecting "Delete".

Note: There are multiple connections possible starting from one source (it is not
possible to merge multple connections).

2.11.4 Margin Bars

The margin bars on the left and the right side allow you to connect the logic
contained in the FBD with input (left) and output (right) variables. Just double click
into a margin bar and type in the variable name.

Left margin bar:

Right margin bar:

86 / 297

OpenPCS Programing System

OpenPCS Tools

2.11.5 Advanced

2.11.5.1 Working with Networks

You can structure your project with networks. Each network automatically gets a
four digit number for identification shown on the top of each network. A click or
double-click within that area allows you to type in a name to label the network.

Using the right mouse button a pop-up menu occurs that allows you to add a new
network, jump to the next or jump to the previous.

87 / 297

OpenPCS Programing System

OpenPCS Tools

2.11.5.2 Execution Order

The networks are executed one after another beginning from top to bottom.

In each network the arrangement of the blocks is directly related to the sequence
of execution: Blocks are executed first column first from top to bottom, then second
column top to bottom, and so on. To modify execution sequence, rearrange the
blocks as required.

88 / 297

OpenPCS Programing System

OpenPCS Tools

2.11.5.3 Replacement of Blocks

The FBD editor supports the replacement of a firmware or user-defined block by a
block of another type by selecting the block(s) and choosing Edit->Replace Function
/ Edit->Replace Function Block from the menu.

A dialog box analogue to the Insert->Function / Insert->Function Block dialog will
appear, allowing the user to select the desired new block type from a list of known
firmware and user-defined blocks.

Additionally the user may check the option "automatically replace all instances of
the block type in current plan", which causes the replacement of all instances (even
the non-marked ones) of the currently marked block's block type inside the entire
FBD-plan.

After selection of a new block type, another dialog box is shown, allowing the user
to map the connectors of the old and new block type for reconnection after
replacement. The left column of the displayed table lists the connectors of the old
block type together with the type and kind (VAR_INPUT/VAR_OUTPUT) of the
connector (*1). The right-hand column displays a list of adequate connectors of the
new block type.

The user can assign a corresponding connector for each connector of the old block
type. Note, that each connector of the new block may only assigned once.

If a connector shall or can not be reconnected, "do not reconnect automatically"
can be chosen.

After clicking OK the FBD editor replaces the block(s) by (a) block(s) of the new
block type and rewires the connectors as specified in the assignment dialog.

(*1): VAR_IN_OUT connectors will show twice in the list of connectors: Once as
VAR_INPUT& and once as VAR_OUTPUT&. The "&" marker signals, that the
connector actually represents an VAR_IN_OUT parameter.

2.11.5.4 Finding Errors in FBD

The FBD Editor will locate you close to the location of an error if you double-click
the respective error message in the output window of the framework.

2.11.5.5 FBD Editor Online

When you have the FBD Editor in monitor mode, it will automatically start displaying
live values of blocks, connections and margin bar entries as far as possible.

If the online editor can't get a value of a variable from the runtime system, it will
display "-!-".

OpenPCS supports "online edit", for further information see Online Edit in the user
manual.

2.11.5.6 Keyboard handling for CFC and FBD editor

See OpenPCS Tools->CFC Editor->Advanced CFC Topics->Keyboard handling for CFC
and FBD editor for information.

Or start reading here: Fundamentals for keyboard

89 / 297

OpenPCS Programing System

OpenPCS Tools

2.12 Test and Commissioning

2.12.1 Test and Commissioning: Introduction

Test and Commissioning is the tool to maintain all online operation of OpenPCS. Use
the T+C to monitor the value of variables, to start and stop your controller, and to
change online blocks while running the application.

2.12.2 Start and Stop

Test and Commissioning supports three different ways of starting the application:
"Cold Start" will reset all variables to their initial value, "Hot Start" will not reset any
variable, while a "Warm Start" will re-initialize only those variables which are not
declared RETAIN.

2.12.3 Watch variables

During a program test, it is important to know which values the variables have, or
which value produce an error. Therefore, we have the possibility to watch
variables.

Change to the Resource-Pane.

Open the branch of the task the variables you want to watch belong to.

Double click on the variable which you want to watch.

The variable appears in the "Test and commissioning"-window where instance path,
type, value, and status are displayed. These variables are permanently updated
during the program execution on the PLC. If OpenPCS can't get a value for a
variable from the runtime system (e.g. the variable is not available in the currently
running program), a "-!-" is shown

To remove variables from the list you have three possibilities as well. Mark the
variable by clicking it with the left mouse button then: click on the corresponding
symbol in the toolbar or use the "del"-key or select the item Remove Variable in
the menu "Edit".

Double click on an array variable opens a dialog where you should enter the index
you want to watch. Indexes for multi-dimensional arrays have to be comma
separated.

2.12.4 Set variables

To influence the behavior of your control program for test cases, you can set
variables to specific values. Mark the variable in the T+C, and select the menu item
 "PLC->Set variable", or click directly on the variable in the T+C. Enter the new
value and accept by "Set"-button. See also Force Variables

2.12.5 Force Variables

Besides watching and setting values of variables, OpenPCS support "forcing" of
variables. If a variable is forced, the value will be reset to the value specified at the
end of each cycle (before writing to the outputs). Forcing is controlled by three
buttons labeled "set", "enable force" and "disable force" in the variable set dialog:

90 / 297

OpenPCS Programing System

OpenPCS Tools

In the column "Force" of the Test & Commissioning-Window, OpenPCS will display if a
variable is currently forced or not.

The action performed when pressing OK depends on which of the three buttons
"set", "enable force" and "disable force" is selected:

if the variable is currently not forced, "set" will once set the variable to the value
specified. If the variable is modified by the application, this might have a very short
effect only. "enable force" will force the variable to the value specified, i.e. set the
variable to the specified value at the end of each cycle, "disable force" will have no
effect

if the variable is currently forced, "set" will disable forcing for this variable and set
the variable once to the value specified, "enable force" will continue to force the
variable, but with the value specified now, "disable force" will not set the variable,
but only disable forcing for the variable

Please note

Forcing only resets the variable at the end of each cycle. Modifications during one
cycle are possible and not prevented.

Forcing is not restricted to directly represented variables (AT %...)

Removing a variable from the watchlist will automatically disable forcing this variable

2.12.6 Working with watchlists

The Test & Comissioning's list of variables can be saved to a so-called Watch List
file. This allows for switching between different Watch Lists while being online.

There is always a default Watch List file with the name <name of your
resource>.WL in the project root directory.

While online, a Watch List is saved through the main menu command: SPS -> Save

Watch List As...

The saved Watch List will then show up in the Browser's File pane. After saving, all
subsequent modifications of the variable list will be stored in this Watch List.

To restore a different saved Watch List simply open it by double-clicking it in the
Browser. Or by choosing File->Open while the Watch List is selected in the Browser.

91 / 297

OpenPCS Programing System

OpenPCS Tools

An empty Watch List can be created by selecting File->New / Others / Watch
List.

2.13 Control Data Analyzer

2.13.1 Control Data Analyzer

Control Data Analyzer hands the user the opportunity to plot the development of
variables stored in the variable table of the controller.

Control Data Analyzer is only available while OpenPCS is online and can be started
via View -> Control Data Analyzer. Control Data Analyzer will be shown in the
area of the editor window.

The OPC variables are visible in the left column, called signal tree. The signal can be
grouped by their type (analogue or digital) or the the files, they are defined in. A
new plot can be started via double clicking a variable. The user can append
variables to the plot bey dragging the variables onto the graph. Each graph gets a
unique color and y-axis.

The user can open the properties via right-clicking within the plot.

92 / 297

OpenPCS Programing System

OpenPCS Tools

The user can edit the colors and fonts of a plot and the general appearance of the
analyzer. Under signals, the user can give graphs an offset and differ the design.
The axis can be set up in the respective sections.

Notes:

To use the Control Data Analyzer the used PLC has to support TFR (Transient Fault
Recorder). This is a real-time database for all runtime variables configured to be
captured by the TFR. The runtime system provides the data through its standard
communication channels of the online server. The infoteam SmartSim and the
infoteam SmartPLC/OPC do so.

2.13.2 Oscilloscope

The oscilloscope is a Cartesian coordinate system displaying signals over time.
Markers support measuring tasks. Three modes and triggers support display control.

Signals are added by the signal tree. The trigger event is displayed at the middle of
the x-axis. Each time data is relative to that event. The y-axis is centered to 0.

The toolbar enables switching between three modes: Run, Stop and OneShot:

Run: the arriving data is constantly checked to the defined trigger. If the trigger
event happens, the signal chart is centered on it.

Stop: The triggering is stopped immediately; thereby a happening trigger event is
irrelevant. The view switches to the navigator.

OneShot: Once a trigger event is identified, the mode switches to Stop mode.

Note: The toolbar can be activated via the context menu.

2.13.3 Trigger

The current trigger can be accessed via the context menu of the caption, the
trigger button or the oscilloscope properties dialog.

93 / 297

OpenPCS Programing System

OpenPCS Tools

There are two different triggers: a fixed one and a delayed one. The fixed one is
just a simple trigger, the delayed one consists of three simple triggers: A, B and
Reset. The delayed one is only satisfied, if B happens after A before Reset happens.

A simple trigger is satisfied depending on the set conditions and its mode. Conditions
are value and kind of edge of the connected signal.

The value may only be in whole numbers - the data of the signal is rounded down.

The edge of the signal can be rising, falling, alternating (vertex), or "rising or falling".

Depending on the mode the trigger is treated:

1. Normal: the trigger is satisfied if all conditions match.

2. Automatic: the trigger is satisfied if all conditions match or a defined count of
data samples is processed without matching conditions.

3. Automatic (level): the trigger is satisfied if all conditions match. If the conditions
do not match for a certain count of data samples, the value is automatically set
to the half of the amplitude of the signal and the flow continues as in automatic
mode.

2.14 SmartSIM

2.14.1 Overview SmartSIM

In order to test a program, you need a PLC. You can use the real control system
which you bought together with OpenPCS. To be independent of the different
control systems in this manual, with which OpenPCS is distributed, we use only the
SmartSIM32 here.

SmartSIM32 can be started as a stand-alone executable, but typically it will be
launched automatically by OpenPCS as soon as you try to go online with a resource
which is using connection "simulation".

Note:

To prevent SmartSIM from loading the program stored on disk, keep CTRL and SHIFT
pressed at start of SmartSIM.

2.14.2 Interrupt Tasks

The SmartSim also supports running interrupt tasks. A interrupt can be provoked by
pressing a key on the keyboard. So the only thing you have to do is to bind a key to

94 / 297

OpenPCS Programing System

OpenPCS Tools

the interrupt task. For that select the task properties in the resource pane of the
task, be sure that its tasktype is set to interrupt and name the field interrupt to a
key.

Note:

1. Possible keys are "+", "-" and all ascii signs in the interval from 0x1F to 0x7F.

2. To provoke the interrupt pressing a key, the SmartSim needs to have the focus
on.

2.15 OPC Server

2.15.1 About OPC Server

The infoteam SmartLink OPC server is a gateway between OPC clients and one or
multiple controllers based on IEC 61131-3 runtime systems. It is available at
www.infoteam.de for free. A demo connection to the infoteam SmartSim is supplied.

2.15.2 Remote OPC Server

For configuring the remote access from OPC-Clients to OPC-Server SmartPLCDA via
DCOM, please follow the following steps.

Check Requirements:

· OS Requirement: WindowsXP with SP2

· The password must not be blank or "admin".

· For perfoming the next steps, you must have administrative privileges to the local
PC to change the DCOM settings.

· DCOM must be enabled in the hardware.ini-file

[ENABLE_OPC_PANE]
DCOM=1

Setting up DCOM communication

· Select Start -> Run and type "dcomcnfg", this opens the component service
manager of WindowsXP.

· Go to Console Root -> Component Services -> Computers. Right click to My
Computer and select Properties.

95 / 297

OpenPCS Programing System

OpenPCS Tools

· Select the Default Properties tab and select the options as in figure below:

Setting permissions for DCOM (Default permissions have to be changed to
establish communication.)

· Select the COM Security tab

· Select Edit Default for Access Permissions

· Make sure the access permissions window contains at least the following entries:

a. Everyone

b. Interactive

c. Network

d. System

e. Domain Administrators

f. Domain Users

96 / 297

OpenPCS Programing System

OpenPCS Tools

If these entries are not shown, click the Add button, then click Advanced and
Find Now. This lists all groups and users (if not, make sure that for object types
Groups is selected). Select the groups and press OK, also in the next window.
This adds these groups.

· For domain users proceed as described in 3., but for location specify the domain
name.

· Repeat steps 2. to 4. for Launch and Activation Permission. Afterwards close
the My Computer Properties window. Now the setting changes are finished.

· The computer has to be restarted to accept changes.

2.16 Online Server

2.16.1 Online Server: Overview

The Online Server is the gateway between all OpenPCS tools and your controller(s).
It is started automatically in the background and routing all traffic and commands

between all applications and the controller. A small icon will be displayed in the
system tray when the Online Server is active. A click on that icon will offer to
terminate the server, which you should generally avoid to do.

2.16.2 Online Server Setup

2.16.2.1 Online connections: introduction

"Connections" are symbolic names for potential links to your controller. Each
resource is configured to use exactly one connection, and each connection is bound
to one "driver" and given a parameter set for that driver. OpenPCS comes with
several drivers but by default only one connection, which is bound to the IPC driver.

By default, the following drivers are available:

IPC - Interprocess Communication, for a connection to the SmartSIM

TCP - For a TCP/IP connection to target systems older than version 4.3.1

TCP_432 - For a TCP/IP connection to target systems with versions 4.3.1 or
newer

RS232 - For a serial connection to target systems with version 4.0 or newer

RS232_35 - For a serial connection to target systems older than version 4.0

2.16.2.2 Create new connection

Choose PLC->Connections...

When the Connection Setup Window appears, click on the new button.

The Connection Properties dialog box opens:

97 / 297

OpenPCS Programing System

OpenPCS Tools

Now enter the name of the connection to be created. Take care that the
connection name has not got any spaces in it. Use the underscore ("_") instead of
space. Select a driver by clicking on the select button, the Driver Select window
showing driver settings opens:

Click the desired driver and then the OK button. The Connection Properties window
now becomes active again. Click the settings button. The Driver's Settings dialog
box opens:

98 / 297

OpenPCS Programing System

OpenPCS Tools

You can modify the settings individually. When you agree with the adjusted
settings, just click OK, otherwise click cancel. If you want to place a remark, you
can do this at the Connection Properties window. Finally, click OK from the
Connection Properties window.

2.16.2.3 Delete Connection

Select a connection by clicking on the connection's name from the Available
Connections list. Then click the "Remove" button, the selected connection is
deleted and disappears from the list.

2.16.2.4 Edit connection properties

By clicking on the connection's name from the Available Connections list, it will
become selected. Click on the Properties button and the Connection Properties
dialog box appears.

Go on like as described in the topic Create a new connection.

2.16.2.5 Select Connection

Right-click the active resource (marked green) in the browser and choose
"Properties..." from the context menu, the "Edit Resource Specifications" dialog box
opens:

99 / 297

OpenPCS Programing System

OpenPCS Tools

To select the connection use Network Connection selection bar.

2.17 Hardware drivers

2.17.1 Hardware drivers: Overview

With the tool AddDriver (AddDrvr.exe) you can automatically install driver packages
into OpenPCS that are supplied by your OEM-manufacturer. These driver packages
are MS-Cabinet files (extension .CAB) with defined content, which are shipped
together with OpenPCS by your hardware manufacturer or, e.g. are offered in the
internet.

If AddDrvr.exe is executed without command line parameters (e.g. from the menu
Extra -> Tools -> Driver Install...) the desired driver package can be chosen in a
dialog box.

2.18 Compiler

2.18.1 Compiler: Overview

The Compiler is the tool converting the sources of your application that you write in
different editors into executable code, which is UCODE or NATIVE CODE.

The Compiler is automatically launched by the Browser whenever there is need to
recompile your application, and the Compiler can manually be invoked from the
Framework. In general, there should be no need to invoke the compiler from the
command line.

2.18.2 Instruction List Compiler

2.18.2.1 Compiler Command Line

ILC [-s | -c | -p | -i | -l] <Poe file names> -v <Varfilename> -d <Devicename> -r
<ResourceName> { -o <OutputDir> } {-g | -m } {-x} { -b } {-y} { -w<OutputLevel>
}

ILC command <Poe file names> -v <Varfilename> -d <Devicename> -r
<ResourceName> options

100 / 297

OpenPCS Programing System

OpenPCS Tools

The commands and options are preceded by either a slash (/) or a dash (-) and are
not case sensitive. Multiple commands per call are allowed.

Commands:

-s: performs a IL syntax check on the files following the command

-c: compiles all files following the command

-p: creates prototypes for all program organization units specified in the list of
files following the command

-i: creates include files for all program organization units specified in the list of
files following this command

-l: creates a file with all dependencies for the program organization units
specified in the list of following this command.

If more than one command is used in a call of ILC.EXE than every single command
applies to all files following the commands.

Options:

-o: with this option the user can specify an output directory or the target path
name if a single resource is built. If -o is followed by a directory name the
targets are stored in the specified directory.

-g: the input files (*.poe files) are no located resource global variables

-m: the input files (the files specified after the command) are located resource
global variables

-x: dump object files

-f: suppress final error information

-b: Use short file names. ILC presupposes that the filenames of POUs whose
names are longer than eight characters are cut down to eight characters.

-w: by using this flag the user can specify the output level for the output
information. It has to be followed by an integer that indicates the output
level. The following values are defined for the "OutputLevel":

0: print all available informations. I. e. errors, warnings and info-messages.

2: suppress warnings.

4: suppress info-messages (e.g. Compiling c:\test\test.poe).

6: suppress warnings and info-messages.

Please note that error messages are printed always and can not be
suppressed.

-y: write the initial data segment of the POUs to be compiled in a text file. This
command should be used, to obtain the initial data segment of firmware
POUs for the <hardware>.ini file.

2.18.3 Linker

2.18.3.1 Linker Command Line

ITLink [-r | -t] <source file names> -v <Varfilename> -m <makefile name> {-g
<resource global object filename>} {-s <packed sources file> } { -o <OutputDir> }
{-x}

The commands and options are preceded by either a slash (/) or a dash (-) and are
not case sensitive. Multiple commands per call are not allowed.

Commands:

-r: link the files specified in the file list following the command to a resource
object (*.pcd file).

101 / 297

OpenPCS Programing System

OpenPCS Tools

-t: link files specified in the file list following the command to a task object
(*.crd file)

In both cases the linker requires the project file path and the make file path. The
project file path has to be prefaced by "-v" and the make file path by "-m".

Options:

-o: specify an output directory or the target path name if a single resource is
built. If -o is followed by a directory name the targets are stored in the
specified directory.

-g: the input files (the files specified after the command) contain object
information about the resource global variables.

-s: the file specified after the option contains the packed sources of the
resource. The content of this file is inserted in the resource global segment
table. This option is valid only in combination with the command "-r".

-x: dump object files

-w: by using this flag the user can specify the output level for the output
information. It has to be followed by an integer that indicates the output
level. The following values are defined for the "OutputLevel":

0: print all available information. I. e. errors, warnings and info-messages.

2: suppress warnings.

4: suppress info-messages (e.g. Compiling c:\test\test.poe).

6: suppress warnings and info-messages.

Please note that error messages are printed always and can not be
suppressed.

2.18.4 Make

2.18.4.1 Make Command Line

ITMake [-p | (-m <makefilename> | -u <ArchiveFileName> -v) | -y] <Varfilename>
{ -o <OutputDir> | <Outputfilename> } {-i } { -s } {-w<OutputLevel>} {-b}

The commands and options are preceded by either a slash (/) or a dash (-) and are
not case sensitive. Multiple commands per call are not allowed.

Commands:

-p: build all resources in the specified project(s). This command must be
followed by at least one project-file-path (VAR-file-path).

-m: build the specified resources. This command must be followed by a list of
resource file names and the specifier -v followed by the project-file-path.
The resources to be build, must all be part of the project specified by the
VAR-file-name.

-u: uncompress archive. This command must be followed by a file name which
contains the archive to uncompress.

-y: create the initial data segment of all POUs in the project and write it in a
text file. This command should be used, to obtain the initial data segment
of firmware POUs for the <hardware>.ini file.

Options:

-o: with this option the user can specify an output directory or the target path
name, if a single resource is built. If -o is followed by a directory name the
target(s) is stored in the specified directory.

-e: this option is reserved for future implementations. It enables the user to
specify a target path for output messages. If an error file is specified, the

102 / 297

OpenPCS Programing System

OpenPCS Tools

user output is printed in the specified file instead on stdout. If -e is followed
by a directory name an error file is created for every compiled or linked
entity and the error files are stored in the specified directory.

-i: Incremental build, i. e. only changed files and files affected by this changes
are recompiled and linked.

-s: Use short file names. ITMake presupposes that the filenames of POUs
whose names are longer than eight characters are cutted down to eight
characters.

-w: by using this flag the user can specify the output level for the output
information. It has to be followed by an integer that indicates the output
level. The following values are defined for the "OutputLevel":

0: print all available information. I. e. errors, warnings and info-messages.

2: suppress warnings.

4: suppress info-messages (e.g. Compiling c:\test\test.poe).

6: suppress warnings and info-messages.

Please note that error messages are printed always and can not be
suppressed.

-l: ITMake saves the input file list into a file and transfers it to ILC or ItLink by
default. This enables compiler to deal with string’s length limitation (64k).
Use this parameter to transfer the input file list as part of command line.

2.19 Licence Editor

2.19.1 Licence Editor: Overview

The Licence Editor is invoked automatically during Setup of OpenPCS. It can later be
launched by selecting "Licence" from the Help menu of the OpenPCS Browser:

103 / 297

OpenPCS Programing System

OpenPCS Tools

Enter your name and company information on top, and up to nine pairs of serial
numbers and licence codes in the boxes below.

Notes:

1. If you have got a valid licence, run this licence.

2. For details on licences installed, press "Info".

2.19.2 Usage without Licence Key

Without a licence OpenPCS is still full functional, but restricted to the Simulation .

3 Advanced Topics

3.1 Runtime issues

3.1.1 Multitasking

Multitasking is highly target dependent. The behavior described here is the standard
as implemented by OpenPCS, but can be different for any particular target device. If
in doubt, check with the supplier of your controller.

OpenPCS supports all three tasks types defined by IEC61131-3:

Cyclic tasks will be executed when no timer or interrupt tasks are ready to run. The
priority that can be specified in the task properties will be interpreted as a cycle
interleave, e.g. priority = 3 will have this task executed only every third cycle. No
particular execution order is defined by OpenPCS amongst multiple cyclic tasks

timer tasks will be executed every N milliseconds, with N specified in the task
properties.

Interrupt tasks will be executed as soon as the interrupt occurs they are linked to.
The SmartSIM simulation does support interrupt tasks (see how to provoke them).

As an example a resource has four tasks like in the following table:

Task time Priority

zykl1 needs 40
ms

1

zykl2 needs 20
ms

10

timer1 every
10ms;
needs 2ms

1

timer2 every
50ms;
needs 2ms

2

104 / 297

OpenPCS Programing System

Advanced Topics

3.1.2 Interrupts

Interrupt tasks are executed immediately after an interrupt rises. There are three
different interrupt types pre-defined in OpenPCS supported by infoteam SmartSim
and infoteam SmartPLC/OPC. Please see documentation of your OEM for supported
interrupt types.

Interrupt types:

1. STARTUP: rises each time the PLC is started (Coldstart/Warmstart/Hotstart).

2. STOP: rises each time the PLC is stopped.

3. ERROR: rises each time an error is risen.

These tasks are executed once. To gain specific information and manipulate it use
firmware function blocks like Resume and ETRC.

3.1.3 Optimisation Settings

OpenPCS supports optimization settings "speed", "size" and "normal". "Size" will
generate only UCODE and no native code. A native code compiler will not be
invoked. "Normal" will compile UCODE and native code with mixing of both enabled
for optimum debugging support. If the native code compiler supports "direct calls",
these will not be used. "Speed" will yield an error message if any portion of the
application cannot be compiled with native code. If the native code compiler
supports direct calls, these will be used.

3.1.4 Multiple Resources

OpenPCS supports multiple resources. To work with multiple resources, just create
new resources in your project. Remember that source code (from the project in the
file-pane) can easily be used on different resources. To go online, download or
compile, set the active resource before.

If you have not only a few, but plenty of resources (20, 50, or 200) that you need
to update, download and start simultaneously, there are "batch online" features
available as options to OpenPCS. Contact your OEM or infoteam for availability.

http://dict.leo.org/ende?lp=ende&p=5tY9AA&search=immediately

105 / 297

OpenPCS Programing System

Advanced Topics

3.1.5 Variable Address

In some applications, it is necessary to determine at run-time the address of a
variable, given its name. Some Human Machine Interfaces, and some Network
interfaces rely on that being possible.

OpenPCS can download symbolic information to support this. Compile Option "Mapfile
" needs to be enabled. Use function block GetVarFlatAddress to get address
information then.

As applications can contain many symbolic variables, only a filtered sub-set is
downloaded to the controller. By default, only global variables are downloaded, but
this filtering is open to modification by OEMs, e.g. to filter by variable name.

3.1.6 Performance

There are some obvious and some not so obvious factors influencing the
performance of your application:

Obvious factors include the performance of your platform, including I/O and
networks, the size of your application, measured in lines of code or in bytes required
at runtime. A native code compiler, if available, will typically increase performance.

Not so obvious factors include

1. Task structure of your application: more tasks will typically reduce performance
due to additional overhead in task switching. Removing code from fast, or cyclic
tasks, and moving it to less often executed timer tasks, or executing them only
when needed in interrupt tasks, can on the other hand tremendously increase
throughput.

2. While native code typically executes faster, task switching is less responsive.
So even when native code is available, there is reason to leave the cyclic task
with UCODE (optimization size) and have only timer and interrupt tasks in native
code for maximum performance and minimum task switch and jitter.

3. While all code compiled to the target uses Instruction List as the common
intermediate language, code produced by the different editors varies. While for
some applications some languages might be the best choice, things can be
completely different for other applications. Carefully evaluate the different
editors and languages and pick your favourite ones for the different applications.

3.1.7 Adjusting order of cyclic tasks

The compiler uses the task order of the resource makefile, as shown on the
resource pane, to link the tasks into the resource. The runtime system uses this
order to execute cyclic tasks. On the resource pane of the browser two new
context menu entries have been added. With "Move up" and "Move down" the order
of the tasks can be modified. The priority, set in the task properties still has the
same meaning for cyclic tasks.

106 / 297

OpenPCS Programing System

Advanced Topics

3.2 Native Code Compiler

3.2.1 Native Code

OpenPCS supports UCODE and NATIVE CODE.

Native Code is optional, but available for most platforms. While UCODE is optimized
for portability between platforms, fast task switches and small memory footprint,
NATIVE CODE is optimized for execution speed on one particular platform. On
application level, the programmer can select which code to use via the Optimisation
Settings on resource or task level.

Some debugging features of OpenPCS are available with UCODE only, so if you
intent to use one of these, be sure to set optimsation to "size": this includes
Breakpoints and online display in Ladder Diagram as well as the POU Editor, Online
Change.

The OpenPCS RunTime System typically allows for task switches to be triggered
after each and every UCODE instructions, i.e. quite frequently even within small
loops. This is not possible with native code. If no direct calls are being used, the
run-time checks for task switches at each call/return. With direct calls, it checks for
task switches only after one task has completely finished.

Execution of native code typically is faster than execution of UCODE, with the
speed-up factor depending on the processor, the implementation of the run-time
system and the native code compiler, the C-compiler used to compile the run-time
system, the application, the memory architecture, e.g.: if not using "direct calls",
calling a function block with native code may be slower than calling the function
block with UCODE, due to calling convention conversion. Hence, if your application
uses plenty of tiny blocks, speed-up may be below expectation. With complex
instructions (e.g. sine or real-divide), UCODE overhead may be comparably small,
hence the speed-up gained with native code may be small as well.

The virtual UCODE machine within the run-time system will do some checks while
executing the UCODE. In native code, most of this checking is omitted because it

107 / 297

OpenPCS Programing System

Advanced Topics

would add significant run-time overhead and the ultimate reason to use native code
is speed improvement. It is strongly recommend that you carefully test and debug
your application with UCODE first before using native code. If you need a native
code compiler containing checking, contact infoteam. Checks not available with
native code include array subscript overflow/underflow and string length checking

3.2.2 Direct Calls

Some Native Code Compilers implement a feature named "direct calls". This will avoid
overhead during switching of function blocks, i.e. with CAL and RET, executing
these directly as a call to a subroutine, and return respectively, in assembly
language. This yields performance gain, but reduces responsiveness to task
switching. If you are using one task only, this should greatly increase performance,
if you are using multiple tasks, this could result in much larger jitter.

Direct calls will only be used with optimization speed.

3.2.3 Exception Handling in native code

Unless noted otherwise, code created by the native code compilers will, for
performance reasons, not check for exceptions, like division by zero or invalid array
index. Therefore it is recommended that you carefully test your application using
optimization setting size first, and only then switch to native code.

3.2.4 Unknown instructions

While infoteam Software attempts to build all native code compilers in a way so
they can always compile the full UCODE instruction set, there is always the
possibility that some native code compiler can not compiler some UCODE instruction,
for a variety of reasons.

If that happens, the Native Code Compiler will report this and not create native
code for the POU containing that code. A double click on that message in the
Browser's Output Window should locate you to that line.

If optimization is set to "speed", this message will be an error. Either modify your
code to not contain that instruction, or set optimization to "default".

In optimization "default", this POU will be executed in UCODE, while all others would
be executed in native code, if possible.

3.2.5 Span segments

With OpenPCS, all segments are limited to 64k Bytes in size. As native code typically
is larger than UCODE, this can easily lead to the fact that some application can only
be run in UCODE and not in native code due to this limitation. Some native code
compilers implement a feature "span segments", which will allow segments to exceed
64k for that reason.

3.2.6 NCC Intel Protected Mode

The NCC86 will check for invalid array index and division by zero exceptions.

The NCC86 does implement the span segments feature.

The NCC86 does implement the direct calls feature.

108 / 297

OpenPCS Programing System

Advanced Topics

3.2.7 NCC Infineon C16x (huge model)

The NCC167H does implement the direct calls feature.

3.2.8 NCC Motorola 68K

The NCC68K does implement the span segments feature.

The NCC68K does implement the direct calls feature.

3.2.9 NCC Hitachi H8/300H

The NCCH8300H will check for exceptions invalid array index and division by zero.

3.2.10 NCC Motorola DSP563xx

This NCC is only available in custom versions of OpenPCS.

3.2.11 NCC Intel Real Mode

This NCC is only available in custom versions of OpenPCS.

3.2.12 NCC Motorola PowerPC

The NCC will check for invalid array index and division by zero exceptions.

The NCC does implement the direct calls feature.

3.2.13 NCC ARM ARM Mode

The NCC ARM will check for invalid array index and division by zero exceptions.

The NCC ARM does implement the span segments feature.

The NCC ARM does implement the direct calls feature.

3.2.14 NCC ARM THUMB Mode

This NCC is only available in custom versions of OpenPCS.

3.3 Documentation

3.3.1 Crossreference

See also Cross-Reference (per variable) and CFC Crossreference.

To create a cross reference list for your project, right-click the active resource and
select "crossreference list..." from the context menu.

A preview of the cross reference will be displayed, which can either be viewed and
navigated online, or printed.

109 / 297

OpenPCS Programing System

Advanced Topics

3.3.2 Cross-Reference (per variable)

To view a cross reference list for a certain variable right click the variable in the
resource pane and select "Crossreference List" from the context menu.

See also Cross-Reference list for visualizing a Cross-Reference information.

3.3.3 Print IEC61131 Configuration

In order to get a printed documentation of the configuration of your resource and
tasks, select the configuration in the Browser's resource view an choose "Print
Configuration" in the context-menu.

3.3.4 CFC Crossreference

The CFC cross-reference is a valuable aid in debugging and understanding execution
of CFC charts.

The OpenPCS standard cross-reference is of limited use to CFC programmers, as
most symbols listed in that cross-reference will be symbols which names have been
created automatically by the CFC Editor and have no meaning to the programmer.

To create the CFC cross-reference, select File -> Crossreference, or print the chart
to see the cross-reference on paper. The cross-reference stored in file is less legible,
but better suited to automatic post-processing with third party tools (like grep,
awk).

The CFC cross reference is listed in the form

source: name [chart] page line

destination1: name [chart] page line

destination2: name [chart] page line

where

1. source is a name on the right margin bar, i.e. designs a signal leaving one
compound block

2. destination is a name on the left margin bar, i.e. designs a signal entering a
compound block

3. name is the variable name automatically generated by the CFC editor for that
signal. Use that name to find this signal in the Test and Commissioning Tool to
monitor the value of that signal.

4. chart is a path of names of compound blocks. Use that to find the location either
in CFC-Editor by opening one sub-compound block after the other in the specified
order, or by locating the printed chart via the table of contents.

5. page is the page of the printout, where the corresponding source/destination is
found.

6. line is the position of the connection at the block corresponding to the margin
bar.

The entries are sorted by source/destination, refer to the file stored if you need
other sort sequences.

110 / 297

OpenPCS Programing System

Advanced Topics

Note: If IEC61131-variables are used as connectors, there may be more than one
source line. They have the following form

varname{scope}: ...

where

varname is just the name of the variable.

scope is represents the declaration section of the variable.

CFC Cross Reference sample

We use a small sample to demonstrate the CFC cross reference.

Set up a small CFC program, using two blocks (ADD and SUB), to add 23 to one
input variable, then subtracting one from the result:

Now move block ADD into a compound block A and block SUB into a compound block
C. Open block A and move ADD further down into a new compound block B. Open
block C and move the SUB block further down into a new compound block D. Enter
reasonable names for all margin bar entries. If you open all blocks, the result will
look like that:

111 / 297

OpenPCS Programing System

Advanced Topics

With this small sample, output of the CFC cross-reference will look like:

B_Out: FCT_10_10_10_1_ADD_OUT [SAMPLE.chart 1.Block A.Block B] page 4 line 5

 D_1: FCT_10_30_10_1_SUB.IN0 [SAMPLE.chart 1.Block C.Block D] page 6 line 5

B_Out: FCT_10_10_10_1_ADD_OUT [SAMPLE.chart 1.Block A.Block B] page 4 line 5

 D_1: FCT_10_30_10_1_SUB.IN0 [SAMPLE.chart 1.Block C.Block D] page 6 line 5

in1{VAR}:

 B_1: FCT_10_10_10_1_ADD.IN0 [SAMPLE.chart 1.Block A.Block B] page 4 line 5

in2{VAR}:

 B_2: FCT_10_10_10_1_ADD.IN1 [SAMPLE.chart 1.Block A.Block B] page 4 line 6

With this, the following questions are easily answered:

Looking at the ADD block: where does this output signal go to? Find the name of the
output signal, B_Out. See cross-reference to find it goes to nameD_1 in block
chart1.BlockC.BlockD.

112 / 297

OpenPCS Programing System

Advanced Topics

looking at the SUB-block: where does the input signal come from? Find the name of
the input signal D_1, locate D_1 in the cross-reference and find it comes from
B_Out. (as the list is sorted by source names, this is easier to find by opening the
file with some editor than by looking at the printed cross-reference)

How can I monitor that signal entering the SUB-block online? Find the name of the
SUB-blocks input in the margin bar (D_1), locate that in the cross-reference and
read the name of the IEC61131-variable associated to it
(FCT_10_30_10_1_SUB.IN0). Find that variable in the Browser's instance tree and
double click it to have it added to the watch list.

3.3.5 Print-Options

All OpenPCS tools support forms for printing, and will automatically use the print
form assigned to the project. If no print form is assigned to a project a default
header and footer is printed.

To configure the project print form choose Extras->Tools->Print-Options: There
the print form can be selected, print form depending aliases (*) can be set, date
and time format can be localized.

Additional options:

1. Print front page: a front page is printed consisting of the current print form and
a rich text file "cover.rtf" located in the project folder. If "cover.rtf" is missing,
only the print form is printed.

2. Print comments: cfc commentaries are printed on additional pages (after the
corresponding chart) (only cfc).

3. Print comments and flags: cfc commentaries and an itemization of existing
connection flags including name, global ID, page number and grid position are
printed on additional pages (after the corresponding chart). (only cfc)

4. Print comments on previous page: The additional pages for comments are
printed preceding to the the corresponding chart. (only cfc)

Note: The aspect ratio of the print form should correspond to the printer
configuration (especially when the print form contains images). The size is
independent.

3.3.6 Active Document Server

OpenPCS contains an Active Document Server Interface, this means that all
registred active documents are supported by OpenPCS, can be opened by OpenPCS
and can be edited by OpenPCS.

When opening such a file, the document is opened in the editor window part of
OpenPCS as in the figure below.

113 / 297

OpenPCS Programing System

Advanced Topics

Attention: Depending on the system configuration and installed applications with
active document server, the files that can be edited by OpenPCS may vary from PC
to PC.

Warning: If the active document server, which is not part of OpenPCS, is not
stable, this will also lead to an unstable performance of OpenPCS.

3.4 Libraries

3.4.1 Library: Overview

Libraries are collections of functions and function blocks that can be re-used over
different OpenPCS projects.

Working with libraries involves several steps: a library is first created, pretty much
like any other OpenPCS project. If creator and user are different, it is then
distributed via Floppy Disk, CD-ROM, or Internet, and made available to the user.
The user will install the library, i.e. transfer the library to his own PC. To use a
library with an OpenPCS project, the library has to be added to this project, this
making the contents of the library available for use.

To get rid of a library within a project, the library can be removed from this project.
This can be necessary if a different implementation of the same library should be
used instead.

To remove a library completely from a PC, the library can be uninstalled. This can be
necessary if the library should be used on a different PC and licensing conditions
require it to be removed prior.

The following chapters will give a sample on how to do a library of your own.

3.4.2 Create a Library

To create a library, proceed just like creating any normal OpenPCS project. Be sure
to perform a syntax check when finished creating POUs (functions or function
blocks) in your library project.

If you receive a library from your supplier, you will not have to "create" that library.
Proceed with "installing" this library instead!

114 / 297

OpenPCS Programing System

Advanced Topics

Example:

Start the Browser and create a new project named "MyLib" using Project->New...

Create a function block named "det_edge" (for edge detection): New->
Functionblock->IL. Implement this function block as shown below:

VAR_INPUT

input : BOOL ;

END_VAR

VAR_OUTPUT

output : BOOL ;

END_VAR

VAR

tempvar : BOOL ;

END_VAR

LD input

ANDN tempvar

ST output

LD input

ST tempvar

Invoke a syntax check with File->Syntaxcheck .

3.4.3 Install a Library

Before you can use a library, you have to install it on your PC. Use Project-

>Library->Install New...

Use the "browse"-button to locate the .VAR file representing your project. If you
created the library yourself, this will be in the directory you specified when creating
the library project with Project->New.... If you received the library on a disk, this
can be something beginning with "A:\". During installation, the library project will be
copied into a sub-directory of <windows>\ openpcs.500\Lib.

Example:

Create a new project in the Browser using Project->New.... Name that new project
"TEST".

Select Project->Library-> Install New....

Now use the browse-button to locate the MyLib-project you created just before and
press "Ok".

3.4.4 Adding a Library to a project

After installation, all files needed for the library will be present on your computer.
But the functions and function blocks in that library will not be automatically
available in your projects. You have to "add" the library to the project first using
Project->Library->Use in current project.

115 / 297

OpenPCS Programing System

Advanced Topics

Example:

Mark the Library "MyLib" in the Library-Pane and select Project->Library->Use in

current project .

Create a new POU of type PROGRAM, named "main". Select Insert-
>Functionblocks.... to see your library functions. To use your function block
DET_EDGE, implement program "main" as shown below:

VAR

sig1 AT %I0.0 : BOOL ;

anEdge : DET_EDGE;

count : UINT ;

END_VAR

CAL anEdge (

input := sig1

|

:=output

)

LDN anEdge.output

JMPC ende

LD count

ADD 1

ST count

ende:

Compile that program, add it to a resource of your choice and execute it. Change
input %i0.0 and see variable count incremented.

3.4.5 Uninstall Library

If you want to get rid of a library installed on your PC, make sure the library is not
used any more, mark it and select Project->Library->Uninstall. In the dialog

shown, select the library to get rid of and press OK.

Example:

Mark the Library "MyLib" in the Library-pane.

Select Project->Library->Uninstall. In the dialog, select <Windows>\

openpcs.500\MyLib".

Press OK, and "MyLib" is no longer available as a library.

116 / 297

OpenPCS Programing System

Advanced Topics

3.5 CANopen

3.5.1 CANopen: introduction

This manual describes the integration of CANopen services in PLC programs
according to the IEC61131-3 standard. Such CANopen integration allows use of
networked variables, as well direct access to CANopen parameters and functions via
predefined function blocks. This requires a PLC with a CANopen interface.

CANopen services for PLC programs according to the IEC61131-3 standard are
defined in the CiA (CAN in Automation e.V.) Draft Standard 405. These standards
are the basis for providing these CANopen functions.

Using Networked Variables

Networked variables are the easiest way of data exchange in a CANopen network
system. Within the PLC, program access to the network variables occurs in the
same way as access to internal, local variables on the PLC. From the point of view
of a PLC programmer it is unimportant whether a input variable is assigned to a local
input on the PLC device or to an input on a networked expansion device. The use of
networked variables only requires basic knowledge of CANopen. In general, a
CANopen configuration tool as well as the availability of EDS files for the individual
CANopen devices are required for integrating network variables into a PLC.

Using CANopen Function blocks

CANopen function blocks enable direct access to specific CANopen services, thus
offering a high degree of flexibility in the target application. Furthermore, using
these function blocks does not require an additional CANopen configuration tool or
EDS files. However, using the CANopen function blocks assumes that the user has
detailed knowledge about CANopen and its services.

3.5.2 CANopen network variables

A variety of control devices are capable of exchanging data via CANopen network
features, or can be expanded by connecting additional CANopen I/O modules to the
CAN bus. Data exchange always occurs via network variables on the PLC program
level. According to the IEC61131-3 standard, these variables are declared as
"VAR_EXTERNAL" and therefore marked as "external of the control unit". The PLC
itself keeps a local copy of these variables, whereas the network layer is responsible
for assigning and synchronizing the actual values with the value of the networked
CANopen device.

From the point of view of CANopen, the PLC represents a "regular" I/O module, with
its inputs and outputs not available to the user on standard connectors, but in form
of network variables mapped into the process image. The appearance of the PLC, in
regards to its networked inputs and outputs, can change depending on the number
and size of the network variables used in the PLC program. This means that the
same PLC can appear differently to the CANopen network if different PLC programs
are executed. In order to support such flexible behavior, the PLC utilizes a dynamic
Object Dictionary, a structure for managing variables as well as communication and
mapping parameters similar to the ones used in databases. Regular CANopen I/O
modules usually have a static Object Dictionary.

117 / 297

OpenPCS Programing System

Advanced Topics

PLC network variables are stored in the index range A000h - AFFFh within the Object
Dictionary in accordance with the CiA Draft Standard 405.

The following terms are important for further explanations of the integration of
control units with decentralized I/O expansion modules:

CANopen I/O module:

The CANopen I/O module represents a device that provides certain resources, such
as input and output channels to the network. Such a module is considered as a
Slave device from the Network Management's (NMT) point of view.

Mapping:

Mapping describes the connection between variables, as well as inputs and outputs
to the corresponding bytes and bit positions within a CAN message.

CANopen Configurator:

The CANopen Configurator or Configuration Tool is a special software tool that
enables design and management of CANopen networks, interconnection of inputs
and outputs on various devices, as well as configuration of network parameters.
Furthermore, the CANopen Configurator is used to connect network variables of a
PLC program to the corresponding inputs and outputs on the CANopen I/O module. A
CANopen Configurator is always a separate software tool and NOT included in
the delivery contents of the OpenPCS IEC61131 programming system. We
recommend the program "ProCANopen" available from the company Vector
Informatik.

EDS File:

The EDS file (Electronic Data Sheet) is provided by the manufacturer of a CANopen
device. The file describes the basic device characteristics, such as available I/Os,
factory default mapping and network communication configuration, as well as
parameters that can be modified by the user.

DCF File:

The DCF file (Device Configuration File) is generated by the CANopen Configurator
as a result of the configuration process. The CANopen Configurator uses the EDS file
as a template and adds available entries via parameters configured by the user
including identifier and mapping.

In order to assign decentralized I/Os to a PLC, the active network variables are
linked to applicable inputs and outputs on the CANopen I/O module within the PLC
program. In general this requires the use of a CANopen Configurator. In contrast to
standard CANopen I/O devices, there is no EDS file available for a PLC that indicates
the number and type of available inputs and outputs. On a PLC only the user
defines, with its specific application program, the number and type of inputs and
outputs are accessible via the CANopen network. This is done by defining the
corresponding network variables. For this reason, only a generic EDS file is available
for PLCs which define that the control unit supports dynamic objects.

118 / 297

OpenPCS Programing System

Advanced Topics

3.5.3 Configuration process

The EDS file is the most important item for the configuration process of I/O units.
The CANopen Configurator reads the EDS file and allows access to resources
provided by the CANopen I/O module from the users application. In this
configuration process, the user defines characteristics, such as which inputs and
outputs are used, which bit or byte position of a CAN message carries the
corresponding I/O value (mapping) and which identifier is used for the CAN message.
As a result of the configuration process, the CANopen Configurator creates a DCF
file for each individual node. Such manual configuration, however, is only required if
the user needs to change the default parameters (identifier, mapping) given by the
device manufacturer. The standard parameters are calculated and assigned using a
defined algorithm with an adjustable node number (node ID). Further information
about this process can be found in the applicable Systems or Hardware Manual for
the CANopen I/O device.

119 / 297

OpenPCS Programing System

Advanced Topics

In contrast to I/O devices with static inputs and outputs, a PLC features dynamic
objects, in other words, the current network variables defined in the corresponding
PLC program. Because the manufacturer has no knowledge about objects created
during runtime, corresponding object entries do not appear in the EDS file.
Therefore, a Configurator is always required when linking dynamic objects. The
results of the configuration process are then stored in the DCF file. The IEC61131
programming system utilizes the DCF file generated by the Configurator in order to
assign the network variables declared as VAR_EXTERNAL and, furthermore, creates
the necessary control information for the network layer.

The network parameters used to exchange process data are defined according to
user requirements with the help of a CANopen Configurator. These parameters are,
for example, the transmission mode (synchronous, asynchronous), the assigned

120 / 297

OpenPCS Programing System

Advanced Topics

identifiers or the mapping. Furthermore, the Configurator enables the user to create
a linking system that is essential for network variables between the PLC and the
CANopen I/O modules. Symbolic names are assigned to process data (usually inputs
and outputs) on the individual I/O module. This allows the PLC program to easily
access these network variables at a later point.

The DCF file for the PLC functions acts as the interface between the CANopen
Configurator and the OpenPCS programming environment. This configuration file
needs to be connected to the corresponding hardware. This provides the control
unit with all necessary network information for process data exchange with the
CANopen I/O modules.

3.5.4 Insert a DCF-file into OpenPCS

If your hardware supports CANOpen, you can insert a DCF-file into your OpenPCS
project with the dialog Edit resource :

If this input field does not exist in your dialog box, please contact the manufacturer
of your hardware.

3.5.5 Declaration of CANopen network variables

Network variables used in a PLC program are declared with the keywords
VAR_EXTERNAL ... END_VAR. Thus, they are marked as "outside of the program"
and furthermore as "outside of the PLC". However, declaration of network variables
is the same as for local variables.

VAR_EXTERNAL

 NetVar1 : BYTE ;

 NetVar2 : UINT ;

END_VAR

Similar to the section VAR in the free variable editor the section VAR_EXTERNAL
must be entered by hand. When using the syntax controlled variable editor the
network variables must be defined in the section External. Switching between free
and syntax controlled variable editor is done with the menu <Extras -> Variable
Editor> located in the "POE-Editor" program.

121 / 297

OpenPCS Programing System

Advanced Topics

The same symbolic names that are defined for the process data in the
corresponding DCF file must be used as names for the network variables. The
variable name is the common relation between the IEC61131 PLC and CANopen.

A data type that is compatible for both IEC61131 and CANopen must be chosen as
type of the network variables.

According to the IEC61131 standard the chosen data type must match the usage of
the network variable (logic, arithmetic) when declaring the variable in the PLC
program. No clear arrangement between IEC61131 and CANopen is however
available.

Note:

No clear arrangement in regards of data types between IEC61131 and CANopen is
available. For this reason the IEC61131 data type used in the PLC program must be
select according to the usage of the corresponding variable.

Data Type Assignment between IEC61131 and CANopen:

IEC61131 CANopen Usage Data Size (Bit)

BOOL Boolean Logic 1

BYTE Unsigned
8

Logic 8

USINT Unsigned
8

Arithmetic
(unsigned)

8

SINT Integer8 Arithmetic
(with sign)

8

WORD Unsigned
16

Logic 16

UINT Unsigned
16

Arithmetic
(unsigned)

16

INT Integer16 Arithmetic
(with sign)

16

DWORD Unsigned
32

Logic 32

UDINT Unsigned
32

Arithmetic
(unsigned)

32

DINT Integer32 Arithmetic
(with sign)

32

REAL Float Arithmetic 32

3.5.6 Synchronisation

The majority of the CANopen function blocks for the IEC61131-3 are implemented
asynchronously with the PLC program. The process synchronization between
CANopen and the PLC program occurs with the help of the component signals
ENABLE and CONFIRM.

122 / 297

OpenPCS Programing System

Advanced Topics

Process Synchronization Between CANopen and the PLC Program

A CANopen service implemented asynchronously with an PLC program is processed
completely in the following steps:

After the PLC program has initialized all the input variables, it sets the input ENABLE
to TRUE and gives the command that the CANopen component be called (call #1).
The component recognizes a positive transition on the input ENABLE, and
subsequently takes on all input values and starts the corresponding CANopen
service (step (a)). Finally the component returns to the PLC program, whereby the
initiated CANopen service continues to be processed in the background.

By the time the CANopen service has been completely processed the function block
will be called multiple times by the PLC program. The input ENABLE must remain set
to TRUE during this time, in order to allow for the execution of the CANopen service
in the background (calls 2 and 3).

After successful completion of the CANopen service, the function block sets its
output CONFIRM to TRUE. This signals to the PLC program the end of the service by
CANopen and also shows that any additional output variables are now set with valid
values (for example with the data read from a node, step (b), call 4).

The PLC program provides the function block with proof that the CANopen service
has been completed by setting the input ENABLE to FALSE. At the same time the
PLC program signals that it has adopted the output variable delivered by the
function block (step (c), call 5). In the last step the function block sets its output
CONFIRM back to FALSE, so that the system is back in its output state (step (d)).

Note:

As a rule, the network layer allows the execution of only one CANopen service that
is not simultaneous with the execution of the PLC program. With the start of this
service by setting the input ENABLE to TRUE (step 1), access to the network layer
is locked, preventing use by other function blocks. This lock state is maintained until
the function block in question is called once again (step 4) by setting the ENABLE
input to FALSE again after completion of the service (FB sets its output CONFIRM to
TRUE, step 3). The intermediate call of the other CANopen function block will lead to
the error report TRANSFER_BUSY on the ERROR output.

The output CONFIRM changes from FALSE to TRUE only after successful completion
of the current CANopen service. Possible errors are shown on outputs ERROR and
ERRORINFO. Thus it is required that an PLC program monitors the value of ERROR in
additon to the output CONFIRM, in order to be able to evaluate errors that have
occurred as well.

123 / 297

OpenPCS Programing System

Advanced Topics

Calling the function block with the ENABLE input set to FALSE will cause the
CANopen service that is active in the background to abort, and result in an internal
reset of the function block. At the same time the output CONFIRM will be set to
FALSE and the outputs ERROR and ERRORINFO will be set to the value NO_ERROR.

3.5.7 CANopen constants

To characterize the internal error state of the network layer, the CiA Draft Standard
405 defines the specific data type "CiA405_CANOPEN_KERNEL_ERROR". The error
states which could occur within the local network layer of an PLC are summarized
below. These error codes are used by various function blocks as output parameter
ERROR.

Constants for Data Type "CIA405_CANOPEN_KERNEL_ERROR"

Constant Error Code

16#0000 (= 00 dec) NO_ERROR

16#0001 (= 01 dec) OTHER_ERROR

16#0002 (= 02 dec) DATA_OVERFLOW

16#0003 (= 03 dec) TIME_OUT

16#0010 (= 16 dec) CAN_BUS_OFF

16#0011 (= 17 dec) CAN_ERROR_PASSIVE

16#0021 (= 33 dec) GENERIC_ERROR

16#0022 (= 34 dec) FUNCTION_NOT_AVAILABLE

16#0023 (= 35 dec) NO_MASTER_MODE

16#0024 (= 36 dec) INVALID_DEVICE

16#0025 (= 37 dec) TRANSFER_BUSY

16#0030 (= 48 dec) NO_SDO_CHANNEL_ AVAILABLE

16#0031 (= 49 dec) SDO_BUSY

16#0032 (= 50 dec) SDO_INITIALIZE_ERROR

16#0033 (= 51 dec) SDO_LENGTH_ERROR

16#0040 (= 64 dec) NO_VALID_DATA_ AVAILABLE

16#0041 (= 65 dec) COBID_ALREADY_REGISTERED

16#0042 (= 66 dec) NO_FREE_COBID_TABLE_ENTRY

16#0043 (= 67 dec) NO_SUCH_COBID_REGISTERED

16#0044 (= 68 dec) NO_FREE_RECEIVE_CHANNEL

16#0045 (= 69 dec) DATA_LENGTH_ZERO_NOT_ALLOWED

To characterize the state of a CANopen device, the CiA Draft Standard 405 defines
the specific data type "CIA405_STATE".
The state value UNKNOWN and NOT_AVAIL are extensions to the existing standard.
All other constant values agree with the corresponding definitions of the CiA Draft
Standard 301.

Constants for the Data Type "CIA405_STATE"

Constants State Value

16#0000 INIT

16#0001 RESET_COMM

16#0002 RESET_APP

124 / 297

OpenPCS Programing System

Advanced Topics

16#0003 PRE_OPERATIONAL

16#0004 STOPPED

16#0005 OPERATIONAL

16#0006 UNKNOWN

16#0007 NOT_AVAIL

To characterize the state that a CANopen device is suppose to switch to, the CiA
Draft Standard 405 defines the specific data type "CIA405_TRANSITION_STATE".
The constant values match the corresponding definition of the CiA Draft Standard
301.

Constants for the Data Type "CIA405_TRANSITION_STATE"

Constants State Value

16#0000 START_REMOTE_NODE

16#0001 STOP_REMOTE_NODE

16#0002 ENTER_PRE_OPERATIONAL

16#0003 RESET_NODE

16#0004 RESET_COMMUNICATION

In addition the CiA Draft Standard 405 defines the specific data types
"CIA405_SDO_ERROR" and "EMCY_ERR_CODE" and "EMCY_ERR_REGISTER". These
data types represent the error messages generated by another node.

The data type "CIA405_SDO_ERROR" is used for the parameter ERRORINFO of the
SDO function block and delivers the communication parameter's SDO abort code.
The general abort codes are defined in the CiA Standard 301, but can be expanded
by the manufacturer of the CANopen subassembly currently in use.

The data types "EMCY_ERR_CODE" and "EMCY_ERR_REGISTER" are used for the
corresponding parameters of the function blocks CAN_RECV_EMCY and
CAN_RECV_EMCY_DEV. They contain the emergency error information of the node
that generated the corresponding emergency message. The general emergency
errors are defined in the CiA Draft Standard 301, but can be expanded by the
manufacturer of the CANopen subassembly currently in use.

3.6 IEC61131-3

3.6.1 IEC61131-3 Details

3.6.1.1 Character String Literals

A string constant is sequence of characters enclosed in """. Special characters can
be embedded within a character string literal by using escape sequences starting
with the $ sign, as listed in the following table:

Predefined
character
constants

Meaning

 "$""" The Apostrophe """

 "$$" The $ sign itself

 "$L" or "$l" Line Feed

125 / 297

OpenPCS Programing System

Advanced Topics

 "$N" or "$n" New Line

 "$P" or "$p" Form Feed

 "$R" or "$r" Carriage Return

 "$T" or "$t" Tabulator

Example

Character
Constant

Meaning and Length

 "A" Single character A,
length=1

 " " Blank character, length=1

 "" No character, length=1

"RL" Carriage Return, Line Feed,
length=2

 "$0D$0A" Carriage Return, Line Feed,
length=2

3.6.1.2 Maximum String Length

Each string is delimited by a maximum length. The default maximum length of a
string is 32 characters. It can be changed setting an individual maximum string
length in round brackets immediately after the keyword STRING.

The maximum string length can be set to all values from 0 to 251. However this may
differ at other hardware.

Examples:

TYPE

name: STRING(15) := "John Q. Public";
(*maximum string length 15*)

address: STRING(50) := "Main Street 1, 12345 Springfield, ???";
(*maximum string length 50*)

END_TYPE

VAR

user: name; (*maximum string length
15*)

id: string(8) := "12345678"; (*maximum string length
8*)

phone : STRING; (*maximum string length
32*)

END_VAR

3.6.1.3 Constants

Within a literal constant, underscores are allowed to increase readability. Such
underscores have no meaning regarding the value of a constant. Literal constants
for some data types require a special prefix

Constant Data
Type

Example Meaning

INT -13
45165 or 45_165

Integer -13
Integer 45165 (both)

126 / 297

OpenPCS Programing System

Advanced Topics

+125 Integer 125

REAL -13.12
123.45
0.123
-1.23E-3

Real -13,12
Real 123,45
Real 0,123
Real -0,00123

Dual number 2#0111_1110 or 126 126

Octal number 8#123 or 83 83

Hexadecimal
number

16#123 or 291 291

BOOL 0 and 1
TRUE and FALSE

Boolean TRUE and FALSE
values

STRING "ABC" Character string ABC

WSTRING "ABC" 2-byte-character string ABC

TIME T#12.3ms or
TIME#12.3ms

Time duration of 12,3
milliseconds

T#12h34m or
T#12h_34m

Time duration of 12 hours and
34 minutes

T#-4m Negative time duration of 4
minutes

DATE DATE#1995-12-24 or
D#1995-12-24

Date 24.12.1995

TIME_OF_DAY

TOD#12:05:14.56 or
TIME_OF_DAY#12:05:14.56

12 hours05 minutes and 14,56
seconds PM

DATE_AND_TI
ME

DT#1995-12-24-12:05:14.56 or
DATE_AND_TIME#1995-12-24-
12:05:14.56

Date and time: 12 hours05
minutes and 14,56 seconds
PM on 24.12.1995

Literal constants of data types TIME, DATE and DATE_AND_TIME uses keywords
plus a hash sign "#". The keywords can be written in long (e.g. DATE_AND_TIME) or
short form (e.g. DT).

Note: DATE, TIME_OF_DAY and DATE_AND_TIME are currently not supported by
OpenPCS.

See also Elementary Data Types

3.6.1.4 Single Bit Access

With OpenPCS, each individual bit of BYTE or WORD variable can be accessed by
writing the bitnumber, separated by a dot, after the variable name

Example

PROGRAM Only_1_Bit

VAR
 Bitpattern1 : BYTE := 2 10101010;
 Bitpattern2 AT %IW0.0 : WORD;
END_VAR

LD Bitpattern2.15 (* Copy bit 15 *)
ST Bitpattern1.0 (* into bit 0 *)
.
.

END_PROGRAM

Please note that this feature might not be available on all hardware platforms for all
data types due to implementation restrictions.

127 / 297

OpenPCS Programing System

Advanced Topics

3.6.1.5 Passing Output Parameters

IEC61131 defines two ways of passing parameters. OpenPCS provides, as a legal
extension to IEC61131, a means to directly pass output parameters. You can pass
output parameters within the line of the CAL instruction by using a vertical slash "|"
instead of a comma, and giving the actual parameter on the left side of the
assignment:

Example

CAL SR_Instance_1(SET1 := On,
 RESET := Off
 |
 Result := Q1)

3.6.1.6 Nested Comments

Nested comments are not allowed.

3.6.1.7 Block Type: Program, Function, Function Block

A program in OpenPCS has the following characteristic properties, as defined by
IEC61131: Only the program is allowed to declare variables to be mapped to physical
addresses; A program is allowed to call functions and instances of function blocks.

A function block, as defined by IEC61131, has the following characteristic
properties: It may have one, more than one, or no inputs; It may have one, more
than one, or no outputs; Multiple instances can be created of a function block, and
each instance will keep a private copy of all data associated with that function
block (input, output, intermediate data); a function block cannot be called, only
instances can be called. The function block has a "memory", i.e. all data (input,
output, local) will keep it's value from one call to the next. On a call, it is not
necessary to supply all input data; those not provided will simply keep the value
from the previous call (or the default value if there was no call before). A function
block can call functions and instances of other function blocks.

A function, as defined by IEC61131, has the following characteristic properties: It
has one or more inputs (but no input is not allowed); It has exactly one output
value (which may be a structure); A function has no "memory" from one call to the
next, and it will return always the same output when given the same inputs. On
every call to a function, all inputs have to be supplied. A function may use local
variables for intermediate storage, but the value of these local variables will not be
kept from one call to the next. A function may call other functions, but it is not
allowed to call instances of function blocks.

3.6.2 IEC61131-3 Compliance Statement

3.6.2.1 Compliance Statement

The following tables have the same numbering as those in the IEC 1131-3/EN 61131-
3 standard. Tables showing features not yet supported by this version of OpenPCS
are not listed. Some tables in IEC61131-3 do not contain features, so missing table
numbers do not necessarily imply missing features. To understand this document,
you will want to consult IEC61131-3.

This version of OpenPCS complies with the requirements of IEC61131-3, for the
following language features:

128 / 297

OpenPCS Programing System

Advanced Topics

3.6.2.2 Table 1: Character Set Features

No. Description Yes No

1 Required
character set

x

2 Lower case x

3a

3b

Number sign (#)
or
Pound sign (£)

x

x

4a

4b

Dollar sign ($)
or
Currency sign

x

x

5a

5b

Vertical bar (|)
or
Exclamation mark
(!)

x

x

6a

6b

Subscript
delimiters:
brackets []
or
parentheses ()

x

x

3.6.2.3 Table 2: Identifier features

No. Description Yes No

1 Upper case and numbers x

2 Upper and lower case, numbers, embedded
underlines

x

3 Upper and lower case, numbers, leading or
embedded underlines

x

3.6.2.4 Table 3: Comment features

No. Description Yes No

1 Comments x

3.6.2.5 Table 4: Numeric Literals

No. Description Yes No

1 Integer literals x

2 Real literals x

3 Real literals with exponents x

4 Base 2 literals x

5 Base 8 literals x

6 Base 16 literals x

129 / 297

OpenPCS Programing System

Advanced Topics

No. Description Yes No

7 Boolean zero and one x

8 Boolean FALSE and TRUE x

3.6.2.6 Table 5: Character string literal features

No. Description Yes No

1 Empty string (length zero)

String of length one containing the single
character A

String of length one containing the
"space" character

String of length one containing the "single
quote" character

String of length two containing CR und LF

String of length five which would print as
"$1.00"

x

x

x

x

x

x

3.6.2.7 Table 6: Two character combinations in character strings

No. Description Yes No

2 Dollar sign ($$) x

3 Single quote ($") x

4 Line feed ($L or $l) x

5 New line ($N or $n) x

6 New page ($P or $p) x

7 Carriage return ($R or $r) x

8 Tab ($T or $t) x

3.6.2.8 Table 7: Duration literal features

No. Description Yes No

1a
1b

Duration literals without underlines:

Short prefix
Long prefix

x
x

2a
2b

Duration literal with underlines

Short prefix
Long prefix

x
x

130 / 297

OpenPCS Programing System

Advanced Topics

3.6.2.9 Table 8: Date and time of day literals

No. Description Yes No

1 Date literals (long prefix: DATE#) x

2 Date literals (short prefix: D#) x

3 Time of day literals (long prefix:
TIME_OF_DAY#)

x

4 Time of day literals (short prefix: TOD#) x

5 Date and time literals
(long prefix: DATE_AND_TIME#)

x

6 Date and time literals (short prefix: DT#) x

3.6.2.10 Table 10: elementary data types

No. Keyword Data type Yes No

1 BOOL Boolean x

2 SINT Short integer x

3 INT Integer x

4 DINT Double integer x

5 LINT Long integer x

6 USINT Unsigned short integer x

7 UINT Unsigned integer x

8 UDINT Unsigned double integer x

9 ULINT Unsigned long integer x

10 REAL Real numbers x

11 LREAL Long real numbers x

12 TIME Duration x

13 DATE Date (only) x

14 TIME_OF_D
AY or
TOD

Time of day (only) x

15 DATE_AND_
TIME
 or TD

Date and time x

16 STRING Variable-length character
string

x

17 BYTE Bit string of length 8 x

18 WORD Bit string of length 16 x

19 DWORD Bit string of length 32 x

20 LWORD Bit string of length 64 x

131 / 297

OpenPCS Programing System

Advanced Topics

3.6.2.11 Table 12: Data type declaration feature

No. Description Yes No

1 Direct derivation from elementary types x

2 Enumerated data types x

3 Sub range data types x

4 Array data types x

5 Structured data types x

3.6.2.12 Table 13: Default initial values

Description Initial value Yes No

BOOL, SINT, INT DINT,
LINT,

0 x

USINT, UINT, UDINT, ULINT 0 x

BYTE, WORD, DWORD,
LWORD

0 x

REAL, LREAL 0.0 x

TIME T#0s x

DATE D#0001-01-01 x

TIME_OF_DAY TOD#00:00:00 x

DATE_AND_TIME DT#0001-01-01-
00:00:00

x

STRING "(the empty string) x

3.6.2.13 Table 14: Data type initial value declaration features

No. Description Yes No

1 Initialization of directly derived types x

2 Initialization of enumerated data types x

3 Initialization of sub range data types x

4 Initialization of array data types x

5 Initialization of structured data types x

6 Initialization of derived structured data
types

x

3.6.2.14 Table 15: Location and size prefix features for directly represented
variables

No. Description Yes No

1 I: Input location x

132 / 297

OpenPCS Programing System

Advanced Topics

No. Description Yes No

2 Q: Output location x

3 M: Marker location x

4 X: (Single) bit size x

5 None: (Single) bit size x

6 B: Byte (8 bits) size x

7 W: Word (16 bits) size x

8 D: Double word (32 bits) size x

9 L: Long word (64 bits) size x

3.6.2.15 Table 16: Variable keywords for variable declaration

Keyword Yes No

VAR x

VAR_INPUT x

VAR_OUTPUT x

VAR_IN_OUT x

VAR_EXTERNAL x

VAR_GLOBAL x

VAR_ACCESS x

RETAIN x

CONSTANT x

AT x

3.6.2.16 Table 17: Variable type assignement features

No. Description Yes No

1 Declaration of directly represented, non-
retentive variables

x

2 Declaration of directly represented, retentive
variables

x

3 Declaration of locations of symbolic variables x

4 Array location assignment x

5 Automatic memory allocation of symbolic
variables

x

6 Array declaration x

7 Retentive array declaration x

8 Declaration of structured variables x

133 / 297

OpenPCS Programing System

Advanced Topics

3.6.2.17 Table 18: Variable initial value assignement features

No. Description Yes No

1 Initialization of directly represented, non-
retentive variables

x

2 Initialization of directly represented,
retentive variables

x

3 Location and initial value assignment to
symbolic variables

x

4 Array location assignment and
initialization

x

5 Initialization of symbolic variables x

6 Array initialization x

7 Retentive array declaration and
initialization

x

8 Initialization of structured variables x

9 Initialization of constants x

3.6.2.18 Table 19: Graphical negation of Boolean signals

No. Description Yes No

1 Negated input x

2 Negated output x

3.6.2.19 Table 20: Use EN input an ENO output

No. Description Yes No

1 Use of EN and ENO x

2 Use of EN and ENO x

3 FBD without EN and ENO x

3.6.2.20 Table 21: Typed and overloaded functions

No. Description Yes No

1 Overloaded functions (non type-dependent) x

2 Typed functions x

3.6.2.21 Table 22: Type conversion function features

No. Description Yes No

1 *_TO_** x

2 TRUNC x

134 / 297

OpenPCS Programing System

Advanced Topics

No. Description Yes No

3 BCD_TO_** x

4 *_TO_BCD x

Comment:

If you are using TIME-values, only TIME_TO_DINT, TIME_TO_REAL and DINT
TO_TIME are implemented. Other TIME-cast-functions are only available within the
Ladder-Diagram-Editor.

For no. 1, (*) is the input variable data type and (**) is the output variable data
type. The following data types are supported:

BOOL

BYTE

DINT

DWORD

INT

REAL

SINT

STRING

TIME

UDINT

UINT

USINT

WORD

3.6.2.22 Table 23: Standard functions of one numeric variable

No. Description Yes No

1 ABS x

2 SQRT x

3 LN x

4 LOG x

5 EXP x

6 SIN x

7 COS x

8 TAN x

9 ASIN x

10 ACOS x

11 ATAN x

135 / 297

OpenPCS Programing System

Advanced Topics

3.6.2.23 Table 24: Arithmetic standard functions

No. Name Symbol Yes No

12 ADD + x

13 MUL * x

14 SUB - x

15 DIV / x

16 MOD x

17 EXPT ** x

18n
18s

MOVE
:= x

x

3.6.2.24 Table 25: Standard bit shift functions

No. Name Ye
s

No

1 SHL x

2 SHR x

3 ROR x

4 ROL x

3.6.2.25 Table 26: Standard bitwise Boolean functions

No. Name Yes No

5 AND x

6 OR x

7 XOR x

8 NOT x

3.6.2.26 Table 27: Standard selection functions

No. Name Yes No

1 SEL x

2a MAX x

2b MIN x

3 LIMIT x

4 MUX x

136 / 297

OpenPCS Programing System

Advanced Topics

3.6.2.27 Table 28: Standard comparison functions

No. Name Yes No

5 GT x

6 GE x

7 EQ x

8 LE x

9 LT x

10 NE x

3.6.2.28 Table 29: Standard character string functions

No. Name Yes No

1 LEN x

2 LEFT x

3 RIGHT x

4 MID x

5 CONCAT x

6 INSERT x

7 DELETE xX

8 REPLACE xx

9 FIND x

3.6.2.29 Table 30: Functions of time data types

No. Name Operation Yes No

1

2

3

ADD TIME + TIME = TIME

TOD + TIME = TOD

DAT + TIME = DAT

x

x

x

4

5

6

7

8

9

SUB TIME - TIME = TIME

DATE - DATE = TIME

TOD - TIME = TOD

TOD - TOD = TIME

DAT - TIME = DAT

DAT - DAT = TIME

x

x

x

x

x

x

10

11

MUL

DIV

TIME * ANY_NUM = TIME

TIME / ANY_NUM = TIME

x

x

12 CONC
AT

DATE TOD = DAT x

Type conversion functions

137 / 297

OpenPCS Programing System

Advanced Topics

No. Name Operation Yes No

13

14

DATE_AND_TIME_TO_TIME_OF_
DAY

DATE_AND_TIME_TO_DATE

x

x

15 RTC x

3.6.2.30 Table 31: Functions of enumerated data types

No. Name Yes No

1 SEL x

2 MUX x

3 EQ x

4 NE x

3.6.2.31 Table 33: Function block declaration features

No. Description Yes No

1 RETAIN qualifier on internal variables x

2 RETAIN qualifier on output variables x

3 RETAIN qualifier on internal function blocks x

4a Input/output declaration (textual) x

4b Input/output declaration (graphical) x

5a Function block instance name as input
(textual)

x

5b Function block instance name as input
(graphical)

x

6a Function block instance name as input/output
(textual)

x

6b Function block instance name as input/output
(graphical)

x

7a Function block instance name as external
variable (textual)

x

7b Function block instance name as external
variable (graphical)

x

8a

8b

Textual declaration of

- rising edge inputs

- falling edge inputs

x

x

9a

9b

Graphical declaration of

- rising edge inputs

- falling edge inputs

x

x

138 / 297

OpenPCS Programing System

Advanced Topics

3.6.2.32 Table 34: Standard bistable function blocks

No. Name Yes No

1 SR x

2 RS x

3 SEMA x

3.6.2.33 Table 35: Standard edge detection function blocks

No. Name Yes No

1 R_TRIG x

2 F_TRIG x

3.6.2.34 Table 36: Standard counter function blocks

No. Name Yes No

1 R_TRIG x

2 F_TRIG x

3.6.2.35 Table 37: Standard timer function blocks

No. Name Yes No

1 TP (Pulse) x

2a TON (on-delay) x

2b T---0 (on-delay) x

3a TOF (off-delay) x

3b 0---T (off-delay) x

4 RTC (real-time clock) x

3.6.2.36 Table 39: Program declaration features

No. Description Yes No

1 RETAIN qualifier on internal variable x

2 RETAIN qualifier on output variable x

3 RETAIN qualifier on internal function blocks x

4a Input/output declaration (textual) x

4b Input/output declaration (graphical) x

5a Function block instance name as input
(textual)

x

5b Function block instance name as input
(graphical)

x

139 / 297

OpenPCS Programing System

Advanced Topics

6a Function block instance name as
input/output (textual)

x

6b Function block instance name as
input/output (graphical)

x

7a Function block instance name as external
variable
(textual)

x

7b Function block instance name as external
variable
(graphical)

x

8a
8b

Textual declaration of:
- rising edge inputs
- falling edge inputs

x
x

9a
9b

Graphical declaration of:
- rising edge inputs
- falling edge inputs

x
x

10 Formal input and output parameters x

11 Declaration of directly represented, non-
retentive
variables

x

12 Declaration of directly represented,
retentive variables

x

13 Declaration of locations of symbolic
variables

x

14 Array location assignment x

15 Initialization of directly represented, non-
retentive
variables

x

16 Initialization of directly represented,
retentive variables

x

17 Location and initial value assignment to
symbolic variables

x

18 Array location assignment and initialization x

19 Use of directly represented variables x

20 VAR_GLOBAL .. END_VAR
Declaration within a PROGRAM x

21 VAR_ACCESS .. END_VAR
Declaration within a PROGRAM x

3.6.2.37 Table 40: Step features

No. Description Yes No

1 Step graphical

Initial step graphical

x

x

140 / 297

OpenPCS Programing System

Advanced Topics

2 Step textual

Initial Step textual

x

x

3a Step flag general form x

3b Step flag - direct connection of Boolean
variable

x

4 Step elapsed time x

3.6.2.38 Table 41: Transitions and Transition conditions

No. Description Yes No

1 Transition condition using ST language x

2 Transition condition using LD language x

3 Transition condition using FBD language x

4 Use of connector x

4a Transition condition using LD language x

4b Transition condition using FBD language x

5 Textual transition in ST x

6 Textual transition in IL x

7 Transition name x

7a Transition condition using LD language x

7b Transition condition using FBD language x

7c Transition condition using IL language x

7d Transition condition using ST language x

3.6.2.39 Table 42: Declaration of actions

No. Description Yes No

1 Boolean variable as action x

2l graphical declaration in LD language x

2s inclusion of SFC elements in action x

2f graphical declaration in FBD language x

3s textual declaration in ST language x

3i graphical declaration in IL language x

3.6.2.40 Table 43: Step/action association

No. Description Yes No

1 action block x

2 concatenated action blocks x

141 / 297

OpenPCS Programing System

Advanced Topics

3 textual step body x

4 action block "d" field x

3.6.2.41 Table 44: Action block features

No. Description Yes No

1 qualifier as per 2.6.4.4 x

2 action name x

3 Boolean indicator variables x

4 IL language x

5 ST language x

6 LD language x

7 FBD language x

8 action blocks in ladder diagrams x

9 action block in function block diagrams x

3.6.2.42 Table 45: Action qualifiers

No. Description Yes No

1 None x

2 N (non-stored) x

3 R (overriding reset) x

4 S (set stored) x

5 L (time limited) x

6 D (time delayed) x

7 P (pulse) x

8 SD (stored and time delayed) x

9 DS (delayed and stored) x

10 SL (stored and time limited) x

3.6.2.43 Table 46: Sequence evolution

No. Description Yes No

1 single sequence x

2a divergence of sequence selection (left-to-
right)

x

2b divergence of sequence selection (with
priorities)

x

2c divergence of sequence selection (with
mutual exclusion)

x

142 / 297

OpenPCS Programing System

Advanced Topics

3 Convergence of sequence evolution x

4 simultaneous sequence divergence x

5 simultaneous sequence convergence x

5a sequence skip (left-to-right) x

5b sequence skip (with priorities) x

5c sequence skip (with mutual exclusion) x

6a sequence loop (left-to-right) x

6b sequence loop (with priorities) x

6c sequence loop (with mutual exclusion) x

7 directional arrows x

3.6.2.44 Table 52: Instruction list (IL) operators

No. Operator Modifiers Yes No

1 LD N x

2 ST N x

3 S
R

x
x

4 AND N,(x

5 & N,(x

6 OR N,(x

7 XOR N,(x

8 ADD (x

9 SUB (x

10 MUL (x

11 DIV (x

12 GT (x

13 GE (x

14 EQ (x

15 NE (x

16 LE (x

17 LT (x

18 JMP C, N x

19 CAL C, N x

20 RET C, N x

21) x

143 / 297

OpenPCS Programing System

Advanced Topics

3.6.2.45 Table 53: Function block invocation features for IL language

No. Description Yes No

1 CAL with input list x

2 CAL with load/store of inputs x

3 Use of input operators x

3.6.2.46 Table 55: Operators of the ST language

No. Description Yes No

1 Parenthesation x

2 Function evaluation x

3 Exponentiation x

4 Negation x

5 Complement x

6 Multiply x

7 Divide x

8 Modulo x

9 Add x

10 Subtract x

11 Comparison x

12 Equality x

13 Inequality x

14 Boolean AND x

15 Boolean AND x

16 Boolean Exclusive XOR x

17 Boolean OR x

3.6.2.47 Table 56: ST language statements

No. Description Yes No

1 Assignment x

2 Function block invocation and FB output
usage

x

3 RETURN x

4 IF x

5 CASE x

6 FOR x

144 / 297

OpenPCS Programing System

Advanced Topics

No. Description Yes No

7 WHILE x

8 REPEAT x

9 EXIT x

10 Empty Statement x

3.6.2.48 Table 57: Representation of lines and block

No. Description Yes No

1

2

Horizontal lines:

ISO/IEC 646 "minus" character

graphic or semigraphic x

x

3

4

Vertical lines:

ISO/IEC 646 "vertical line" character

graphic or semigraphic x

x

5

6

Horizontal/vertical connection:

ISO/IEC 646 "plus" character

graphic or semigraphic x

x

7

8

Line crossing without connection:

ISO/IEC 646 characters

graphic or semigraphic x

x

9

10

Connected and non-connected corners:

ISO/IEC 646 characters

graphic or semigraphic x

x

11

12

Blocks with connecting lines

ISO/IEC 646 characters

graphic or semigraphic x

x

13

14

Connectors using ISO/IEC 646 characters:

Connector, Continuation of a connected
line

graphic or semigraphic
x

x

3.6.2.49 Table 58: Graphic execution control elements

No. Description Yes No

1

2

Unconditional Jump

FBD language

LD language

x

x

3 Conditional Jump (FBD language) x

4 Conditional Jump (LD language) x

Conditional Return

145 / 297

OpenPCS Programing System

Advanced Topics

No. Description Yes No

5

6

LD language

FBD language

x

x

7

8

Unconditional Return

from Function

from Function Block

Alternative Representation in LD language

x

x

x

3.6.2.50 Table 59: Power rails

No. Description Yes No

1 Left power rail x

2 Right power rail x

3.6.2.51 Table 60: Link Elements

No. Description Yes No

1 Horizontal link x

2 vertical link with attached horizontal
links

x

3.6.2.52 Table 61: Contacts

No. Description Yes No

1

2

Normally open contact

x

x

3

4

Normally closed contact

x

x

5

6

Positive transition-sensing contact

x

x

7

8

Negative transition-sensing contact

x

x

3.6.2.53 Table 62: Coils

No. Description Yes No

1 Coil x

2 Negated Coil x

146 / 297

OpenPCS Programing System

Advanced Topics

No. Description Yes No

3 SET (latch) coil x

4 RESET (unlatch) coil x

5 Retentive (Memory) coil x

6 SET retentive (Memory) coil x

7 RESET retentive (Memory) coil x

8 Positive transition-sensing coil x

9 Negative transition-sensing coil x

3.6.2.54 Table 63: Reserved Names

Names of data types cannot be used for file or variable names. The following names
are also not allowed for variables and/or files:

D

L

N

P

Q

3.6.2.55 Table D.1: Implementation-dependent parameters

Clause Parameter Values

1.5.1 Error handling procedures see next chapter

2.1.1 National characters used see table 1 above

2.1.2 Maximum length identifiers

Significant length
identifiers

256

64

2.1.5 Maximum comment length >512

2.2.3.1 Range of values of
duration

+/- 24,85 days

2.3.1 Range of values for
variables of type
TIME

Precision of representation
of seconds
in type

TIME_OF_DAY and
DATE_AND_TIME

+/- 24,85 days

-

2.3.3 Maximum
- number of array
subscripts
- array size
- number of structure

6
< 4KB per POU
< 8KB per POU

147 / 297

OpenPCS Programing System

Advanced Topics

elements
- structure size
- number of variables
per declaration

2.3.3.1 Maximum number of
enumerated values

< 64 KB per POU

2.3.3.2 Default maximum length of
STRING variables
Maximum permissible
length of STRING variables

32

253 [see note 1]

2.4.1.1 Maximum number of
hierarchical levels

Logical or physical mapping

5

2.4.1.2 Maximum number of
subscripts

Maximum number of
subscript values

Maximum number of levels
of structures

-

-

>512

2.4.2 Initialization of system
inputs

The value of the
system inputs
corresponds to their
physical values

2.4.3 Maximum number of
variables per declaration < 64 KB per POU

2.5 Information to determine
execution times of program
organization units

No

2.5.1.1 Method of function
representation

Textual

2.5.1.3 Maximum number of
function specifications

limited only by
available memory

2.5.1.5 Maximum number of inputs
of extensible functions

IL: 2, LD/FBD:
unlimited

2.5.1.5.1 Effects of type
conversions on accuracy

Truncated

2.5.1.5.2 Accuracy of functions of
one variable

Implementation of
arithmetic functions

Currently not
supported

2.5.2 Maximum number of
function blocks and
instantiations

ca. 8000 [see note
2]

2.5.2.3.3 PVmin, PVmax of counters minimum/maximum
value of respective

148 / 297

OpenPCS Programing System

Advanced Topics

data type

2.5.3 Program size limitations limited only by
available memory

2.6 Timing and portability
effects of execution
control elements

-

2.6.2 Precision of step elapsed
time

Maximum number of steps
per SFC

-

2.6.3 Maximum number of
transitions per SFC and
per step

-

2.6.4 Action control mechanism -

2.6.4.2 Maximum number of action
blocks per step

-

2.6.5 Graphic indication of step
state
Transition clearing time
Maximum width of
diverge/converge
constructs

-

2.7.1 Content of RESOURCE
libraries

-

2.7.2 Maximum number of tasks

Task interval resolution

Pre-emptive or non-pre-
emptive scheduling

-

3.3.1 Maximum length of
expressions
Partial evaluation of
Boolean expressions

unlimited
no

3.3.2 Maximum length of
statements

Unlimited

3.3.2.3 Maximum number of CASE
selections

Unlimited

4.1.1 Graphic/semigraphic
representation

Restrictions on network
topology

Graphic

4.1.3 Evaluation order of
feedback loops

-

149 / 297

OpenPCS Programing System

Advanced Topics

note 1: OpenPCS is highly configurable, so this parameter may vary depending on
your hardware. If in doubt, consult the documentation of your hardware.

note 2: The maximum number of function blocks is less, if variables are declared in
the same segment.

3.6.2.56 Table E.1: Error conditions

2.3.3.1 Value of a variable exceeds
the
specified sub range

Syntax error
reported for
initialization in
declaration; ignored
at runtime

2.4.2 Length of initialization list
doesn't match the number
of array entries

Syntax error

2.5.1.5.1 Type conversion errors Ignored

2.5.1.5.2 Numerical result exceeds
range for data
type. Division by zero

firmware blocks
report that at ENO,
ignored elsewhere

2.5.1.5.4 Mixed input data types to
a selection function

Selector (K) out of range
for MUX function

not supported

2.5.1.5.5 Invalid character position
specified

Result exceeds maximum
string length

-

2.5.1.5.6 Result exceeds range for
data type

Restriction to
maximum value (see
2.2.3.1)

2.6.2 Zero or more than one
initial step in the SFC
network

User program attempts to
modify step state or time

-

2.6.2.5 Simultaneously true, non-
prioritized transitions in a
selection divergence

-

2.6.3 Side effects in evaluation
of transition condition

-

2.6.4.5 Action control contention
error

-

2.6.5 "Unsafe" or "Unreachable"
SFC

-

2.7.1 Data type conflict in
VAR_ACCESS

-

150 / 297

OpenPCS Programing System

Advanced Topics

2.7.2 Tasks require too many
processor resources

Execution deadline not met

Other task scheduling
conflicts

-

3.2.2 Numerical result exceeds
range for data type

Scan via functions

3.3.1 Division by zero
Invalid data type for
operation

Syntax error
can be monitored

3.3.2.1 Return from function
without value assigned

-

3.3.2.4 Iteration fails to terminate -

4.1.1 Same identifier as
connector label and
element name

-

4.1.4 Uninitialized feedback
variable

-

4.1.5 Numerical result exceeds
range for data type

Division by 0

-

3.7 Online Features

3.7.1 Breakpoints

OpenPCS supports Breakpoints in textual languages ST and IL. Breakpoints are
currently not supported in Native Code, so set optimization to "size". Breakpoints are
not supported with all targets due to hardware restrictions. Breakpoints are not
saved, so set new breakpoints before starting a newly downloaded application.

If a breakpoint is reached in any one task of the OpenPCS application, execution of
all tasks will immediately be stopped. When single-stepping, continuing to the next
breakpoint, etc. it is undefined and left to the target if other tasks should be
executed in the meantime. Therefore it is recommended to have one task only when
single-stepping intuitively.

Stopping a controller with breakpoints and single-stepping can disable many of the
safety precautions in your controller and your application, so be sure to take
appropriate measures so guarantee damage to be avoided.

3.7.2 Online Edit

Online Edit (or Online Change) is a feature whereby program changes are online
applied to the PLC without the need to restart it.

To perform an Online Edit, proceed as follows:

151 / 297

OpenPCS Programing System

Advanced Topics

1. In Online Mode, switch an editor to edit mode by PLC->Monitor/Edit (or use
toolbar button Monitor/Edit)

2. Modify declarations and code in the editor as required

3. Switch back to Monitor Mode by using Monitor/Edit

4. Now, you will be prompted to update the target. Select "Yes" to save any
modifications, recompile the application and download your modifications to the
target without stopping the program.

5. Select "No" to abort Online Edit and to discard all changes (also: no modifications
will be saved to file).

Changes such as adding a variable, renaming a variable, changing data type of a
variable lead to resetting to its initial value. As a restart is not necessary, variable
values of program parts that are not affected by the changes will keep their current
values (i.e. they will not be reset to their initial values).

Any changes of initial values do not lead to any noticeable results without restart.

Not supported features: add/remove task, change task property, change resource
property, change task order.

Attention: If the target system does not support Save System the changes are not
persistent. The System should be saved afterward via PLC -> Save System... if the
changes should be persistent on the controller. For further Information see the
respective section.

Note 1: Strictly, functions are also POUs. Since they are stateless, they need not
be treated by Online Edit, however.

Note 2: Online Edit is supported from OpenPCS version 5.3.0 on. It requires Target
System version 5.2.2 or above.

Note 3: Additionally there are the following configuration rules:

RuntimeSystem supports "Download
without Stop" & OnlineLinking = 1

Data remain the same, Online Edit is
possible

RuntimeSystem supports "Download
without Stop" & OnlineLinking = 0

Data are set to initial values, Online
Edit is possible

RuntimeSystem doesn't support
"Download without Stop" &
OnlineLinking = 0

Online Edit not possible, data will be
changed after rebuild and a new
download.

RuntimeSystem doesn't support
"Download without Stop" &
OnlineLinking = 1

Online Edit not possible, data will be
changed after rebuild and a new
download.

Remark: OnlineLinking can be set in the hardware configuration file (.ini-File).

3.7.3 Save System

PLC -> Save System... writes the complete system persistent on the controller.
This needs to be done if changes were made via online edit.

Save System is an optional target system feature.

152 / 297

OpenPCS Programing System

Advanced Topics

3.7.4 Error Logs

A detailed Error Log can be uploaded from the controller via PLC -> Upload Error
Log. The uploaded file will be named yymmdd_hhmmssErrorlog.txt and will be stored
in the current project directory.

Error Logs is an optional target system feature.

4 Reference

4.1 Keywords (by category)

4.1.1 IEC61131-3 Standard Function Blocks

OpenPCS implements the following function blocks of IEC61131-3:

CTD

CTU

CTUD

F_TRIG

R_TRIG

RS

SR

TOF

TON

TP

4.1.2 IEC61131-3 Standard Functions

OpenPCS implements the following functions of IEC61131-3:

ABS

ACOS

AND

ASIN

ATAN

CONCAT

COS

DELETE

EQ

EXP

FIND

GE

GT

INSERT

LE

LEFT

153 / 297

OpenPCS Programing System

Reference

LEN

LIMIT

LN

LOG

LT

MAX

MID

MIN

MOD

MUX

NE

NEG

OR

REAL_TO_*

RIGHT

ROL

ROR

SHL

SIN

SHR

SQRT

TAN

TIME_TO_*

TRUNC

XOR

RIGHT

4.1.3 IEC61131-3 operations

OpenPCS implements the following operations of IEC61131-3:

ADD

ADD (time)

DIV

DIV (time)

MUL

MUL (time)

SUB

SUB (time)

4.1.4 OpenPCS Functions and Function Blocks

The following functions and function blocks are provided by OpenPCS in addition to
IEC61131-3:

GetTaskInfo

GetTime

154 / 297

OpenPCS Programing System

Reference

GetTimeCS

GetVarData

GetVarFlatAddress

The section CANopen gives an overview on functions and function blocks to use
with CANopen

4.1.5 Data Types

The following elementary data types are defined by IEC61131-3:

BOOL

BYTE

DATE_AND_TIME

DATE

DINT

DWORD

INT

REAL

SINT

STRING

TIME_OF_DAY

TIME

UDINT

UINT

WORD

The following data types are defined by OpenPCS in addition to IEC61131-3:

POINTER

VARINFO

4.1.6 Declaration Keywords

END_TYPE

END_VAR

RETAIN

TYPE

VAR_GLOBAL

VAR_IN_OUT

VAR_INPUT

VAR_OUTPUT

VAR_EXTERNAL

VAR

155 / 297

OpenPCS Programing System

Reference

4.1.7 Instruction List Instructions

Program Logic Instructions:

")" (Right-parenthesis-operator)

CAL Instance name

CALC Instance name

CALCN Instance name

JMP Label

JMPC Label

JMPCN Label

RET

RETC

RETCN

Boolean Operations and Instructions:

NOT

AND

ANDN

OR

ORN

XOR

XORN

S BOOL

R BOOL

Mathematical Operations:

ADD

SUB

MUL

DIV

Load/Save Instructions:

LD ANY

LDN ANY_BIT

ST ANY

STN ANY_BIT

Logical Operators:

GT

GE

EQ

NE

LE

LT

156 / 297

OpenPCS Programing System

Reference

4.1.8 Structured Text Keywords

OpenPCS uses the following keywords in Programming Language Structured Text:

:= (Assignment)

BY

CASE

DO

ELSE

ELSIF

END_CASE

END_FOR

END_IF

END_REPEAT

END_WHILE

EXIT

FOR

IF

OF

REPEAT

RETURN

TO

UNTIL

WHILE

4.1.9 CANopen

CAN_RECV_EMCY

CAN_RECV_EMCY_DEV

CAN_NMT

CAN_GET_STATE

CAN_SDO_WRITE8

CAN_SDO_READ8

CAN_GET_CANOPEN_KERNEL_STATE

CAN_GET_LOCAL_NODE_ID

CAN_REGISTER_COBID

CAN_PDO_READ8

CAN_PDO_WRITE8

CAN_SDO_READ_STR

CAN_SDO_WRITE_STR

CAN_WRITE_EMCY

CAN_RECV_BOOTUP_DEV

CAN_RECV_BOOTUP

CAN_ENABLE_CYCLIC_SYNC

CAN_SEND_SYNC

157 / 297

OpenPCS Programing System

Reference

4.1.10 Others

ACTION

ANY

ANY_BIT

ANY_DATE

ANY_INT

ANY_NUM

ANY_REAL

CD

CDT

CLK

CONFIGURATION

CU

CV

D(DATE)

D(Action Qualifier)

DS

DT

END_ACTION

END_CONFIGURATION

END_RESOURCE

END_STEP

END_STRUCT

END_TRANSITION

ET

EXPT

FROM

IN

INITIAL_STEP

Interval

L(Action Qualifier)

Lreal

Lword

N (Action Qualifier)

On

P(Action Qualifier)

Priority

PT

PV

Q(Parameter)

Q1

QD

QU

158 / 297

OpenPCS Programing System

Reference

R(Action Qualifier)

R1

READ_ONLY

READ_WRITE

Release

Resource

RTC

S(Action Qualifier)

S1

SD

SEL

SEMA

Single

SL

STEP

Task

TOD

Transition

ULINT

USINT

VAR_ACCESS

WITH

4.2 Keywords (A..Z)

4.2.1 ")" (Right-paranthesis-operator)

The right-parenthesis-operator executes an instruction, deferred by the left-
parenthesis-modifier.

Example:

LD a

OR(b (* Execution of instruction "OR" is deferred *)

AND c

) (* "OR" will be executed now *)

OR(d

AND e

)

ST f

Notes:

This is an instruction in language Instruction List

It is defined by IEC61131-3

159 / 297

OpenPCS Programing System

Reference

4.2.2 *_TO_BOOL

0 is converted to false, everthing else to true.

The conversions String_to_bool and Real_to_bool are described in the respective
sections.

4.2.3 *_TO_STRING

Inputs

original data type *

Returns

converted data type string

The function block converts the first value of type * into the same value of type
string.
The following data types can be converted:

BOOL

true -> "true"

false -> "false"

DINT, INT und SINT

Siehe unter REAL

BYTE, DWORD, WORD und USINT, UINT, UDINT

The bitmask is directly converted into a string

Examples:

001101 -> "001101"

REAL

For converting string function Sprintf(str, "%#g", value); is used.
Examples:
0.0 -> "0.000000"
123.45678 -> " 123.456"
-12.345678 -> " -12.3456"
12345678.9 -> " 1.23457e+007"
0.000000123 -> " 1.23000e-007"

4.2.4 ABS

Input

In: ANY_NUM

Returns

ANY_NUM

Notes:

Returns the absolute value of the input.

160 / 297

OpenPCS Programing System

Reference

Please note the following anomaly of the ABS function: The mathematical
understanding of the ABS function is that it will never return a negative value. The
signed integer data types in IEC61131-3 have a defined range of values which is
asymmetric, e.g. SINT from -128..+127. As defined by IEC61131-3, the ABS function
will return the same data type that it is provided as an input, e.g. when called with
an SINT input, ABS will return an SINT output. The absolute value of -128 obviously
is +128, but when passed to ABS for type SINT, exceeds the range of SINT and
hence cannot be expressed. This overflow is, for performance reasons, silently
ignored by OpenPCS, the result returned being undefined. If you need to rely on the
negative maximum value to be properly handled, use a data type with a wider range,
or check inputs.

This does not apply to the ABS function as called by the Ladder Diagram Editor, this
ABS function will signal overflow via the ENO output.

4.2.5 ACOS

Input

In: REAL

Returns

REAL: arcus cosine of input

4.2.6 ACTION

This keyword is defined by IEC61131-3 for the textual representation of programming
language SFC. OpenPCS does not support the textual representation of SFC, hence
you will not be able to enter this keyword. You will see this when printing SFC.

4.2.7 ADD

Inputs

In1: ANY_NUM

In2: ANY_NUM

Returns

ANY_NUM sum

Addition of two numbers. See Table E.1: Error conditions for result on overflow.

Notes:

Standardization: this is an operation defined by IEC61131-3.

The feature Append Input Connector is available for this function block

4.2.8 ADD (time)

Inputs

In1: TIME time duration value

In2: TIME

Returns

TIME Addition of the two time values provided

Addition of TIME values

161 / 297

OpenPCS Programing System

Reference

Notes:

Standardization: this is an operation defined by IEC61131-3.

4.2.9 AND

Inputs

IN1: ANY_BIT Input 1

IN2: ANY_BIT Input 2

Returns

ANY_BIT logical, bit by bit AND of Input 1 and Input 2

Notes:

Standardization: this function is defined by IEC61131-3.

The feature Append Input Connector is available for this function block

4.2.10 ANDN

Inputs

IN1: ANY_BIT Input 1

IN2: ANY_BIT Input 2

Returns

ANY_BIT logical, bitwise AND of Input 1 and negated Input 2

Notes:

Standardization: this function is defined by IEC61131-3.

The feature Append Input Connector is available for this function block

4.2.11 ANY

ANY_BIT is a "generic" data type defined by IEC61131-3. You are not allowed to use
this data type to declare variables. Wherever this data type is used, it is
understood to mean any one of the following: ANY_BIT, ANY_DATE, ANY_INT,
ANY_REAL

4.2.12 ANY_BIT

ANY_BIT is a "generic" data type defined by IEC61131-3. You are not allowed to use
this data type to declare variables. Wherever this data type is used, it is
understood to mean any one of the following: BOOL, BYTE, WORD, DWORD, LWORD.

4.2.13 ANY_DATE

ANY_DATE is a "generic" data type defined by IEC61131-3. You are not allowed to
use this data type to declare variables. Wherever this data type is used, it is
understood to mean any one of the following: DATE, DATE_AND_TIME,
TIME_OF_DAY .

162 / 297

OpenPCS Programing System

Reference

4.2.14 ANY_INT

ANY_INT is a "generic" data type defined by IEC61131-3. You are not allowed to use
this data type to declare variables. Wherever this data type is used, it is
understood to mean any one of the following: SINT, USINT, INT, UINT, DINT,
UDINT, LINT, ULINT .

4.2.15 ANY_NUM

ANY_NUM is a "generic" data type defined by IEC61131-3. You are not allowed to
use this data type to declare variables. Wherever this data type is used, it is
understood to mean any one of the following: ANY_INT, ANY_REAL.

4.2.16 ANY_REAL

ANY_REAL is a "generic" data type defined by IEC61131-3. You are not allowed to
use this data type to declare variables. Wherever this data type is used, it is
understood to mean any one of the following: REAL, LREAL.

4.2.17 ARRAY

ARRAY is the keyword to declare arrays of elements, see Derived Data Types

Examples:

The following declares an array of five integers and assigns initial values:

VAR

 x1: ARRAY[0..4] of INT := [1,2,3,4,5];

END_VAR

A three-dimensional array of 300 booleans:

VAR

 x2: ARRAY[0..4, 15..20, 1..10] of BOOL;

END_VAR

An array of 100 structures:

TYPE

x3: STRUCT

 member1: BOOL;

 member2: INT;

END_STRUCT;

END_TYPE

VAR

 x4 : ARRAY[1..10,1..10] of x3;

END_VAR

Initializing of multidimensional arrays:

163 / 297

OpenPCS Programing System

Reference

To initialize arrays with more than one dimension, give a list of list of initial values,
each dimension enclosed in brackets. The dimension given first in declaration will
correspond to the outermost brackets.

VAR

x2: ARRAY[0..4, 1..2] of INT := [[1,2], [3,4], [5,6], [7,8],
[9,10]];

x3: ARRAY[0..1, 0..2, 0..3] of INT := [[[1,2,3,4],[5,6,7,8],
[9,10,11,12]],[[13,14,15,16],[17,18,19,20],[21,22,23,24]]];

END_VAR

Note: OpenPCS uses 16bit signed integers to represent array subscripts for
performance reasons. Array bounds may not exceed the [-32768;32767]-range.

4.2.18 ASIN

Input

In: REAL

Returns

REAL: arcus sine of input

4.2.19 Assignment

An Assignment will assign the result of an expression to a variable.

Example

VAR
 a: INT;
 b: ARRAY [0..5] OF INT;
 c: REAL;
 e: INT;
END_VAR

a := 5;

(* assign 5 to a *)

b[1]:= a*2; e := a; (* two assignments *)

e:= REAL_TO_INT(c);

(* assignment with function call *)

The assignment instruction will evaluate the expression on the right side and assign
the resulting value to the variable given on the left.

Notes:

This is a keyword only for language ST.

This is defined by IEC61131-3.

4.2.20 AT

AT is the keyword to define the memory location where OpenPCS should allocate
memory for a given variable.

Very first input bit:

164 / 297

OpenPCS Programing System

Reference

VAR

 x1 at %ix0.0: bool;

END_VAR

Output word starting at second output byte:

VAR

 x2 at %qw1.0: word;

END_VAR

4.2.21 ATAN

Input

In: REAL

Returns

REAL: arcus tangens of input

4.2.22 BOOL

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.23 BOOL_TO_*

Inputs

original data type bool

Returns

converted data type *

The function block converts the first value of type bool into the same value of type
*.
The following data types can be converted:

DINT, INT und SINT

BYTE, DWORD, WORD und USINT, UINT, UDINT

true -> 1

false -> 0

REAL

true -> 1.0

false -> 0.0

STRING

true -> "true"

false -> "false"

165 / 297

OpenPCS Programing System

Reference

4.2.24 BY

See FOR

4.2.25 BYTE

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.26 CAL

The program will be continued at the function block whose name is passed as
operand. The unconditioned invocation may only be used as the end of a sequence
and is not permitted within bracketing operations.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3.

See also EN.

4.2.27 CALC

If the CR holds the value TRUE, the function block specified as operand will be
called. If it holds the value "0", there is no invocation. The program flow continues
with the instruction following the jump instruction.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3.

4.2.28 CALCN

If the CR holds the value FALSE, the function block specified as operand will be
called. If it holds the value "1", there is no invocation. The program flow continues
with the instruction following the jump instruction.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3.

4.2.29 CAN_ENABLE_CYCLIC_SYNC

Function block for enabling or locking cyclic SYNC messages.

Input

SYNC_MODE : BOOL Enables generation of cyclic SYNC messages

166 / 297

OpenPCS Programing System

Reference

SYNC_TIME : TIME Time between two SYNC messages. 0 generates 1 SYNC
after each PLC cycle.

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

ERROR : WORD Error code corresponding to the data type
"CIA405_CANOPEN_KERNEL_ERROR"

CONFIRM : BOOL Output for signal service completion by the function
block

The function block CAN_ENABLE_CYCLIC_SYNC is used to enable cyclic SYNC
messages. If SYNC_MODE is set to TRUE the function block will generate a SYNC
message after a PLC cycle if SYNC_TIME has passed since the lasst SYNC.

This function block is only available on control units in "PLC with CANopen Master"
mode.

4.2.30 CAN_GET_CANOPEN_KERNEL_STATE

Function block for state query of the CANopen kernel of the local PLC.

Input

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

CONFIRM : BOOL Output for signal service completion by the function
block

STATE:: WORD State or error code corresponding to the data type
"CIA405_CANOPEN_KERNEL_ERROR"

The function block CAN_GET_CANOPEN_KERNEL_STATE is used for a query about
the state of the CANopen kernel of the local PLC.

4.2.31 CAN_GET_LOCAL_NODE_ID

Function block for a local node address query.

Input

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

DEVICE : USINT Local Node Address of the PLC

CONFIRM : BOOL Output for signal service completion by the function
block

The function block CAN_GET_LOCAL_NODE_ID is used for a query of the local node
address of the PLC. The node address of a control unit has an influence over the
availability of the various function blocks (PLC with and without CANopen Master)

167 / 297

OpenPCS Programing System

Reference

4.2.32 CAN_GET_STATE

Function block for node state query of various devices.

Input

DEVICE : USINT Address of the node to be queried (1-127 or 0 for local
node)

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

STATE : WORD Node state corresponding to the data type
"CIA405_STATE"

CONFIRM : BOOL Output for signal service completion by the function
block

The function block CAN_GET_STATE is used to enquire the node state for a specific
device. The state query is based on monitoring by Heartbeat or Lifeguarding. The
return values on the output STATE have the following meaning:

UNKNOWN: The CANopen device on the given address supports neither Heartbeat
nor Lifeguarding, thus the state cannot be monitored. This state is also reported on
an PLC without a CANopen Master if either no PLC with a CANopen Master is
available in the network that supports a state transmission or if the Master PLC in
question is in a stop state (PLC program has been halted).

NOT_AVAIL: The CANopen device on the given address no longer answers
Heartbeat or Lifeguarding queries and is therefore no longer available to the system.

other: With the exception of the state values UNKNOWN and NOT_AVAIL the
return values match the corresponding definitions of the CiA Draft Standard 30.

The call of the function block with DEVICE = 0 delivers the local node state of the
local PLC.

4.2.33 CAN_NMT

Function block for sending NMT messages.

Input

DEVICE : USINT Address of the node to be controlled (1-127 or 0 for all
nodes)

STATE : WORD Node state corresponding to the data type
"CIA405_TRANSITION_STATE"

ENABLE : BOOL Input for enabling or locking the function

NETNUMBER : USINT Network number

Output

ERROR : WORD Error code corresponding to the data type
"CIA405_CANOPEN_KERNEL_ERROR

CONFIRM : BOOL Output for signal service completion by the function
block

168 / 297

OpenPCS Programing System

Reference

The function block CAN_NMT is used for controlling the state of a node (DEVICE =
1...127) or if DEVICE = 0 all the nodes in the network.

This function block is only available on a control unit in "PLC with CANopen Master"
mode

4.2.34 CAN_PDO_READ8

Function block reading PDOs and CAN Layer 2 messages via the network layer.

Input

COBIB : UINT COBID (CAN-Identifier) of the message to be read

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

CONFIRM : BOOL Output for signal service completion by the
function block

ERROR : WORD State or error code corresponding to the data
type "CIA405_CANOPEN_KERNEL_ERROR"

ERRORINFO : DWORD Additional information on the error

DATA0 - DATA7 : BYTE Data bytes of the received message

DATALENGTH : USINT Length of the received message

The function block CAN_PDO_READ8 reads a PDO or CAN Layer 2 message via the
network layer. The message must be registered via CAN_REGISTER_COBID before.
The receiving buffer stores only the most current message and the message will be
erased from the networks layer's receiving buffer.

After a succesful read operation, CONFIRM is set to TRUE and the elements DATA0
to DATA7 contain the individual bytes of the received message. DATALENGTH
reports the number of valid bytes. Empty messages are valid.

If no message with the given COBID was available, CONFIRM is set to false. If an
error occurred the ERROR is set as well.

4.2.35 CAN_PDO_WRITE8

Function block sending PDOs and CAN Layer 2 messages via the network layer.

Input

COBIB : UINT COBID (CAN-Identifier) of the message to be read

ENABLE : BOOL Input for enabling or locking the function block

DATA0 - DATA7 : BYTE Data bytes of the received message

DATALENGTH : USINT Length of the received message

NETNUMBER : USINT Network number

Output

CONFIRM : BOOL Output for signal service completion by the
function block

ERROR : WORD State or error code corresponding to the data
type "CIA405_CANOPEN_KERNEL_ERROR"

ERRORINFO : DWORD Additional information on the error

169 / 297

OpenPCS Programing System

Reference

The function block CAN_PDO_WRITE8 sends a PDO or CAN Layer 2 message via the
network layer. The elements DATA0 to DATA7 contain the individual bits of the
message and DATALENGTH specifies the number valid bytes.

If the message is correctly stored in the send buffer of the CANopen kernel
CONFIRM set to TRUE. However this does not indicate if the message is sent.

4.2.36 CAN_RECV_BOOTUP

Function block for reading Bootup messages of any node from the receiving buffer of
the network layer.

Input

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

ERROR : WORD Error code corresponding to the data type
"CIA405_CANOPEN_KERNEL_ERROR"

CONFIRM : BOOL Output for signal service completion by the function
block

The function block CAN_RECV_BOOTUP_DEV is used for reading Bootup messages of
any node from the receiving buffer of the network layer. If a message is received
succesfully CONFIRM is set to TRUE, otherwise the buffer contains no message of
any node. The function block always return the oldest message (FIFO-prinziple) und
delets the read message in the buffer.

This functiion block is only available on control units in "PLC with CANopen Master"
mode.

4.2.37 CAN_RECV_BOOTUP_DEV

Function block for reading Bootup messages of a specific node from the receiving
buffer of the network layer.

Input

DEVICE : USINT Address of the node to be controlled

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

ERROR : WORD Error code corresponding to the data type
"CIA405_CANOPEN_KERNEL_ERROR"

CONFIRM : BOOL Output for signal service completion by the function
block

The function block CAN_RECV_BOOTUP_DEV is used for reading Bootup messages of
a specific node from the receiving buffer of the network layer. If a message is
received succesfully CONFIRM is set to TRUE, otherwise the buffer contains no
message of the specific node. After a message is read it is deleted in the buffer.

This functiion block is only available on control units in "PLC with CANopen Master"
mode.

170 / 297

OpenPCS Programing System

Reference

4.2.38 CAN_RECV_EMCY

Function block for reading emergency messages of a node from the network layer's
receiving buffer.

Input

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

DEVICE : USINT Address of the node (1-127) from which an emergency
message was received

EMCY_ERR_CODE : WORD

EMCY_ERR_REGISTER : BYTE

EMCY_ERR_FIELD1 - EMCY_ERR_FIELD5 : BYTE

Emergency error information corresponding to the CiA
Draft Standard 301

ERROR : WORD Error code corresponding to the data type
"CIA405_CANOPEN_KERNEL_ERROR"

CONFIRM : BOOL Output for signal service completion by the function
block

The function block CAN_RECV_EMCY is used for reading the emergency messages
of any nodes from the network layer's receiving buffer. If upon the return of the
function block the output CONFIRM is set to TRUE, the output DEVICE reports the
node address from which the message was received. The elements EMCY_ERR
contain the emergency error information of the node corresponding to the CiA Draft
Standard 301. However, if the output CONFIRM is set to TRUE, the network layer's
receiving buffer does not contain any emergency messages.

The function block always returns the first emergency message entered into the
receiving buffer (= oldest message), the message is subsequently erased from the
receiving buffer. Thus every emergency message can only be read one time by the
PLC program. The function blocks CAN_RECV_EMCY_DEV and CAN_RECV_EMCY both
access the same receiving buffer.

This function block is only available on control units in "PLC with CANopen Master"
mode.

4.2.39 CAN_RECV_EMCY_DEV

Function block for reading emergency messages of a specific node from the
receiving buffer of the network layer.

Input

DEVICE : USINT Address of the node (1-127), for which the receipt of
emergency messages is to be tested

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

EMCY_ERR_CODE : WORD

171 / 297

OpenPCS Programing System

Reference

EMCY_ERR_REGISTER : BYTE

EMCY_ERR_FIELD1 - EMCY_ERR_FIELD5 : BYTE

Emergency error information corresponding to the CiA
Draft Standard 301

ERROR : WORD Error code corresponding to the data type
"CIA405_CANOPEN_KERNEL_ERROR"

CONFIRM : BOOL Output for signal service completion by the function
block

The function block CAN_RECV_EMCY_DEV is used to read the emergency messages
of a specific node from the network layer's receiving buffer. If upon return of the
function block the output CONFIRM is set to TRUE, the elements EMCY_ERR maintain
the emergency error information of the node corresponding to the CiA Draft
Standard 301. If however the output CONFIRM is set to FALSE, then the receiving
buffer of the network layer does not contain any emergency messages for the node
in question.

The function block always returns the first emergency message entered into the
receiving buffer (= oldest message), the message is subsequently erased from the
receiving buffer. Thus every emergency message can only be read one time by the
PLC program. The function blocks CAN_RECV_EMCY_DEV and CAN_RECV_EMCY both
access the same receiving buffer.

This function block is only available on one control unit in "PLC with CANopen
Master" mode

4.2.40 CAN_REGISTER_COBID

Function block for registering or erasing the receipt of PDOs and CAN Layer 2
messages via the network layer.

Input

COBIB : UINT COBID (CAN-Identifier) of the message beeing newly
registered or erased

REGISTER : BOOL TRUE : register COBID; FALSE : erase COBIS from
registration

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

CONFIRM : BOOL Output for signal service completion by the function
block

ERROR : WORD State or error code corresponding to the data type
"CIA405_CANOPEN_KERNEL_ERROR"

The function block CAN_REGISTER_COBID registers a PDO or CAN Layer 2 message
via the network layer or erases its registration based on the input parameter
REGISTER.All registrations along with the messages in the network layer are erased
via COBID = 0.

Messages must be registered in the network layer in order to be read by function
blocks as CAN_PDO_READ8

172 / 297

OpenPCS Programing System

Reference

4.2.41 CAN_SDO_READ8

Function block for reading a node's object entries by way of an SDO transfer.

Input

DEVICE : USINT Address of the node to be read (1-127 or 0 for
local OD)

INDEX : WORD Number of the index entry to be read

SUBINDEX : BYTE Number of the sub index entry to be read

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

DATA0 - DATA7 : BYTE Data bytes of the entry that was read

DATALENGTH : USINT Length of the entry that was read

ERROR : WORD Error code corresponding to the data type
"CIA405_CANOPEN_KERNEL_ERROR"

ERRORINFO : DWORD SDO abort code of the communication partner
corresponding to the data type
"CIA405_SDO_ERROR"

CONFIRM : BOOL Output for signal service completion by the
function block

The function block CAN_SDO_READ8 is used to read the object entries of a node
currently being used by the SDO transfer. The SDO transfer is always executed in
the background.

If the output CONFIRM is set to TRUE upon the return of the function block, the
elements DATA0 through DATA7 receive the individual bytes of the object entry
that was read. The output DATALENGTH reports the number of valid data bytes
(beginning at DATA0).

The network layer supports only a single SDO transfer through the PLC program at
any one time. After the start of the SDO transfer by setting ENABLE to TRUE, the
SDO channel is locked, preventing use by other components. The lock state is
maintained until the SDO function block is called again by setting the ENABLE input
to FALSE after completion of the data transfer.

A call of the function block with DEVICE = 0 leads to an access of the local Object
Dictionary of the PLC. Thus values from the local Object Dictionary can be read as
well.

4.2.42 CAN_SDO_READ_STR

Function block for reading strings from the object directory of a node via SDO
transfer..

Input

DEVICE : USINT Address of the node to be read (1-127 or 0 for local
OD)

INDEX : WORD Number of the index entry to be read

173 / 297

OpenPCS Programing System

Reference

SUBINDEX : BYTE Number of the subindex entry to be read

SDOTYPE : SUBINDEX Type of the SDO transfer. Standard is
"SDO_TYPE_AUTO_BEST_CASE"

RXDATA : STRING String variables for storing the read characters

MAXLENGTH : INT Limit the number of characters to be read.

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

RXDATA : STRING String variables for storing the read characters

RXLENGTH : INT Length of charcter sequence read

ERROR : WORD Error code corresponding to the data type
"CIA405_CANOPEN_KERNEL_ERROR"

ERRORINFO : DWORD SDO abort code of the communication partner
corresponding to the data type
"CIA405_SDO_ERROR"

CONFIRM : BOOL Output for signal service completion by the
function block

The function block CAN_SDO_READ_STR is used to read strings from a node's Object
Directory utilizing SDO transfer.

All SDO transfers are executed in the background. Synchronization can be handled
via ENABLE and CONFIRM.

If CONFIRM is TRUE, the read string is stored in RXDATA and RXLENGTH contains its
length.

4.2.43 CAN_SDO_WRITE8

Function block for writing object entries of a node by way of an SDO transfer.

Input

ENABLE : BOOL Input for enabling or locking the function block

DEVICE : USINT Address of the node to be written (1-127 or 0 for
local Object Dictionary)

INDEX : WORD Number of the index entry to be written

SUBINDEX : BYTE Number of the sub index entry to be written

DATA0 - DATA7 : BYTE Data bytes of the entry to be written

DATALENGTH : USINT Length of the entry to be written

NETNUMBER : USINT Network number

Output

CONFIRM : BOOL Output for signal service completion by the
function block

ERROR : WORD Error code corresponds to the data type
"CIA405_CANOPEN_KERNEL_ERROR"

ERRORINFO : DWORD SDO abort code of the communication partner
corresponding to the data type
"CIA405_SDO_ERROR"

174 / 297

OpenPCS Programing System

Reference

The function block CAN_SDO_WRITE8 is used to write the object entries of a node
currently being used by the SDO transfer. The SDO transfer is always executed in
the background.

The individual bytes of the object entry to be written are transferred to the
elements DATA0 through DATA7. Whereby the input DATALENGTH specifies the
number of valid data bytes (beginning with DATA0).

The network layer only supports a single SDO transfer through the PLC program at
any one time. After the start of the SDO transfer by setting ENABLE to TRUE, this
SDO channel is locked, preventing use by other components. The lock state is
maintained until the SDO function block is called again by setting the ENABLE input
to FALSE after completion of the data transfer

A call of the function block with DEVICE = 0 leads to access of the local Object
Dictionary of the PLC. Thus values can be written to the local Object Dictionary as
well.

4.2.44 CAN_SDO_WRITE_STR

Function block for reading strings from the object directory of a node via SDO
transfer..

Input

DEVICE : USINT Address of the node to be read (1-127 or 0 for local
OD)

INDEX : WORD Number of the index entry to be read

SUBINDEX : BYTE Number of the subindex entry to be read

SDOTYPE : SUBINDEX Type of the SDO transfer. Standard is
"SDO_TYPE_AUTO_BEST_CASE"

TXDATA : STRING String variables for storing the characters to be
written

TXLENGTH : INT Limit the number of characters to be written

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

TXDATA : STRING String variables for storing the read characters

ERROR : WORD Error code corresponding to the data type
"CIA405_CANOPEN_KERNEL_ERROR"

ERRORINFO : DWORD SDO abort code of the communication partner
corresponding to the data type
"CIA405_SDO_ERROR"

CONFIRM : BOOL Output for signal service completion by the function
block

The function block CAN_SDO_READ_STR is used to write strings to a node's Object
Directory utilizing SDO transfer.

All SDO transfers are executed in the background. Synchronization can be handled
via ENABLE and CONFIRM.

175 / 297

OpenPCS Programing System

Reference

If CONFIRM is TRUE, the read string is stored in RXDATA and RXLENGTH contains its
length.

The characters to be written must be stored in TXDATA where TXLENGTH specifies
the number of valid characters.

4.2.45 CAN_SEND_SYNC

Function block for enabling or locking cyclic SYNC messages.

Input

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

ERROR : WORD Error code corresponding to the data type
"CIA405_CANOPEN_KERNEL_ERROR"

CONFIRM : BOOL Output for signal service completion by the function
block

The function block CAN_SEND_SYNC send one SYNC message when ENABLE is set to
true.

This function block is only available on control units in "PLC with CANopen Master"
mode.

4.2.46 CAN_WRITE_EMCY

Function block for sending application specific Emergency-Messages through the
network layer.

Input

EMCY_ERR_CODE : WORD

EMCY_ERR_REGISTER : BYTE

EMCY_ERR_FIELD1 - EMCY_ERR_FIELD5 : BYTE

Emergency error information corresponding to the
CiA Draft Standard 301

EMCY_ADD_INFO : WORD Additional information for diagnostic purpose

ENABLE : BOOL Input for enabling or locking the function block

NETNUMBER : USINT Network number

Output

ERROR : WORD Error code corresponding to the data type
"CIA405_CANOPEN_KERNEL_ERROR"

CONFIRM : BOOL Output for signal service completion by the
function block

The function block CAN_WRITE_EMCY is used for sending application specific
Emergency-Messages through the network layer. The EMCY_ERR members need to
be filled with the respective emergency error information according to IEC61131-3.

If the message is stored in the CANopen buffer CONFIRM is set to true. However,
the block does not indicate if the message was sent successfully.

176 / 297

OpenPCS Programing System

Reference

4.2.47 CASE

Though IF instructions may be nested, checking for one of many conditions can look
quite complicated using IF. CASE, instead, can check for more than one value with
one instruction. The "expression" of the CASE-instruction is of type INT, and only
the instruction will be executed that corresponds to this INT-value. After that the
first instruction behind END_CASE will be executed.

IF the expression does not match any of the case-values, the first instruction
(block) behind the ELSE will be executed. This partial instruction is optional.

CASE expression OF
 case_value1: { instructions; }
 case_value2: { instructions; }
 ...
 case_valueN: { instructions; }
[ELSE instructions;]
END_CASE;

Example:

VAR
 number : INT:= 10;
 amount : INT :=2;
END_VAR
CASE number OF
 10: amount := amount +1;
 11: amount := amount -1;
ELSE
 amount := number;
END_CASE;

In this example, the value of "number" will be determined, and if it is equal to 10,
"amount" will be incremented, if it is equal to "11", "amount" will be decreased. In
any other case, "amount" will be set to equal "number".

Notes:

This is a keyword only for language ST.

This is defined by IEC61131-3.

4.2.48 CD

This is the name of a formal parameter of a standard function block (CTD), and as
such defined to be a keyword.

4.2.49 CDT

This is the name of a formal parameter of a standard function block (RTC), and as
such defined to be a keyword.

177 / 297

OpenPCS Programing System

Reference

4.2.50 CLK

This is the name of a formal parameter of a standard function block (R_TRIG), and
as such defined to be a keyword.

4.2.51 CONCAT

Inputs

IN1: STRING First String

IN2: STRING Second String

Returns

STRING Concatenation of both Strings

Description

The character strings "IN1" and "IN2" in the working register are chained to form one
character string which is loaded into the working register. The strings IN1 to IN2 are
written from the left to the right in ascending order.

The feature Append Input Connector is available for this function block.

4.2.52 CONFIGURATION

This keyword is defined by IEC61131-3 for the textual definition of configurations,
resources and tasks. With OpenPCS, these are defined and configured using
property-dialog boxes . You will see this keyword in OpenPCS only when printing the
definition of a configuration.

4.2.53 CONSTANT

CONSTANT is the keyword to declare variables that should not be modified by the
application code. The OpenPCS compile will give an error message if you intent to
write to such a variable:

VAR CONSTANT x1 : INT := 15; END_VAR

See declaration sections.

4.2.54 COS

Input

In: REAL

Returns

REAL: cosine of input

4.2.55 CR

CR is the abbreviation of Current Result, the virtual accumulator used in IEC61131-3
programming languages.

178 / 297

OpenPCS Programing System

Reference

4.2.56 CTD

The function block "CTD" serves for counting down impulses received from the input
operand "CD". On initialization, the counter will be set to "0".

If the operand "LOAD" is "1", the value received by the operand "PV" will be taken
over as a value into the counter.

Each rising edge at the input "CD" will decrease the counter by "1".

The output operand "CV" contains the current value of the counter. If the counter
value is positive, the output operand "Q" will have the Boolean value "0". If the
counter value reaches zero or becomes negative, the output "Q" will be set to "1".

Inputs

CD: bool counter pulse

LOAD: bool set initial value

PV: int reset value

Outputs

Q: bool signal when zero reached

CV: int counter value

Notes:

Standardization: this function block is defined by IEC61131-3.

4.2.57 CTU

The function block "CTU" serves for counting up impulses received from the input
operand "CU". On initialization, the counter will be set to "0".

The counter value will be reset if the operand "RESET" receives the value "1".

Each rising edge at the input "CU" will increase the counter by "1".

The output operand "CV" contains the current value of the counter. If the counter
value is below the margin value "PV", the output operand "Q" will have the Boolean
value "0". If the counter value reaches or passes the margin, the output "Q" will be
set to "1".

Inputs

CU: bool counter pulse

RESET: bool reset counter

PV: int counter upper limit

Outputs

Q: bool signals if counter has reached upper limit

CV: int current counter value

Notes:

Standardization: this function block is defined by IEC61131-3.

179 / 297

OpenPCS Programing System

Reference

4.2.58 CTUD

The function block "CTUD" serves for counting up and down impulses. On
initialization, the counter will be set to the value "0". Every rising edge at the input
operand "CU". will increase the counter by "1", while every rising edge at the input
"CD" will decrease it by "1".

If the operand "LOAD" is "1", the value received by the operand "PV" will be taken
over as a value into the counter.

The counter value will be reset if the operand "RESET" receives the value "1". While
the static state of the operand "RESET" remains unchanged, the counting conditions
or the load condition will have no implication, independent of their value.

The output operand "CV" contains the current value of the counter. If the counter
value is below the margin value "PV", the output operand "QD" will have the Boolean
value "0". If the counter value reaches or passes the margin, the output "QD" will be
set to "1". If the counter value is positive, the output operand "QD" will have the
Boolean value "0". If the counter value reaches zero or becomes negative, the
output "QD" will be set to "1".

Inputs

CU: bool counting impulses for counting up, rising edge

CD: bool counting impulses for counting down, rising edge

RESET: bool reset condition

LOAD: bool load condition

PV: int load value

Outputs

QU: bool signals whether counter state has reached PV

QD: bool signals whether counter state has reached "0"

CV: int counter state

Notes:

Standardization: this function block is defined by IEC61131-3.

4.2.59 CU

This is the name of a formal parameter of a standard function block (CTU), and as
such defined to be a keyword.

4.2.60 CV

This is the name of a formal parameter of a standard function block (CTD), and as
such defined to be a keyword.

4.2.61 D(DATE)

nD can be used as an abbreviation to DATE when specifying the data type of a
literal constant. As data type DATE is not implemented in OpenPCS, you will not be
able to use this keyword with OpenPCS.

180 / 297

OpenPCS Programing System

Reference

4.2.62 D(Action Qualifier)

This is an Action qualifier, see Table 45 in the compliance statement. As OpenPCS
only supports actions of type N, you will not need to use this keyword with
OpenPCS.

4.2.63 DATE

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.64 DATE_AND_TIME

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.65 DELETE

Inputs

IN1: STRING Basic character string in which a part should be
deleted

L: ANY_INT (as supported) Length of the substring which should be deleted.
L < 0 is invalid.

P: ANY_INT (as supported) Starting position of substring. P < 0 is invalid.

Returns

STRING Shortened string. IN1 for invalid parameters.

The function "DELETE" deletes a substring of length "L" starting at position "P" within
the given string "IN1".

Notes:

Standardization: this function is defined by IEC61131-3.

4.2.66 DINT

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.67 DIV

Inputs

In1: ANY_NUM Value to be divided

181 / 297

OpenPCS Programing System

Reference

In2: ANY_NUM Value to divide by

Returns

ANY_NUM quotient

Divides two numbers. See Table E.1: Error conditions for result if divisor is zero.

Notes:

Standardization: this is an operation defined by IEC61131-3.

4.2.68 DIV (time)

Inputs

In1: TIME time duration value

In2: ANY_NUM divisor

Returns

TIME divided time value

Division of TIME values

Notes:

Standardization: this is an operation defined by IEC61131-3.

4.2.69 DO

See FOR and WHILE

4.2.70 DS

This is an Action qualifier, see Table 45 in the compliance statement. As OpenPCS
only supports actions of type N, you will not need to use this keyword with
OpenPCS.

4.2.71 DT

DT can be used as an abbreviation to DATE_AND_TIME when specifying the data
type of a literal constant. As data type DATE_AND_TIME is not implemented in
OpenPCS, you will not be able to use this keyword with OpenPCS.

4.2.72 DWORD

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.73 ELSE

See CASE and IF

182 / 297

OpenPCS Programing System

Reference

4.2.74 ELSIF

See IF

4.2.75 EN

Function Blocks may have an input variable of type BOOL named EN. If this is the
case, an invocation of an instance of this function block is performed if and only if
the value of the input variable EN of that instance is TRUE.

See also CAL and ENO.

Notes:

1. "EN" is abbreviated for "Enable".

2. If input and/or output variables are assigned in the same statement as the CAL
instruction, these assignments are performed even if the CAL is not taken due to
EN=FALSE.

3. By default, EN is TRUE

4.2.76 END_ACTION

This keyword is defined by IEC61131-3 for the textual representation of programming
language SFC. OpenPCS does not support the textual representation of SFC, hence
you will not be able to enter this keyword. You will see this when printing SFC.

4.2.77 END_CASE

See CASE

4.2.78 END_CONFIGURATION

This keyword is defined by IEC61131-3 for the textual definition of configurations,
resources and tasks. With OpenPCS, these are defined and configured using
property-dialog boxes. You will see this keyword in OpenPCS only when printing the
definition of a configuration.

4.2.79 END_FOR

See FOR

4.2.80 END_FUNCTION

See Function.

4.2.81 END_FUNCTION_BLOCK

See Function Block.

183 / 297

OpenPCS Programing System

Reference

4.2.82 END_IF

See IF

4.2.83 END_PROGRAM

See PROGRAM

4.2.84 END_REPEAT

See REPEAT

4.2.85 END_RESOURCE

This keyword is defined by IEC61131-3 for the textual definition of configurations,
resources and tasks. With OpenPCS, these are defined and configured using
property-dialog boxes. You will see this keyword in OpenPCS only when printing the
definition of a configuration.

4.2.86 END_STEP

This keyword is defined by IEC61131-3 for the textual representation of programming
language SFC. OpenPCS does not support the textual representation of SFC, hence
you will not be able to enter this keyword. You will see this when printing SFC.

4.2.87 END_STRUCT

See STRUCT .

4.2.88 END_TRANSITION

This keyword is defined by IEC61131-3 for the textual representation of programming
language SFC. OpenPCS does not support the textual representation of SFC, hence
you will not be able to enter this keyword. You will see this when printing SFC.

4.2.89 END_TYPE

See Declaration Sections

Notes:

This is a keyword only for declaration parts of POUs.

This is defined by IEC61131-3.

4.2.90 END_VAR

See Declaration Sections

Notes:

This is a keyword only for declaration parts of POUs.

184 / 297

OpenPCS Programing System

Reference

This is defined by IEC61131-3.

4.2.91 END_WHILE

See WHILE

4.2.92 ENO

Function Blocks may have an output variable of type BOOL named ENO. This
typically is set to TRUE to signal correct execution and to FALSE to signal errors
during execution. Typically, this ENO is wired to the EN input of another function
block.

Notes:

"ENO" is abbreviated for "Enable Output"

4.2.93 EQ

Inputs

IN1: ANY input 1

IN2: ANY input 2

Returns

BOOL TRUE if Input 1 is equal to Input 2

Notes:

Standardization: this function is defined by IEC61131-3.

The function Append Input Connector is not available with this function block

4.2.94 ET

This is the name of a formal parameter of a standard function block (TOF), and as
such defined to be a keyword.

4.2.95 ETRC

Generally an event task will be executed only once. Since the reaction on a special
event can last longer than one cycle, it is necessary to restart the current task
again. To perform this action the firmware function block ETRC (Event Task Run
Control) can be used. It prolongs the execution of its own event task for another
cycle. Additionally the function block provides at its outputs information like the
cycle count or elapsed time since the first call on this the ETRC instance. With this
information a reaction on errors, which would end up in an endless loop, could be
handled.

Input:

IN : BOOL TRUE: The event task should be started for another cycle

FALSE: The event task should not be started again. The function
block is called only to get the output information;

Output:

Q : BOOL TRUE: The event task will be executed for one cycle more

185 / 297

OpenPCS Programing System

Reference

FALSE: the event task will be stopped after the current
cycle

EVC : USINT The event code (EVC) describes the internal reason for the
event task to be called.

ERT : TIME The elapsed runtime (ERT) returns the time since the first
start of the current event task

CCV : UDINT The cycle counter value defines the count of event task
cycles already executed

ERROR : USINT Return values of the ETRC execution.

0 : successful execution,

1 : execution not possible since function has been called
out of a task (not a valid call)

Event Codes of the function block:

0 The called task is unknown

1 Coldstart executed

2 Warmstart executed

3 Hotstart executed

4 Single cycle start executed

5 PLC has been stopped by hardware RUN/STOP switch

6 PLC has been stopped by software stop

7 After executing a single cycle the PLC changes to status STOP

8 General error while PLC program execution

9 Division by zero

10 Invalid array index access

11 Error while executing a firmware function block

4.2.96 EXIT

Any of the loops can be "left" under program control before the loop condition
dictates so. The EXIT instruction will jump to the first instruction after the
innermost loop.

Example:

VAR

 start: INT :=0;

 summe: INT :=0;

 ende : INT := 10;

END_VAR

FOR Start := 1 TO Ende BY 2 DO
 Summe := Summe + 1;
 IF Summe > 4 THEN
 EXIT;
 END_IF;
END_FOR;
(* Will continue here *)

186 / 297

OpenPCS Programing System

Reference

As soon as "Summe" is greater than 4, the FOR loop will be left.

Notes:

This is a keyword only for language ST.

This is defined by IEC61131-3.

4.2.97 EXP

Input

In: REAL

Returns

REAL: e ** In

4.2.98 EXPT

Inputs :

In1 : ANY_REAL

In2 : ANY_NUM

Returns :

ANY_REAL: In1 ** In2

4.2.99 F_EDGE

F_EDGE is used to indicate a falling edge detection function on Boolean inputs. This
leads to an implicit declaration of a function block of type F_TRIG .

Example:

FUNCTION_BLOCK AND_EDGE

VAR_INPUT

 X : BOOL R_EDGE;

 Y : BOOL F_EDGE;

END_VAR

VAR_OUTPUT

 Z : BOOL ;

END_VAR

Z := X AND Y ; (* ST language example *)

END_FUNCTION_BLOCK

4.2.100 F_TRIG

Inputs

CLK: bool input operand whose falling edge is detected

Outputs

Q: bool Output operand; indicates the falling edge of "CLK"

187 / 297

OpenPCS Programing System

Reference

The function block "F_TRIG" detects the status of the input operand "CLK". The
status change from "1" to "0" in a processing cycle is detected and indicated in the
subsequent cycle with the Boolean value "1" via the output "Q". The output is "1"
only in the processing cycle in which the change of the status of "CLK" is detected
and a falling edge is indicated.

Notes:

Standardization: this function block is defined by IEC61131-3.

4.2.101 FALSE

Constant value of type BOOL.

4.2.102 FBD

FBD is the abbreviation of Function Block Diagram, one of the programming
languages of IEC61131-3.

4.2.103 FIND

Find one character string within another character string.

Inputs

IN1: STRING Basic character string in which a special character sequence is
searched for; the string is made available via the working
register

IN2: STRING Character sequence which is searched for in the "IN1" basic
character string.

Returns

INT Position of first occurrence

A special character sequence is searched for in the "IN1" basic character string. If
this string is found, the position of the first character of this sequence is entered
into the working register or, otherwise, the value "0" is entered. If there are more
than one in the basic character string, the string which was found first is entered.

Invocation of the FIND function in the program "search"

PROGRAM search

VAR

 Basic_Text : STRING := "StartupCondition";

 Search_Text : STRING := "Switch";

 Position : INT;

END_VAR

LD Basic_Text

FIND Search_Text

ST Position (* Position: 4 *)

END_PROGRAM

Notes:

Standardization: this function is defined by IEC61131-3.

188 / 297

OpenPCS Programing System

Reference

4.2.104 FOR

With the FOR loop, a loop control variable will be set to a specified starting value,
then incremented (or decreased), and the loop will be terminated when a given end
value is reached.

The syntax is:

FOR assignment TO Endvalue BY Increment DO
 Instructions;
END_FOR;

Example

VAR
 Field : ARRAY[1..5] OF INT :=[2,14,8,12,5];
 Index : INT;
 MaxIndex : INT :=5;
 Maximum : INT :=0;
END_VAR
FOR Index :=1 TO MaxIndex BY 1 DO
 IF Field[Index] > Maximum THEN
 Maximum := Field[Index];
 END_IF;
END_FOR;

The loop control variable "Index" will start with "1", and will be incremented "BY 1"
on each execution of the loop. This will be done until the end value "MaxIndex" (=5)
will be reached.

Note: the BY-term is optional and can be omitted. Default then is to increment by 1.

Execution of the FOR-loop:

Initializing of the control variables.

Check of the termination criterion and termination if necessary.

Execution of the instruction block.

Increase/decrease of the control variable about the step size.

Go to step 2.

Notes:

This is a keyword only for language ST.

This is defined by IEC61131-3.

4.2.105 FROM

See Transition.

4.2.106 Function

IEC61131-3 defines three block types: PROGRAM, FUNCTION and FUNCTION BLOCK.
See block types under "Advanced Topics" for more details.

189 / 297

OpenPCS Programing System

Reference

Functions return values by assignment to a variable having the same name and type
as the function, e.g.

FUNCTION MyFun : INT

...

MyFun := 999;

END_FUNCTION

Note:

1. Some IEC61131 dialects take the current result at the END_FUNCTION or RETURN
as the value to be returned by the function. OpenPCS will ignore this value and
only use the value assigned to the function name.

2. The keywords FUNCTION and END_FUNCTION are typically invisible within
OpenPCS, as they are maintained by the Editors internally.

3. The function return type (INT in the example shown above) is selected in the
same dialog box where you specify the function name, at the very bottom. The
default is BOOL.

4. You can also enter user-defined data types (STRUCTs, ARRAYs, etc.) by entering
the name of the data type manually into the input-field.

5. To change a return type of a function, open the file in the project browser. Open
the change return type dialog by selecting Edit->Change Return Type....

The following dialog will pop up:

You can chose one of the given types or type in a user specific one.

4.2.107 FUNCTION BLOCK

IEC61131-3 defines three block types: PROGRAM, FUNCTION and FUNCTION_BLOCK.
See block types under "Advanced Topics" for more details.

The keywords FUNCTION_BLOCK and END_FUNCTION_BLOCK are typically invisible
within OpenPCS, as they are maintained by the editors internally.

4.2.108 GE

Inputs

IN1: ANY input 1

IN2: ANY input 2

Returns

BOOL TRUE if Input 1 is greater or equal than Input 2

Notes:

Standardization: this function is defined by IEC61131-3.

190 / 297

OpenPCS Programing System

Reference

4.2.109 GetDateStruct

Input

IN: Date date to convert

InOut

DATESTRUCT_INOUT : DateStruct output of date as a struct

whereas

DateStruct: STRUCT

YEAR : UINT;

MONTH : USINT;

DAY : USINT;

END_STRUCT

GETDATESTRUCT will convert the given date to a DateStruct, providing the date
information separated in single integer variables for day, month and year.

4.2.110 GETSYSTEMDATEANDTIME

Inputs

EN: BOOL

Outputs

ENO: BOOL

ODT: DATE_AND_TIME

The function "GetSystemDateAndTime" returns the actual system time in ODT.

Notes:

Standardization: this function block is not defined by IEC61131-3

4.2.111 GetTaskInfo

Output

 Count: DWORD; number of cycles this task is executed

 LastCT: TIME; time needed for last cycle

 AverageCT: TIME; average time needed for execution

 MinCT: TIME; minimum time needed for execution

 MaxCT: TIME; maximum time needed for execution

 State: DWORD; not yet used

GetTaskInfo returns information about the execution time of the last cycle of the
current task. This function block has no input parameters.

191 / 297

OpenPCS Programing System

Reference

4.2.112 GetTime

Input

IN1: TIME previous time

Returns

TIME time elapsed since power on, minus IN1

GETTIME will retrieve the time elapsed since the controller has last been switched
on, less the time value supplied as an input. This can be used to easily measure
time spans.

Example "Stop Watch"

PROGRAM StopW

VAR

begin, result : TIME;

END_VAR

start:

LD t#0ms

GETTIME

ST begin

 ...

stop:

LD begin

GETTIME

ST result

END_PROGRAM

4.2.113 GetTimeCS

Get current system time

Input

IN1: TIME previous time

Returns

TIME time elapsed since power on, minus IN1

GETTIME will retrieve the time elapsed at the last system control point since the
controller has last been switched on, less the time value supplied as an input. This
can be used to easily measure time spans. Compared to GETTIME, GETTIMECS will
return the same value when called multiple times within the same cycle.

Example "Stop Watch"

PROGRAM StopW

VAR

begin, result : TIME;

END_VAR

...

start:

LD t#0ms

192 / 297

OpenPCS Programing System

Reference

GETTIMECS

ST begin

 ...

stop:

LD begin

GETTIMECS

ST result

END_PROGRAM

4.2.114 GetVarData

InOut

VarName: STRING Name of variable requested

Output

Q: bool TRUE if VarInfo is valid

VarData: VarInfo information on variable

The variable specified as input is located within the memory address space and
information on that variable is returned. If the variable cannot be located, Q is
returned as FALSE.

Please note:

for OpenPCS to be able to locate variables by name, a MAP file has to be generated
(resource options)

for definition of VARINFO, see VARINFO under "keywords".

4.2.115 GetVarFlatAddress

InOut

VarName: STRING Name of variable requested

Output

Q: bool TRUE if VarInfo is valid

Address: DWORD flat memory address of specified variable

The variable specified as input is located within the memory address space and the
address of its location is returned. If the variable cannot be located, Q is returned
as FALSE.

Please note:

for OpenPCS to be able to locate variables by name, a MAP file has to be generated
(resource options)

the memory location returned must not be stored and used in another but the
current execution cycle.

193 / 297

OpenPCS Programing System

Reference

4.2.116 GT

Inputs

IN1: ANY Input 1

IN2: ANY Input 2

Returns

BOOL TRUE if Input 1 is greater than Input 2

Notes:

Standardization: this function is defined by IEC61131-3.

4.2.117 IF

The IF-instruction has following syntax:

IF expression THEN Block
 { ELSIF expression THEN Block}
 [ELSE Block]
END_IF;

If the expression after IF evaluates to "true", the instructions given after THEN will
be executed. If the expression after IF evaluates to "false", the instructions after
ELSE will be executed or the ELSEIF-condition will be checked. In any case,
execution will then continue with the next instruction after END_IF.

Remark:

It is recommended to use the absolute value ABS() of a floating point number if a
comparison with 0.0 is to be done since -0.0 == 0.0 will not return true.

he following IF instruction will compute the maximum of two numbers:

IF a>b THEN
 maximum := a;
 ELSE
 maximum := b;

END_IF;

IF instructions may be nested, i.e. the THEN-part as well as the ELSE-part may
contain other IF instructions.

Example:

The following program will again compute the maximum of two numbers, but if this
maximum is "a" and "a" is greater than 10, it will be reduced by 1:

VAR
 a: INT :=12;
 b: INT :=5;
 maximum: INT;

194 / 297

OpenPCS Programing System

Reference

END_VAR
IF a>b THEN
 maximum :=a;
 IF (a>10) THEN
 a:=a-1;
 ELSE
 a:=a+1;
 END_IF;
ELSE
 maximum :=b;
END_IF;

Notes:

This is a keyword only for language ST.

This is defined by IEC61131-3.

4.2.118 IL

IL is the abbreviation of Instruction List, one of the programming languages of
IEC61131-3.

4.2.119 IN

This is the name of a formal parameter of a standard function block (TOF), and as
such defined to be a keyword.

4.2.120 INITIAL_STEP

This keyword is defined by IEC61131-3 for the textual representation of programming
language SFC. OpenPCS does not support the textual representation of SFC, hence
you will not be able to enter this keyword. You will see this when printing SFC.

4.2.121 INSERT

Inputs

IN1: STRING character string

IN2: STRING character string to be inserted

P: ANY_INT (as supported) Starting position. P < 0 and P > LEN(IN1) is
invalid.

Returns

STRING Composed string. IN1 for invalid parameters.

The "INSERT" function inserts the string "IN2" into "IN1". The concatenated string
consists of the first "P" characters of "IN1", the completed string "IN2"and the rest
of "IN1".

Notes:

Standardization: this function is defined by IEC61131-3.

195 / 297

OpenPCS Programing System

Reference

4.2.122 INT

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.123 Interval

This keyword is defined by IEC61131-3 for the textual definition of configurations,
resources and tasks. With OpenPCS, these are defined and configured using
property-dialog boxes. You will see this keyword in OpenPCS only when printing the
definition of a configuration.

4.2.124 JMP

The program flow continues at the position specified by the jump target. The jump
target must be a sequence start uniquely identified by a label.

A jump is possible only within a POU.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3.

4.2.125 JMPC

If the CR holds the value TRUE, the program flow continues at the position specified
by the jump target. If it holds the value "0", there is no jump. The program flow
continues with the instruction following the jump instruction.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3.

4.2.126 JMPCN

If the CR holds the value FALSE, the program flow continues at the position
specified by the jump target. If it holds the value "1", there is no jump. The
program flow continues with the instruction following the jump instruction.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3.

196 / 297

OpenPCS Programing System

Reference

4.2.127 L(Action Qualifier)

This is an Action qualifier, see Table 45 in the compliance statement. As OpenPCS
only supports actions of type N, you will not need to use this keyword with
OpenPCS.

4.2.128 LD

The value of the operand is evaluated and loaded into the current result. This
overwrites data stored in CR. The operand is not modified. The data type of the
operand determines the permissible data type for consecutive operands.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3.

4.2.129 LD (Ladder Diagram)

LD is the abbreviation of Ladder Diagram, one of the programming languages of
IEC61131-3.

4.2.130 LDN

The operand is evaluated, and the current result is loaded with the negated value.
The operand is not modified. The data type of the operand determines the
permissible data type for consecutive operands.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3.

4.2.131 LEFT

Inputs

IN: STRING character string

L: ANY_INT (as supported) Number of characters to retrieve. L < 0 is invalid.

Returns

STRING the "L" leftmost characters of IN. IN for invalid
parameters.

The "LEFT" function enters the left part of the currently loaded character string into
the working register. The input operand "L" defines the number of characters to be
entered.

4.2.132 LE

Inputs

IN1: ANY input 1

IN2: ANY input 2

197 / 297

OpenPCS Programing System

Reference

Returns

BOOL TRUE if Input 1 is less or equal than Input 2

Notes:

Standardization: this function is defined by IEC61131-3.

4.2.133 LEN

Inputs

In: STRING character string

Returns

INT length of IN

The function "LEN" determines the length of the character string in the working
register (input operand of data type "STRING") and enters the determined value as
INT number into the working register.

4.2.134 LIMIT

Inputs

MN: Any_Num lower limit

IN: Any_Num Test value

MX: Any_Num Upper Limit

Returns

Any_Num One of the input values, see description

The "MN" and "MX" values define the lowest and highest limit value. The function
compares the test value "IN" with "MN" and "MX". If "IN" is between the two limit
values, it is loaded into the working register. If "IN" is smaller than "MN", the "MN"
value is output. If "IN" is greater than "MX", the "MX" value is loaded.

Notes:

Standardization: this function is defined by IEC61131-3.

4.2.135 LINT

This is the name of an elementary data type, which is defined by IEC61131-3, but
not supported by OpenPCS. See Table 10 in the compliance statement.

4.2.136 LN

Input

In: REAL

Returns

REAL logarithm to the base of e

198 / 297

OpenPCS Programing System

Reference

4.2.137 LOG

Input

In: REAL

Returns

REAL logarithm to the base of 10

4.2.138 Lreal

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.139 LT

Inputs

IN1: ANY input 1

IN2: ANY Input 2

Returns

BOOL TRUE if Input 1 is less than Input 2

Notes:

Standardization: this function is defined by IEC61131-3.

4.2.140 Lword

This is the name of an elementary data type, which is defined by IEC61131-3, but
not supported by OpenPCS. See Table 10 in the compliance statement.

4.2.141 MUX

OpenPCS does not implement the MUX function.

Notes:

Standardization: this function is defined by IEC61131-3.

The feature Append Input Connector is available for this function block

4.2.142 MAX

Inputs

In1: Any_Num Input Value1

In2: Any_Num Input Value2

...

InN: Any_Num Input ValueN

Returns

199 / 297

OpenPCS Programing System

Reference

Any_Num Maximum of all input values

The "MAX" function determines which input operand has the highest value. The
selected operand is loaded into the working register.

Notes:

Standardization: this function is defined by IEC61131-3.

The feature Append Input Connector is available for this function block

4.2.143 MID

Inputs

IN: STRING character string

L: ANY_INT (as supported) number of characters to retrieve. L < 0 is invalid.

P: ANY_INT (as supported) starting position. P <= 0 and P > LEN(IN) is
invalid.

Returns

STRING the next " L" characters of IN, starting at the P-
th character. IN for invalid parameters.

The "MID" function enters a middle part of the currently loaded character string into
the working register. The input operand "P" defines the first character to be
entered, "L" defines the number of characters to be entered.

Notes:

Standardization: this function is defined by IEC61131-3.

4.2.144 MIN

Inputs

In1: Any_Num Input Value1

In2: Any_Num Input Value2

...

InN: Any_Num Input ValueN

Returns

Any_Num Minimum of all input values

The "MIN" function determines which input operand has the smallest value. The
selected operand is loaded into the working register.

Notes:

Standardization: this function is defined by IEC61131-3.

The feature Append Input Connector is available for this function block

4.2.145 MOD

Input

In1: ANY_INT

In2: ANY_INT

200 / 297

OpenPCS Programing System

Reference

Returns

ANY_INT

The first input will be divided by the second input. MOD delivers the residue to
current result.

4.2.146 MOVE

Inputs

In: ANY

Outputs

Out: ANY

The function "MOVE" is an arithmetic function that serves for assigning a value.

4.2.147 MUL

Inputs

In1: ANY_NUMValue to be multiplied

In2: ANY_NUMValue to multiply with

Returns

ANY_NUM product

Multiplies two numbers. See Table E.1: Error conditions for result on overflow.

Notes:

Standardization: this is an operation defined by IEC61131-3.

The feature Append Input Connector is available for this function block

4.2.148 MUL (time)

Inputs

In1: TIME time duration value

In2: ANY_NUMmultiplicand

Returns

TIME multiplied time value

Multiplication of TIME values

Notes:

Standardization: this is an operation defined by IEC61131-3.

4.2.149 N (Action Qualifier)

This is an Action qualifier, see Table 45 in the compliance statement. As OpenPCS
only supports actions of type N, you will not need to use this keyword with
OpenPCS.

201 / 297

OpenPCS Programing System

Reference

4.2.150 NCC

NCC is an acronym for native code compiler.

4.2.151 NE

Inputs

IN1: ANY input 1

IN2: ANY input 2

Returns

BOOL TRUE if Input 1 is not equal to Input 2

Notes:

Standardization: this function is defined by IEC61131-3.

4.2.152 NEG

Input

In: ANY_NUM

Returns

ANY_NUM: negated numeric value of input

4.2.153 NOT

Inputs

IN1: ANYBIT Input

Returns

ANYBIT logical negation (1-complement) of Input

Notes:

Standardization: this function is defined by IEC61131-3.

4.2.154 OF

See CASE

4.2.155 On

See RESOURCE.

4.2.156 OPC

The var qualifier OPC allows a user, to mark dedicated variables, to become part of
the variable table, already within the declaration editor of OpenPCS.

See Declaration Sections

202 / 297

OpenPCS Programing System

Reference

4.2.157 OR

Inputs

IN1: ANY_BIT Input 1

IN2: ANY_BIT Input 2

Returns

ANY_BIT logical, bit by bit OR of Input 1 and Input 2

Notes:

Standardization: this function is defined by IEC61131-3.

The feature Append Input Connector is available for this function block

4.2.158 ORN

Inputs

IN1: ANY_BIT Input 1

IN2: ANY_BIT Input 2

Returns

ANY_BIT logical, bitwise OR of Input 1 and negated Input 2

Notes:

Standardization: this function is defined by IEC61131-3.

The feature Append Input Connector is available for this function block

4.2.159 P(Action Qualifier)

This is an Action qualifier, see Table 45 in the compliance statement. As OpenPCS
only supports actions of type N, you will not need to use this keyword with
OpenPCS.

4.2.160 POINTER

The data type pointer is defined by OpenPCS in addition to IEC61131-3. Using this
data type, it is now possible to call Functions or Functionblocks with arrays of
different sizes. A pointer must be declared as follows:

VAR

IntVar : INT;

pInt : POINTER;

END_VAR

To access the adress of a variable, the adress operator ("&") must be written in
front of the variable's name.

Example IL: LD &IntVar

Example ST: pInt := &IntVar;

203 / 297

OpenPCS Programing System

Reference

4.2.161 POU

POU is the abbreviation of Program Organization Unit, meaning a Program, Function
or Function Block written in one of the programming languages of IEC61131-3.

4.2.162 Priority

This keyword is defined by IEC61131-3 for the textual definition of configurations,
resources and tasks. With OpenPCS, these are defined and configured using
property-dialog boxes. You will see this keyword in OpenPCS only when printing the
definition of a configuration.

4.2.163 PROGRAM

IEC61131-3 defines three block types: PROGRAM, FUNCTION and FUNCTION BLOCK.
See block types under "Advanced Topics" for more details.

The keywords PROGRAM and END_PROGRAM are typically invisible within OpenPCS,
as they are maintained by the editors internally.

4.2.164 PT

This is the name of a formal parameter of a standard function block (TOF), and as
such defined to be a keyword.

4.2.165 PV

This is the name of a formal parameter of a standard function block (CTD), and as
such defined to be a keyword.

4.2.166 Q(Parameter)

This is the name of a formal parameter of a standard function block (CTD), and as
such defined to be a keyword.

4.2.167 Q1

This is the name of a formal parameter of a standard function block, and as such
defined to be a keyword.

4.2.168 QD

This is the name of a formal parameter of a standard function block (CTUD), and as
such defined to be a keyword.

4.2.169 QU

This is the name of a formal parameter of a standard function block (CTUD), and as
such defined to be a keyword.

204 / 297

OpenPCS Programing System

Reference

4.2.170 R(Action Qualifier)

This is an Action qualifier, see Table 45 in the compliance statement. As OpenPCS
only supports actions of type N, you will not need to use this keyword with
OpenPCS.

4.2.171 R(eset)

The operand is reset, if the content of the CR equals "1". If this precondition is not
met, operands will not be changed. The CR is not modified.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3.

4.2.172 R_EDGE

R_EDGE is used to indicate a rising edge detection function on Boolean inputs. This
leads to an implicit declaration of a function block of type R_TRIG.

Example:

FUNCTION_BLOCK AND_EDGE

VAR_INPUT

X : BOOL R_EDGE;

Y : BOOL F_EDGE;

END_VAR

VAR_OUTPUT

Z : BOOL ;

END_VAR

Z := X AND Y ; (* ST language example *)

END_FUNCTION_BLOCK

4.2.173 R_TRIG

Inputs

CLK: bool Input operand whose rising edge is detected

Outputs

Q: bool Output operand; indicates the rising edge of "CLK"

The function block "R_TRIG" detects the status of the input operand "CLK". The
status change from "0" to "1" in a processing cycle is detected and indicated with
the Boolean value "1" via the output "Q". The output is "1" only in the processing
cycle in which the change of the status of "CLK" is detected and a rising edge is
indicated.

205 / 297

OpenPCS Programing System

Reference

Notes:

Standardization: this function block is defined by IEC61131-3.

4.2.174 R1

This is the name of a formal parameter of a standard function block, and as such
defined to be a keyword.

4.2.175 READ_ONLY

This keyword is defined by IEC61131-3 for the definition of Access Paths. OpenPCS
does not support Access Paths, hence you will not be able to use this keyword with
OpenPCS.

4.2.176 READ_WRITE

This keyword is defined by IEC61131-3 for the definition of Access Paths. OpenPCS
does not support Access Paths, hence you will not be able to use this keyword with
OpenPCS.

4.2.177 RED_SHOWROLE

Project -> Refresh project information refreshes the project information and
writes the project internal newly. Thus e.g., prototypes are newly read in and
libraries are refreshed.

4.2.178 REAL

See Elementary Data Types

Hint: The (internal) binary representation of floating point numbers is hardware-
dependent and some values cannot even be stored correctly. So comparisons of
value equality may fail. Therefore it's a better way to use intervals with relative or
absolute error tolerance.

Using floating numbers may run out of precision under certain circumstances. For
instance a float type is 32 bits wide. Twenty four of these bits are devoted to the
significand (what used to be called the mantissa) and the rest to the exponent. The
number 16777216 is 2^24 and so there is no precision left to represent 16777216+1.
If floating number is used in a counter like x = x + 1.0, the counter will stay at
16777216 once this value is reached.

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.179 REAL_TO_*

Inputs

original data type real

Returns

206 / 297

OpenPCS Programing System

Reference

converted data type *

The function block converts the first value of type real into the same value of type
*.
The following data types can be converted:

BOOL
Values within the interval ±1,175494351e-38 are cast to false all other values to
true.
Examples:
1.1 -> true
-22.33 -> true
1.1e-39 -> false

DINT, INT und SINT

Values are rounded off, therefore values smaller than x.5 are rounded to the
absolute smaller number else to the next larger one.
Examples:
0.3 -> 0
-0.6 -> -1
-1.5 -> -2

BYTE, DWORD, WORD und USINT, UINT, UDINT

The conversion is analog to an integer-conversion for positive values
Negative values are cast to the new size and the generated bit pattern is
interpreted as a positive number
Examples:
-1.6 -> 254 (USINT), 65534 (UINT), 4294967294 (UDINT); (A sint -2 has the bit
pattern: 1111 1110 which is interpreted as 254)
33.3 -> 33

STRING

For converting string function Sprintf(str, "%#g", value); is used.
Examples:
0.0 -> "0.000000"
123.45678 -> " 123.456"
-12.345678 -> " -12.3456"
12345678.9 -> " 1.23457e+007"
0.000000123 -> " 1.23000e-007"

4.2.180 Release

This is the name of a formal parameter of a standard function block (SEMA), and as
such defined to be a keyword.

4.2.181 REPEAT

In contrast to the other loop types, REPEAT will check the loop expression after
execution of the loop. The syntax is:

REPEAT
 instructions;
UNTIL expression
END_REPEAT;

207 / 297

OpenPCS Programing System

Reference

So, the REPEAT loop will always be executed at least once. Example:

VAR
 i : INT := -1;
END_VAR
REPEAT
 i:=i-1;
UNTIL i < 0
END_REPEAT;
(* now, i = -2 *)

Although "i" will meet the loop condition from the beginning, the REPEAT loop will be
executed once anyway.

Notes:

This is a keyword only for language ST.

This is defined by IEC61131-3.

4.2.182 REPLACE

Inputs

IN1: STRING Basic character string in which a part should be
replaced

IN2: STRING New character string

L: ANY_INT (as supported) Length of the substring which should be cut out
off "IN1". L < 0 invalid.

P: ANY_INT (as supported) Starting position of the inserted string. P < 0 and
P > LEN(IN1) invalid.

Returns

STRING New composited. IN1 for invalid parameters.

The function "REPLACE" replaces a substring of length "L" starting at position "P"
within the given string "IN1" by the string "IN2".

Notes:

Standardization: this function is defined by IEC61131-3.

4.2.183 Resource

This keyword is defined by IEC61131-3 for the textual definition of configurations,
resources and tasks. With OpenPCS, these are defined and configured using
property-dialog boxes. You will see this keyword in OpenPCS only when printing the
definition of a configuration.

4.2.184 RESUME

The Resume function block enables to resume the execution after its has been
stopped, e.g. in an interrupt task for error handling.

Outputs:

208 / 297

OpenPCS Programing System

Reference

Q: BOOL TRUE if succeeded

4.2.185 RET

The "RET" instruction causes an unconditioned return jump to the calling POU - if
this POU is the program POU, a return jump to the system program. When jumping
back, the calling POU is resumed at the point of interruption. Delayed operations will
be executed.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3.

4.2.186 RETAIN

RETAIN is the keyword to declare variables as retentive, and is optional after VAR,
VAR_GLOBAL. Implementation of retentiveness depends on your controller. See
declaration sections.

4.2.187 RETC

Conditional Return

Instruction does not take any operands.

If the CR holds the value "1", a return jump to the calling POU is performed - i.e. to
the system program if calling POU is of type "program". If the CR holds the value "0",
there is no return jump. The program flow continues with the instruction following
the jump instruction.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3.

4.2.188 RETCN

Conditional Return

Instruction does not take any operands.

Conditioned return jump depending on the Boolean content of the CR.

If the CR holds the value "0", a return jump to the calling POU is performed - i.e. to
the system program if calling POU is of type "program". If the CR holds the value "1",
there is no return jump. The program flow continues with the instruction following
the jump instruction.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3.

209 / 297

OpenPCS Programing System

Reference

4.2.189 RETURN

The RETURN instruction will cause the current POU to be left, transferring control
back to the caller of the current POU. Note that on working with functions, the
function value (variable with the name of the function) must be assigned. If output
values of function blocks aren't assigned by local values of the function block, they
have the predefined values of their data types.

Example:

IF a<b THEN
 RETURN;
END_IF;

Notes:

This is a keyword only for language ST.

This is defined by IEC61131-3.

4.2.190 RIGHT

Inputs

IN: STRING character string

L: ANY_INT (as supported) Number of characters to retrieve. L < 0 is invalid.

Returns

STRING the "L" rightmost characters of IN. IN for invalid
parameters.

The "RIGHT" function enters the right part of the currently loaded character string
into the working register. The input operand "L" defines the number of characters to
be entered.

4.2.191 ROL

Inputs

IN: ANY_BIT Bit Pattern

N: UINT Number of bits to shift

Returns

ANY_BIT IN, rotated left N bits

The leftmost bits will be rotated in from right

Notes:

Standardization: this function is defined by IEC61131-3.

4.2.192 ROR

Inputs

IN: ANY_BIT Bit Pattern

N: UINT Number of bits to shift

210 / 297

OpenPCS Programing System

Reference

Returns

ANY_BIT IN, rotated right N bits

The rightmost bits will be rotated in from left.

Notes:

Standardization: this function is defined by IEC61131-3.

4.2.193 RS

Inputs

Set: bool Set condition

Reset1: bool Reset condition

Outputs

Q1: bool Output state of the bistable element

The characteristic feature of the "RS" function module is to have a state
corresponding to its output variable Q1 and to have a dominant input Reset1.

1. If Reset1 is true: Q1 is always false.

2. If Reset1 is false: Q1 is true, if it was true before or Set is true.

Q1 is initially false.

Formula

Q1 ßß NOT (Reset1) AND (Q1 OR Set)

Table (Karnough Map)

RS

Set, Reset1

0
0

01 11 10

Q
1

0 0 0 0 1

1 1 0 0 1

Notes

Standardization: this function block is defined by IEC61131-3.

4.2.194 RTC

The RTC funtion block sets the output CDT to the input PDT if IN=1. Otherwise CDT
is unvalid

Inputs:

IN: BOOL

PDT: DATE_AND_TIME Present date and time

Outputs

211 / 297

OpenPCS Programing System

Reference

Q: BOOL copy of IN

CDT: DATE_AND_TIME Current date and time, valid when IN=1

Notes:

Standardization: this function block is defined by IEC61131-3

4.2.195 S(Action Qualifier)

This is an Action qualifier, see Table 45 in the compliance statement. As OpenPCS
only supports actions of type N, you will not need to use this keyword with
OpenPCS.

4.2.196 S(et)

The operand is set, if the content of the CR equals "1". If this precondition is not
met, operands will not be changed. The CR is not modified.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3.

4.2.197 S1

This is the name of a formal parameter of a standard function block, and as such
defined to be a keyword.

4.2.198 SD

This is an Action qualifier, see Table 45 in the compliance statement. As OpenPCS
only supports actions of type N, you will not need to use this keyword with
OpenPCS.

4.2.199 SEL

This is the name of a standard function block, which is defined in IEC61131-3, but
not provided by OpenPCS. See Table 31 in the compliance statement.

4.2.200 SEMA

This is the name of a standard function block, which is defined in IEC61131-3, but
not provided by OpenPCS. See Table 34 in the compliance statement.

4.2.201 SETSYSTEMDATEANDTIME

Inputs

EN: BOOL

IDT: DATE_AND_TIME

Outputs

ENO: BOOL

212 / 297

OpenPCS Programing System

Reference

The function "SetSystemDateAndTime" sets the actual system time in IDT.

Notes:

Standardization: this function block is not defined by IEC61131-3.

4.2.202 SFC

SFC is the abbreviation of Sequential Function Chart, one of the programming
languages of IEC61131-3.

4.2.203 SHL

Inputs

IN: ANY_BIT Bit Pattern

N: UINT Number of bits to shift

Returns

ANY_BIT IN, shifted left N bits

Rightmost bits will be filled with zeros

Notes:

Standardization: this function is defined by IEC61131-3.

4.2.204 SHR

Inputs

IN: ANY_BIT Bit Pattern

N: UINT Number of bits to shift

Returns

ANY_BIT IN, shifted right N bits

Leftmost bits will be filled with zeros

Notes:

Standardization: this function is defined by IEC61131-3

4.2.205 SIN

Input

In: REAL

Returns

REAL sine of input

4.2.206 Single

This keyword is defined by IEC61131-3 for the textual definition of configurations,
resources and tasks. With OpenPCS, these are defined and configured using
property-dialog boxes. You will see this keyword in OpenPCS only when printing the
definition of a configuration.

213 / 297

OpenPCS Programing System

Reference

4.2.207 SINT

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.208 SL

This is an Action qualifier, see Table 45 in the compliance statement. As OpenPCS
only supports actions of type N, you will not need to use this keyword with
OpenPCS.

4.2.209 SQRT

Input

In: REAL

Returns

REAL square root of input

SQRT will compute the square root of the input

4.2.210 SR

Inputs

Set1: bool Set condition

Reset: bool Reset condition

Outputs

Q1: bool Output state of the bistable element

The characteristic feature of the "SR" function module is to have a state
corresponding to its output variable Q1 and to have a dominant input Set1.

1. If Set1 is true: Q1 is always true.

2. If Set1 is false: Q1 is true, if it was true before and Reset is false.

Q1 is initially false.

Formula

Q1 ßß Set1 OR (Q1 AND NOT Reset)

Table (Karnough Map)

SR
Set1, Reset

00 01 11 10

Q1 0 0 0 1 1

214 / 297

OpenPCS Programing System

Reference

1 1 0 1 1

Notes

Standardization: this function block is defined by IEC61131-3.

4.2.211 ST

The content of the CR register is assigned to the operand. This overwrites the value
of the operand. The data type of the operand must match the data type of the
data element in the register. The data type of the CR is determined by the data
type of the variable first assigned a value. Further assignments will then be possible
only if the types of further variables match. An assignment may be followed by
another assignment.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3,

4.2.212 ST (Structured Text)

ST is the abbreviation Structured Text, one of the programming languages of
IEC61131-3.

4.2.213 STEP

This keyword is defined by IEC61131-3 for the textual representation of programming
language SFC. OpenPCS does not support the textual representation of SFC, hence
you will not be able to enter this keyword. You will see this when printing SFC.

4.2.214 STN

The negated content of the CR register is assigned to the operand. This overwrites
the value of the operand. The data type of the operand must match the data type
of the data element in the register. The CR register is not modified by this
operation. An assignment "STN" may be followed by another "ST" or "STN"
instruction.

Notes:

This is a keyword in language Instruction List.

This is defined by IEC61131-3.

4.2.215 STRING

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

215 / 297

OpenPCS Programing System

Reference

4.2.216 STRING_TO_*

Inputs

original data type string

Returns

converted data type *

The function block converts the first value of type string into the same value of
type *.
The following data types can be converted:

BOOL
The strings "1" and "true" are converted to true, the rest to false.

DINT, INT und SINT

The string is read from left to right until an illegal charcter or the word is finished.

Examples:

"-1" -> -1

"213hallo" -> 213

"23.5" -> 23

BYTE, DWORD, WORD und USINT, UINT, UDINT

The conversion is analog to an integer-conversion for positive values

Negative values are cast to the new size and the generated bit pattern is
interpreted as a positive number

Examples:

"-1.6" -> 254 (USINT), 65534 (UINT), 4294967294 (UDINT); (A sint -2 has the bit
pattern: 1111 1110 which is interpreted as 254)

"33.3" -> 33

REAL

Analog the above conversion. The e-Notation is permitted

Examples:

"-123.456" -> -123.456

"0.23" -> 0.23

"-1.2e-2" -> -0.012

4.2.217 STRUCT

STRUCT is the keyword to define structured data types, see and Derived Data
Types

A variable consisting of two members:

VAR

 x1: STRUCT

 x2: INT;

 x3: BOOL;

216 / 297

OpenPCS Programing System

Reference

 END_STRUCT;

END_VAR

A variable of user defined type:

TYPE

 x4: STRUCT

 x5: REAL;

 x6 : BOOL;

 END_STRUCT;

END_TYPE

VAR

 x7: x4;

END_VAR

4.2.218 SUB

Inputs

In1: ANY_NUM

In2: ANY_NUM

Returns

ANY_NUM Difference In1-In2

Subtraction of two numbers.

Notes:

Standardization: this is an operation defined by IEC61131-3.

The function Append Input Connector is not available with this function block

4.2.219 SUB (time)

Inputs

In1: TIME time duration value

In2: TIME

Returns

TIME difference between the two time values provided

Subtraction of TIME values

Notes:

Standardization: this is an operation defined by IEC61131-3.

4.2.220 TAN

Input

In: REAL

Returns

REAL tangent of input

217 / 297

OpenPCS Programing System

Reference

4.2.221 Task

This keyword is defined by IEC61131-3 for the textual definition of configurations,
resources and tasks. With OpenPCS, these are defined and configured using
property-dialog boxes. You will see this keyword in OpenPCS only when printing the
definition of a configuration.

4.2.222 THEN

See IF

4.2.223 TIME

See Elementary Data Types

See also Constants on how to create TIME-constants.

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.224 TIME_OF_DAY

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.225 TIME_TO_*

Inputs

original data type time

Returns

converted data type *

The function block onverts the first value of type time into the same value of type
*.

The following data types can be converted:

BOOL

BYTE

DINT

DWORD

INT

REAL

SINT

STRING

UDINT

UINT

USINT

218 / 297

OpenPCS Programing System

Reference

WORD

Notes:

Standardization: this function is defined by IEC61131-3.

Except TIME_TO_DINT and TIME_TO_REAL, all TIME convert functions are only
available within the Ladder-Diagram-Editor.

4.2.226 TO

See FOR

4.2.227 TOD

TOD can be used as an abbreviation to TIME_OF_DAY when specifying the data
type of a literal constant. As data type TIME_OF_DAY is not implemented in
OpenPCS, you will not be able to use this keyword with OpenPCS.

4.2.228 TOF

If the state of the input operand "IN" is "1", this will be passed to the output
operand "Q" without any delay. If there is a falling edge, a timer function will be
started lasting as long an interval as specified by the operand "PT"

It is after the time is up that the operand "Q" will change to the state "0". If the
"PT" value changes after the start, it will have no implications until there is the next
rising edge of the operand "IN".

The operand "ET" contains the current timer value. If the time is up, the operand
"ET" will keep its value as long as the operand "IN" has the value "0". If the state of
the "IN" operand changes to "1", the value of "ET" will switch to "0".

If the input "IN" is switched off, this will switch off the output "Q" after an interval
specified by the delay value.

Inputs:

IN: Start condition

PT: time Initial time value

Outputs

Q: bool binary state of the timer

ET: time current time value

Notes:

Standardization: this function block is defined by IEC61131-3

219 / 297

OpenPCS Programing System

Reference

4.2.229 TON

The rising edge of the input operand "IN" will start the timer "ON", and it will run as
long a time interval as specified by the operand "PT".

While the timer is running, the output operand "Q" will have the value "0". If the time
is up, the state will change to "1" and keep this value until the operand "IN" changes
to "0".

If the "PT" value changes after the timer has been started, this will have no
implications until the next rising edge of the operand "IN".

The output operand "ET" contains the current timer value. If the time is up, the
operand "ET" will keep its value as long as the operand "IN" has the value "1". If the
state of the "IN" operand changes to "0", the value of "ET" will switch to "0".

If the input "IN" is switched on, this will switch on the output "Q" after an interval
specified by the delay value.

Inputs:

IN: Start condition

PT: time Initial time value

Outputs

Q: bool binary state of the timer

ET: time current time value

Notes:

Standardization: this function block is defined by IEC61131-3.

4.2.230 TP

A rising edge of the input operand "IN" will start the timing function of the timer
"TP", and it will run as long an interval as specified by the operand "PT".

While the timer is running, the output operand "Q" will have the state "1". Any
changes of state at the input "IN" will have no implication on the procedure.

If the "PT" value changes after the start, this will not have any implication before
the next rising edge of the "IN" operand.

The output operand "ET" contains the current timer value. If the operand "IN" has
the state "1" after the time is up, the operand "ET" will keep its value.

Every edge occurring while the timer is not running will cause an impulse at the
output Q that lasts as long as specified.

220 / 297

OpenPCS Programing System

Reference

Inputs

IN: bool start timer

PT: time initial time value

Outputs

Q: bool binary state of timer

ET: time elapsed time

Notes:

Standardization: this function block is defined by IEC61131-3.

4.2.231 Transition

This keyword is defined by IEC61131-3 for the textual representation of programming
language SFC. OpenPCS does not support the textual representation of SFC, hence
you will not be able to enter this keyword. You will see this when printing SFC.

4.2.232 TRUE

Constant value of type BOOL.

4.2.233 TRUNC

Inputs

In: REAL

Returns

ANY_INT

Returns the integer part of the supplied real value.

Notes:

Standardization: this function is defined by IEC61131-3.

4.2.234 TYPE

See Declaration Sections and Derived Data Types

Notes:

This is a keyword only for declaration parts of POUs.

This is defined by IEC61131-3.

221 / 297

OpenPCS Programing System

Reference

Keywords TYPE .. END_TYPE should not be nested within a VAR..END_VAR block, but
rather be on top level in the declaration section, or in a type declaration file on
project level.

4.2.235 UDINT

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.236 UINT

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.237 ULINT

This is the name of an elementary data type, which is defined by IEC61131-3, but
not supported by OpenPCS. See Table 10 in the compliance statement.

4.2.238 UNTIL

See REPEAT

4.2.239 USINT

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3

4.2.240 VAR

See Declaration Sections

Notes:

This is a keyword only for declaration parts of POUs.

This is defined by IEC61131-3.

4.2.241 VAR_ACCESS

This keyword is defined by IEC61131-3 for the definition of Access Paths. OpenPCS
does not support Access Paths, hence you will not be able to use this keyword with
OpenPCS.

222 / 297

OpenPCS Programing System

Reference

4.2.242 VAR_INPUT

See Declaration Sections

Notes:

This is a keyword only for declaration parts of POUs.

This is defined by IEC61131-3.

4.2.243 VAR_OUTPUT

See Declaration Sections

Notes:

This is a keyword only for declaration parts of POUs.

This is defined by IEC61131-3.

4.2.244 VAR_IN_OUT

See Declaration Sections

Notes:

This is a keyword only for declaration parts of POUs.

This is defined by IEC61131-3.

4.2.245 VAR_GLOBAL

See Declaration Sections

Notes:

This is a keyword only for declaration parts of POUs.

This is defined by IEC61131-3.

4.2.246 VAR_EXTERNAL

See Declaration Sections

Notes:

This is a keyword only for declaration parts of POUs.

This is defined by IEC61131-3.

4.2.247 VARINFO

VARINFO is defined as

VARINFO : Struct

 TYP : UINT;

 SIZE : UINT;

223 / 297

OpenPCS Programing System

Reference

 PROG : UINT;

 SEG : UINT;

 OFFSET:UINT;

 BIT: UINT;

 SCOPE: UINT;

 end_struct;

4.2.248 WHILE

The WHILE loop will execute the loop body as long as the given expression
evaluates to "true". Syntax:

WHILE expression DO
 instructions;
END_WHILE;

The expression given after the keyword WHILE will be evaluated before entering
the loop. If it is true, the loop body will be executed. This will terminate only when
the expression evaluates to "false".

Example

VAR
 i : INT := 3;
END_VAR
WHILE i > 0 DO
 i:=i-1;
END_WHILE;

Initially, "i" equals 3. 3 is greater than 0, so the expression after WHILE is true and
the loop body executed. This will decrement the value of "i" to 2. 2 is still greater
than 0, so the loop body will be executed again. Sometime later, the loop body will
decrement "i" from 1 to 0. On the next check, the expression after WHILE will be
false, hence the loop body will not be executed again.

Notes:

This is a keyword only for language ST.

This is defined by IEC61131-3.

4.2.249 WITH

This keyword is defined by IEC61131-3 for the textual definition of configurations,
resources and tasks. With OpenPCS, these are defined and configured using
property-dialog boxes. You will see this keyword in OpenPCS only when printing the
definition of a configuration.

4.2.250 WORD

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

224 / 297

OpenPCS Programing System

Reference

4.2.251 WSTRING

See Elementary Data Types

Notes:

Standardization: this is a data type defined by IEC61131-3.

4.2.252 XOR

Inputs

IN1: ANY_BIT Input 1

IN2: ANY_BIT Input 2

Returns

ANY_BIT logical, bitwise XOR of Input 1 and Input 2

Notes:

Standardization: this function is defined by IEC61131-3.

The feature Append Input Connector is available for this function block

4.2.253 XORN

Inputs

IN1: ANY_BIT Input 1

IN2: ANY_BIT Input 2

Returns

ANY_BIT logical, bitwise XOR of Input 1 and inverted Input 2

Notes:

Standardization: this function is defined by IEC61131-3.

The feature Append Input Connector is available for this function block

4.3 Errors and Warnings

4.3.1 How to Read Error Message

In the Output Window you will find any error messages from the compiler.

Each error message line fits the following style:

1. The file name including path of the source code that caused the error message.

2. A triple of numbers where the first number indicates the section the error
occurred ("2" for "Declaration" and "3" for "Instruction"), the second is the line
and the last the column (within the section mentioned before).

225 / 297

OpenPCS Programing System

Reference

3. A capital letter indicates the type of message:

letter stands for

I Info

E Error

W Warning

F Fatal Error

4. The error number code that allows you to find a detailed error description here in
the documentation.

5. A short description of the error.

4.3.2 General Errors

4.3.2.1 G10001

Warning G10001: The file [file name] is inconsistent. You should not use it.

The File is inconsistent. A reason might be that the file name is different from the
POU name within the file. This is normally caused by renaming files outside of
OpenPCS. POUs should always be renamed by using the OpenPCS function File-
>File->Rename.

4.3.3 Syntax Errors

4.3.3.1 S1000

Nested comments are not allowed.

You are using an IEC 61131-3 compatible version. In this version nested comments
are not allowed.

4.3.3.2 S1001

Invalid character.

An unsupported character was used. See also Table 1: Character set features

4.3.3.3 S1002

End of file found in comment.

The end of the file was reached before an open comment has been closed. Please
close the comment before calling the syntax check.

4.3.3.4 S1003

Reserved keyword.

A reserved keyword was used an identifier.

226 / 297

OpenPCS Programing System

Reference

4.3.3.5 S1004

Invalid value for hour.

The numeric value for the hour unit of a TIME_OF_DAY or a DATE_AND_TIME literal
must be an integer in the range [0, 23].

4.3.3.6 S1005

Invalid value for minute.

The numeric value for the minute unit of a TIME_OF_DAY or a DATE_AND_TIME
literal must be an integer in the range [0, 59].

4.3.3.7 S1006

Invalid value for second.

The numeric value for the seconds unit of a TIME_OF_DAY or a DATE_AND_TIME
literal must be a fixed point number in the range [0, 60).

4.3.3.8 S1008

Invalid value for month.

The numeric value for the month unit of a TIME_OF_DAY or a DATE_AND_TIME
literal must be an integer in the range [1, 12].

4.3.3.9 S1009

Invalid day range.

The numeric value for the day unit of a TIME_OF_DAY or a DATE_AND_TIME literal
must be an integer in the range [1, 31], giving the day of the month. I. e. if the
respective month has less than 31 days, the maximum number of days in the month
is the greatest valid value for the day literal.

4.3.3.10 S1010

Exponent too large.

The numeric value for the exponent of a real literal must be an integer in the range
[-37, 38] and for a LREAL literal an INT in the range [-307, 308].

4.3.3.11 S1011

Incorrect direct address.

The numeric value for a location field in the hierarchical address of a directly
represented variable is hardware dependent integer, but must not exceed
4294967295. Please consult your hardware documentation to determine the
maximum value for each field in the address hierarchy.

227 / 297

OpenPCS Programing System

Reference

4.3.3.12 S1012

Invalid day entry.

The numeric value for the day unit of a TIME literal must be a fixed point number in
the range [0, 255].

4.3.3.13 S1013

Invalid hour entry.

The numeric value for the hour unit of a TIME literal must be a fixed point number in
the range [0, 24] if the hour is not the most significant unit of the duration literal.
An overflow is only permitted if the hour unit is the most significant unit of the TIME
literal.

Example:

T#25h_15m is permitted.

T#1d_25h_15m is not allowed. The correct representation of this duration literal is:
T#2d_1h_15m.

4.3.3.14 S1014

Invalid minutes entry.

The numeric value for the minute unit of a TIME literal must be a fixed point number
in the range [0, 60] if minute is not the most significant unit of the duration literal.
An overflow is only permitted if the minute unit is the most significant unit of the
TIME literal.

Example:

T#75m is permitted.

T#5h_75m is not allowed. The correct representation of this duration literal is:
T#6h_15m.

4.3.3.15 S1015

Invalid seconds entry.

The numeric value for the seconds unit of a TIME literal must be a fixed point
number in the range [0, 60] if seconds are not the most significant unit of the
duration literal. An overflow is only permitted if the seconds unit is the most
significant unit of the TIME literal.

Example:

T#75s is permitted.

T#5m_75s is not allowed. The correct representation of this duration literal is:
T#6m_15s.

228 / 297

OpenPCS Programing System

Reference

4.3.3.16 S1016

Invalid milliseconds entry.

The numeric value for the milliseconds unit of a TIME literal must be a fixed point
number in the range [0, 1000] if the milliseconds are not the most significant unit of
the duration literal. An overflow is only permitted if the milliseconds unit is the only
unit of the TIME literal.

Example:

T#1200s is permitted.

T#1s_1200ms is not allowed. The correct representation of this duration literal is:
T#2s_200ms.

4.3.3.17 S1017

Direct address too complex.

The maximum number of location fields in the address hierarchy of a directly
represented variable is hardware dependent but must not exceed 8. Please consult
your hardware documentation to determine the maximum depth of the address
hierarchy.

4.3.3.18 S1018

Integer constant too large/small.

A constant's value must be in the range of representable values for its type. The
type of an integer constant depends on the type of the variable the constant is
assigned to but must not exceed the range of a LINT/ULINT (8 byte
integer/unsigned integer) constant.

4.3.3.19 S1019

Integer constant too large/small (does not fit into 32 bits).

The numeric value of the given constant exceeds the range of values of type
DINT/UDINT.

4.3.3.20 S1020

Numeric value too large/small.

A constant's value must be in the range of representable values for its type. The
type of a signed integer constant depends on the type of the variable the constant
is assigned to but must not exceed the range of a LINT (8 byte integer) constant.

4.3.3.21 S1021

Error while processing a floating-point function of the math library.

229 / 297

OpenPCS Programing System

Reference

4.3.3.22 S1022

Invalid string constant.

The given string constant contains an invalid character. A character string literal is
a sequence of zero or more characters prefixed and terminated by the single quote
character ("). Valid characters are any printable character except "$". The three-
character combination of the dollar sign ($) followed by two hexadecimal digits shall
be interpreted as an hexadecimal representation of the eight bit character code as
shown in table Character string literal feature.

Additionally, two-character combinations beginning with the dollar sign shall be
interpreted as shown in table Two-character combinations in character strings when
they occur in character strings.

4.3.3.23 S1023

Invalid number (i.e., numerical constant).

The given numeric constant contains an invalid character. See table Numeric literals
for examples of valid numeric literals.

4.3.3.24 S1024

Invalid constant.

The given constant contains invalid characters.

For a list of valid constant representations see Table 53: Function block invocation
features for IL language.

4.3.3.25 S1025

Invalid direct address.

A directly represented variable contains invalid characters.

The direct representation of a variable shall be provided by the concatenation of
the percent sign "%", a location prefix, an optional size prefix and one or more
unsigned integers separated by periods (.)

The manufacturer shall specify the correspondence between the direct
representation of a variable and the physical or logical location of the addressed
item in memory, input or output. When a direct representation is extended with
additional integer fields separated by periods, it shall be interpreted as a hierarchical

 physical or logical address with the leftmost field representing the highest level of
the hierarchy, with successively lower levels appearing to the right. For instance,
the variable %IW2.5.7.1 may represent the first "channel" (word) of the seventh
"module" in the fifth "rack" of the second "I/O bus" of a programmable controller
system.

The use of directly represented variables is only permitted in programs. The
maximum number of levels of hierarchical addressing is hardware dependent and
must not exceed 8.

230 / 297

OpenPCS Programing System

Reference

Please consult your hardware documentation to determine the maximum levels of
hierarchical addressing.

4.3.3.26 S1026

Invalid identifier (name, variable, parameter,...)

An identifier contains one or more invalid characters.

An identifier is a string of letters, digits, and underline characters which shall begin
with a letter or underline character. The letters can be upper or lower case. Multiple
leading or multiple embedded underlines are not allowed.

Imbedded space characters are not allowed.

4.3.3.27 S1027

End of file found in file header.

An error occurred while reading the file header. You can fix this error, by opening
the file with a text editor and removing all lines preceding the PROGRAM, FUNCTION
or FUNCTION_BLOCK keyword. If this error occurs more often, please contact your
manufacturer.

4.3.3.28 S1028

This identifier is too long (> 64 characters).

The length of an identifier is greater than the maximum supported length. In this
implementation only identifiers up to 64 characters are supported.

4.3.3.29 S1029

This word (identifier, constant literal, string, comment) is too long (> 1024
characters).

A token (identifier, constant literal, string, comment) exceeds 1024 characters. In
this implementation only tokens up to 1024 characters are supported.

4.3.3.30 S1030

Too many identifiers.

The maximum number of identifiers has been exceeded. Maximum 65535 identifiers
are supported.

4.3.3.31 S1031

Unallowed usage of EN. Just allowed as an identifier for a bool variable in input
section.

A variable with the name "EN" has been declared in the wrong variable section or
with incorrect type.

231 / 297

OpenPCS Programing System

Reference

The name "EN" (enable) is reserved for Boolean input variables.

If the value of EN is FALSE when the function or function block is invoked the
operations defined by the function/function block shall not be executed. If the
Boolean output parameter ENO has been defined too than the value of ENO is reset
to FALSE.

If the value of EN is TRUE when the function or function block is invoked the
operations defined by the function/function block are executed. These operations
can include the assignment of a Boolean value to the Boolean output parameter
ENO, if this parameter has been defined too.

4.3.3.32 S1032

Unallowed usage of ENO. Just allowed as an identifier for a bool variable in output
section.

A variable with the name "ENO" has been declared in the wrong variable section or
with incorrect type.

The name "ENO" (Enable Out) is reserved for Boolean output variables. The variable
"ENO" requires the Boolean input variable "EN".

If the value of EN is FALSE when the function or function block is invoked the
operations defined by the function/function block shall not be executed and the
output parameter ENO is reset to FALSE.

If the value of EN is TRUE when the function or function block is invoked the
operations defined by the function/function block are executed. These operations
can include the assignment of a Boolean value to ENO.

4.3.3.33 S3000

Function block not declared.

A CAL to an unknown function block instance has been found.

An instance of a function block must be declared before it can be used.

Tips

Make sure that an instance of the requested function block is declared in one of the
variable declaration sections.

Make sure the name of the name of the function block instance is spelled correctly.

4.3.3.34 S3001

Function not present.

A call to an unknown function has been found.

232 / 297

OpenPCS Programing System

Reference

A function must be declared before it can be used. The parameters that a function
uses must be specified in a declaration, or prototype, before the function can be
used.

Tips

Make sure that the file containing the declaration or prototype of the function is in
the scope of the project or that the function is part of the firmware.

Make sure the name of the name of the function is spelled correctly.

4.3.3.35 S3002

Incorrect parameter.

The requested parameter was not found in the formal parameter list of the function
block.

Tips

Make sure the name of the name of the parameter is spelled correctly.

Make sure that the parameter list of the function block-definition contains a
parameter with the name used in the assignment.

4.3.3.36 S3003

Jump label not present.

A JMP instruction to an unknown label has been found.

A label has to be defined in the instruction part of the program unit in which it is
used.

Tips

Make sure that a the label is defined in the same program unit.

Make sure the name of the name of the label is spelled correctly.

4.3.3.37 S3004

Multiple assignment of a variable/name.

The given identifier was defined more than once.

Tips

Make sure the identifier has not been defined twice in the same program unit.

Make sure the identifier has not been used in a user type declaration, a global type
declaration or as a function, function block or program name.

4.3.3.38 S3005

This is not a function block instance.

A variable with the name used in a CAL-statement has been found but is not an
instance of a function block.

233 / 297

OpenPCS Programing System

Reference

Tips

Make sure that the identifier is spelled correctly.

Make sure that a function block instance with the specified name has been declared
either in the scope of the program unit or in the global scope.

4.3.3.39 S3006

This is not a struct variable or a function block instance.

An access to a member of a struct or function block variable has been attempted,
but the variable specified by the identifier is not a function block or a struct.

Tips

Make sure that the identifier is spelled correctly.

Make sure that the variable with the given name is a struct or a function block.

4.3.3.40 S3007

This is not a FUNCTION-POU.

An identifier used as a function name has been defined but is not a function name.

Tips

Make sure that the identifier is spelled correctly.

Make sure that the identifier is the name of a function and not the name of a
function block.

Make sure that a function invocation and not a call of a function block instance has
been desired on the specified position.

4.3.3.41 S3008

No structure element or block parameter.

An access to a member of a struct or function block variable has been attempted,
but the member specified by the identifier is not a parameter of the accessed
function block or struct instance.

Tips

Make sure that the identifier is spelled correctly.

Make sure that the right function block or struct instance is used.

If the accessed variable is an instance of a function block make sure that the
function block has a parameter with the name given by the identifier.

If the accessed variable is an instance of a struct, make sure that the struct has a
member with the name given by the identifier.

4.3.3.42 S3009

No jump label.

234 / 297

OpenPCS Programing System

Reference

The identifier used in the JMP/JMPC/JMPCN-statement at the given position has been
found but is not a label name.

Tips

Make sure that the identifier is spelled correctly.

Make sure that identifier used after the JMP/JMPC/JMPCN-statement is a label name.

4.3.3.43 S3010

Type or function block name expected.

A type or a function block name has been expected. The identifier has been found in
the current scope but is neither a type nor a function block name.

Tips:

Check if the name is spelled correctly.

Make sure that the identifier is not a variable name (e. g. a function block name).

4.3.3.44 S3011

Identifier is not a variable or type name.

A variable or a function block instance has been expected. The identifier has been
found in the current scope but is neither a variable nor a function block instance.

Tips:

Check if the name is spelled correctly.

Make sure that the identifier is not a type name (e. g. a function block name).

4.3.3.45 S3012

Variable name or constant expected.

This error occurs, if an identifier, which is not a variable name or an enum constant,
is used where a variable name or a constant is expected.

Example:

TYPE

 Colors : (red, yellow, blue) := red;

END_TYPE

VAR

 Color : Colors := Colors; (* Error: Enum constant expected.

 EnumType is a type name *)

END_VAR

LD Colors (* Error: constant or variable name expected. EnumType
is a type name *)

ST Color

235 / 297

OpenPCS Programing System

Reference

4.3.3.46 S3014

Numeric data type expected.

Operator and operand type are incompatible. An operand of an ANYNUM type has
been expected.

4.3.3.47 S3016

Bit data type expected.

Operator and operand type are incompatible. An operand of an ANYBIT type has
been expected.

4.3.3.48 S3017

Boolean value expected.

Operator and operand type are incompatible. An operand of type BOOL has been
expected.

4.3.3.49 S3018

Numeric data type expected.

Illegal operand type. Operand of an ANYNUM type expected.

4.3.3.50 S3019

Operators of type incompatible.

Operand and result type are incompatible.

4.3.3.51 S3020

Operand types incompatible.

This error occurs if an illegal combination of time and date data types is used for the
input parameters of a SUB operation. For allowed combination of the input and
output data types for this operation see Table 30 - Functions of time data types in
the IEC 1131-3 Compliance Statement.

Example:

VAR

 TimeVar : TIME;

 DateVar : DATE;

END_VAR

LD DateVar

SUB TimeVar

(* Error: SUB is not defined for the this combination of input
parameters *)

ST DateVar

236 / 297

OpenPCS Programing System

Reference

4.3.3.52 S3022

Invalid operand type for this operation.

Invalid operand type for the operation on the specified position. An operand of type
TIME or of an ANYNUM type has been expected.

4.3.3.53 S3023

Invalid operand type for this operation.

Invalid operand type for the operation on the specified position. An operand of type
TIME, TIME_OF_DAY, DATE_AND_TIME or of an ANYNUM type has been expected.

4.3.3.54 S3024

Invalid operand type for this operation.

Invalid operand type for the operation on the specified position. An operand of an
ANYBIT type has been expected.

4.3.3.55 S3025

Boolean result required.

Incompatible result type. Result should be of type BOOL.

4.3.3.56 S3026

Undeclared identifier.

This error occurs, if the identifier at the given position, has not been defined in the
scope valid for the compiled program organization unit.

Example:

TYPE

 Colors : (red, yellow, blue) := red;

END_TYPE

VAR

 Color : Colors := green;

(* Error: green has not been declared as an enum constant *)

END_VAR

LD IntVar (* Error: IntVar has not been declared. *)

ADD 5

ST IntVar

4.3.3.57 S3028

Comparison not defined for the data type of the current result.

237 / 297

OpenPCS Programing System

Reference

The comparison on the given position is not defined for the type of the current
result. I. e. the type of the actual parameter is incompatible with the type of the
first formal parameter. For more information see Table 28 - Standard comparison
functions in the IEC 1131-3 Compliance Statement.

Example:

TYPE

 Day_of_Week : STRUCT

Name : String;

 DayNo : INT(1..7);

 END_STRUCT;

END_TYPE

VAR

 DayVar1 : Day_of_Week;

 DayVar2 : Day_of_Week;

 BoolVar : BOOL;

END_VAR

LD DayVar1

GT DayVar2 (* Error: comparisons on structured variables are not
allowed *)

ST boolVar

4.3.3.58 S3030

Comparison not defined for this type.

The type of the operand at the given position is not allowed for comparisons. I. e.
the type of the actual parameter is incompatible with the type of the formal
parameter. For more information see Table 28 - Standard comparison functions in
the 1131-3 Compliance Statement.

Example:

TYPE

 Day_of_Week : STRUCT

Name : String;

 DayNo : INT(1..7);

 END_STRUCT;

END_TYPE

VAR

 DayVar1 : Day_of_Week;

 DayVar2 : Day_of_Week;

 BoolVar : BOOL;

END_VAR

LD DayVar1

GT DayVar2 (* Error: comparisons on structured variables are not
allowed *)

ST boolVar

238 / 297

OpenPCS Programing System

Reference

4.3.3.59 S3032

Self-referencing (i.e., recursive) declarations are not allowed.

Recursion detected. A function cannot invoke itself recursively, neither directly nor
indirectly (i.e. by invoking another function, that invokes one of the functions in the
calling hierarchy). Function blocks and programs can not declare instances of
themselves, neither directly nor indirectly (i.e. by calling an instance of another
function block that declares an instance of a function block type in the calling
hierarchy).

4.3.3.60 S3033

Operand of type TIME expected.

A constant or a variable of type TIME was expected and the operand at the given
position is of another type.

Example:

VAR

 StartTime : TIME_OF_DAY;

 StopTime : TIME_OF_DAY;

 RunTime : TIME := T#10s;

END_VAR

LD StartTime

ADD 10000 (* Error: operand must be of type TIME *)

ST StopTime

 LD StartTime

ADD RunTime (* Correct *)

ST Stop Time

4.3.3.61 S3034

String too long for variable.

A string literal has been assigned to a string variable but the string literal does not
fit in the string variable. I. e. the length of the string literal is greater than the
allocated length of the string variable.

4.3.3.62 S3035

Unallowed operand type for this function! Numeric operand or operand of date or
time type expected.

The operation at the given position is not defined for the type of the current result
(i.e. the first actual parameter).

Example:

VAR

 BitMake: WORD;

END_VAR

239 / 297

OpenPCS Programing System

Reference

LD BitMask (* Error: operand must be of type TIME, ANY_DATE or
ANY_NUM *)

SUB 3

ST BitMask

4.3.3.63 S3036

Integer constant is out of range.

The integer constant at the given position is not in the range of the associated
data type.

Example:

VAR

 Range1 : UINT(-1..1000);

(* Error: Sign mismatch. Values for UINT must not be negative *)

 Range2 : INT(-1..36000);

(* Error: Overflow: the upper range is greater as the

 maximum valid INT value *)

END_VAR

4.3.3.64 S3037

The lower bound of the sub range must not be greater than the upper bound.

The value of the upper bound in the sub range declaration on the specified position
is lower than the value of the lower bound. A sub range declaration restricts the
range of an integer type to values between and including the specified upper and
lower limits, where the upper limit has to be greater than the lower limit.

4.3.3.65 S3038

Initialization is out of bounds of sub range (Data type is a sub range type).

A variable of a sub range type has been initialized with a value that is out of the
range of this sub range type. A sub range declaration specifies that the value of
any data element of this type can only take on values between and including the
specified upper and lower limits.

4.3.3.66 S3039

Index is out of bounds.

An access to a variable of an array type has been attempted with an index whose
value is out of the range specified in the type or variable declaration.

4.3.3.67 S3040

Invalid data type. ANY_NUM required.

The operation at the given position is not defined for the type of the current result
(i.e. the first actual parameter).

240 / 297

OpenPCS Programing System

Reference

Example:

VAR

 BitMake: WORD;

END_VAR

LD BitMask (* Error: operand must be of type TIME, ANY_DATE or
ANY_NUM *)

NEG

ST BitMask

4.3.3.68 S3041

Unallowed EN/ENO type. Must be of type bool. Must not be RETAIN.

An input variable with the name EN or an output variable with name ENO has been
declared with an illegal type or with the RETAIN qualifier.

The identifier "EN" is reserved for input variables of type BOOL

The identifier "ENO" is reserved for output variables of type BOOL This variable must
not be declared with RETAIN qualifier.

4.3.3.69 S3042

Missing EN. Use of ENO allowed only in combination with EN.

An output variable with the name "ENO" has been defined but no input variable with
name "EN" has been found. The output variable "ENO" can only be used in
combination with "EN".

4.3.3.70 S3044

Data missing. You either need a load or an expression.

The current result is undefined. Either a LD instruction or an expression must
precede the instruction on the current position. This error occurs as a consequence
of error Syntax Error S5010 . Please move the instruction out of the parenthesis.

4.3.3.71 S3046

Type names cannot be used as an instance names.

A type name or the name of a program organization unit has been used in a
declaration as a variable name. Program organization units and types defined on
project level are known in the whole project scope and their names cannot be used
as identifiers for local variables.

Example:

FUNCTION Power

(* function block declarations *)

(* statements *)

END_FUNCTION

241 / 297

OpenPCS Programing System

Reference

PROGRAM main

VAR

Power : REAL; (* Error: Power is not allowed as a variable
name, because it already has been used as a function name *)

END_VAR

(* Code *)

END_PROGRAM

4.3.3.72 S3047

Function parameters must be specified in the order as defined in the Function
prototype. Permutated parameter sequences will lead to incorrect code even if
parameter names are specified.

If a function block is called in ST, the ST compiler translates the given calling
parameter list directly to IL code since it has no knowledge of the function block's
declaration. Because of this, the specified order must match the declaration order of
the function blocks Input and Output variables.

Example:

FUNCTION_BLOCK Example

VAR_INPUT

 In1 : int;

 In2 : int;

END_VAR

FUNCITON_BLOCK_END

Program:

VAR

 Instance : Example;

 Local1 : int;

 Local2 : int;

END_VAR

(* correct: parameter order matches declaration order *)

Example(In1 := Local1, In2 := Local2);

(* WRONG: does not match declaration order *)

Example(In2 := Local2, In1 := Local1);

4.3.3.73 S3048

Possible string truncation in assignment.

This warning is issued if the destination string in a string assignment has a shorter
overall length than the source string. This check is done at compile time based on
the declared lengths of both strings.

Example:

242 / 297

OpenPCS Programing System

Reference

VAR

 strDestination : string[10];

 strSource : string[40];

END_VAR

strDestination := strSource;

4.3.3.74 S3049

Error in ST syntax (double click to get the ST error)

Compiling an ST POU containing a syntax error raises this error. A double click on
the message jumps to source of error and shows the corresponding synatx-error
message.

4.3.3.75 S3050

Array range mismatch.

Warning if assigning two arrays with different range but same size and type. The
compiler allows array assignments, if both arrays are from the same type and size.
E.g. an assignment of two int-arrays with range [0..9] and [1..10] is possible, but
causes this warning.

4.3.3.76 S4000

"AT%": Simultaneous declaration of several direct variables is invalid.

A list of identifiers has been used in a located variable declaration. Direct
representations can only be associated to a single identifier.

Example:

The following declaration is not allowed:

VAR

 dirVar1, dirVar2, dirVar3 : at%I0.0;

END_VAR

4.3.3.77 S4001

Too many variables (identifiers). Maximum is 60 identifiers.

Too many identifiers in the identifier list of a variable declaration. Identifier lists
with maximum 60 identifiers are supported.

4.3.3.78 S4003

Array too big.

The element count of a dimension in an array declaration exceeds the maximum
number of elements supported by OpenPCS. The maximum element count is
determined by the supported index range.

243 / 297

OpenPCS Programing System

Reference

4.3.3.79 S4005

Upper bound must be greater or equal than lower bound.

The value of the upper bound index in the array declaration on the specified position
is lower than the value of the lower bound index of the same dimension. The upper
bound index of a dimension must be greater or equal than the associated lower
bound index.

4.3.3.80 S4006

Syntax error. [Hint: In some cases, the actual error is located in a previous line
(";" missing etc.)].

4.3.3.81 S4007

Self-referencing (i.e., recursive) declarations are invalid.

Recursion detected. A function cannot invoke itself recursively, neither directly nor
indirectly (i.e. by invoking another function, that invokes one of the functions in the
calling hierarchy). Function blocks and programs can not declare instances of
themselves, neither directly nor indirectly (i.e. by calling an instance of another
function block that declares an instance of a function block type in the calling
hierarchy).

4.3.3.82 S4008

Too many attributes "RETAIN" or "CONSTANT". You may use only one.

Too many qualifiers used in a variable declaration part.

4.3.3.83 S4009

A STRUCTure must contain at least one structure element (variable declaration).

An empty structure has been declared. This is not allowed. A structure must contain
at least one member variable.

Example:

Not allowed:

TYPE

 Mystruct : struct end_struct;

END_TYPE

Allowed:

TYPE

 Mystruct : STRUCT

M1 : int;

 END_STRUCT

END_TYPE

244 / 297

OpenPCS Programing System

Reference

4.3.3.84 S4010

Simultaneous type declarations are not allowed.

The type declaration on the specified position contains a list of identifiers. This is
not allowed. Please write a declaration for any new type.

Example:

Not allowed:

TYPE

 MyInt1, MyInt2, MyInt3 : int;

END_TYPE

Allowed:

TYPE

MyInt1 : int;

MyInt2 : int;

MyInt3 : int;

END_TYPE

4.3.3.85 S4011

Valid only in PROGRAMs and there within VAR- und VAR_GLOBAL-Sections.

A directly represented variable has been declared in a program organization unit or a
variable declaration part in which it is not supported. Located variable declarations
are supported only in VAR- or VAR_GLOBAL-declaration-parts of PROGRAMs.

4.3.3.86 S4012

Valid only in PROGRAMs, FUNCTION_BLOCKs, and in FUNCTIONs.

A variable declaration part (VAR <declarations> END_VAR) was found in a unit where
it is not supported. Variable declaration parts are allowed in programs, functions and
function blocks.

4.3.3.87 S4013

Valid only in PROGRAMs, FUNCTION_BLOCKs, and in FUNCTIONs.

An input variable declaration (VAR_INPUT <declarations> END_VAR) part was found
in a program organization unit where it is not supported.

4.3.3.88 S4014

Valid only in PROGRAMs and in FUNCTION_BLOCKs.

An in/out variable declaration part (VAR_IN_OUT <declarations> END_VAR) was
found in a program organization unit where it is not supported.

245 / 297

OpenPCS Programing System

Reference

4.3.3.89 S4015

Valid only in PROGRAMs and in FUNCTION_BLOCKs.

An output variable declaration part (VAR_OUTPUT <declarations> END_VAR) was
found in a program organization unit where it is not supported.

4.3.3.90 S4016

Valid only in PROGRAMs and in FUNCTION_BLOCKs.

An external variable declaration part (VAR_EXTERNAL <declarations> END_VAR) was
found in a program organization unit where it is not supported. External variable
declarations are supported in PROGRAMs and FUNCTION_BLOCKs.

4.3.3.91 S4017

Valid only in PROGRAMs.

A global variable declaration part (VAR_GLOBAL <declarations> END_VAR) was found
in a program organization unit where it is not supported. Global variable declarations
are allowed in PROGRAMs only.

4.3.3.92 S4018

Valid only in VAR- and in VAR_GLOBAL-Sections.

The qualifier "CONSTANT" has been used in a variable declaration part in which it is
not supported.

4.3.3.93 S4019

Valid only in PROGRAMs or in FUNCTION_BLOCKs and there within VAR-,
VAR_OUTPUT-, or VAR_GLOBAL-Sections).

The qualifier "RETAIN" has been used in a variable declaration part in which it is not
supported.

4.3.3.94 S4020

Valid only in PROGRAMs or in FUNCTION_BLOCKs and there within VAR_INPUT-
Sections with Type "BOOL" without Initialization.

A variable has been declared with an edge qualifier in a program organization unit or
variable declaration part where this is not supported.

4.3.3.95 S4021

Valid only within VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT-Sections.

A variable has been declared with the ADDRESS qualifier in a program organization
unit or variable declaration part where this is not supported.

246 / 297

OpenPCS Programing System

Reference

4.3.3.96 S4022

Valid only in FUNCTION_BLOCKs or FUNCTIONs and there within VAR..END_VAR-
Sections without CONSTANT/RETAIN-Modifiers.

A variable has been declared with the ATTRIBUTES qualifier in a program
organization unit or variable declaration part where this is not supported. This
attribute is supported only in VAR-Sections without CONSTANT or RETAIN qualifiers
of FUNCTIONs and FUNCTION_BLOCKs.

Note: Keyword ATTRIBUTES is supported by OpenPCS only in custom versions to
define additional attributes for variables in extension to IEC61131-3. You should not
see this message in standard OpenPCS.

4.3.3.97 S4023

Valid only in TYPE..END_TYPE-Sections.

A struct declaration was found in a declaration part where this is not supported.
Struct declarations are supported only in TYPE declaration parts.

4.3.3.98 S4024

Valid not within VAR_EXTERNAL-Sections.

A variable has been declared in an EXTERNAL declaration section with an initial
value. This is not allowed. Please assign the initial value in the respective GLOBAL
variable declaration.

Example:

VAR_EXTERNAL

A : INT := 5;

END_VAR

VAR_EXTERNAL

A : INT;

END_VAR

VAR_GLOBAL

A : INT := 5

END_VAR

4.3.3.99 S4033

Multiple initialization.

A member of a struct variable has been initialized more than once. This error occurs
when both an explicit struct initialization and a per element initialization are made.

Example:

The following initialization is not allowed:

247 / 297

OpenPCS Programing System

Reference

TYPE

 StructType : Struct

Member1 : int := 5;

Member2 : bool;

 END_STRUCT := (Member1 := 4, Member2 := true);

END_TYPE

Use one of the following initializations instead:

TYPE

 StructType : Struct

Member1 : int ;

Member2 : bool;

 END_STRUCT := (Member1 := 4, Member2 := true);

END_TYPE

or

TYPE

 StructType : Struct

Member1 : int := 5;

Member2 : bool := true;

 END_STRUCT;

END_TYPE

4.3.3.100 S4034

Invalid POU name.

This error occurs when a keyword has been used as a POU name or if no name has
been defined.

4.3.3.101 S4035

Invalid type for function.

The function type must be a predefined type or an identifier. This error occurs most
commonly, when a reserved keyword, a IEC61131-3 character string or a number is
used as a function type or if no function type has been defined.

4.3.3.102 S4036

FUNCTIONs need at least one input parameter VAR_INPUT.

A function has been defined without an input parameter. In IEC61131-3 a function
needs at least one input-parameter.

4.3.3.103 S5000

Wrong parameter type.

248 / 297

OpenPCS Programing System

Reference

The type of an actual parameter of a function or a function block instance is
incompatible with the type of the formal parameter it has been assigned to.

4.3.3.104 S5001

Array expected. This is not an array.

An indexed access has been attempted to a variable which is not an array.

Example:

PROGRAM

VAR

 x : INT;

 y : INT;

END_VAR

LD x[3] (* not allowed if the variable is not an array *)

ST y

END_VAR

4.3.3.105 S5002

This FUNCTION_BLOCK is called by CAL if EN=TRUE. CALC/CALCN are both invalid.

An instance of a function block with an "EN" input parameter has been called via
CALC/CALCN. This is not allowed. Use the CAL-statement instead. The code of a
function block with an "EN" parameter is invoked if the value of this parameter is
TRUE.

4.3.3.106 S5003

Function block instances may not be "CONSTANT".

An instance of a function block has been defined in a variable section with
CONSTANT attribute. This is not allowed. Please remove the attribute or move the
instance declaration in another variable section, which has no CONSTANT attribute.

4.3.3.107 S5004

Function blocks instances are invalid in "FUNCTION"-POUs, STRUCTs, and in ARRAYs.

An instance of a function block has been defined in a variable section of a function
or as a member of a STRUCT or an ARRAY type. IEC61131-3 doesn't allow
declarations of function block instances in functions. Function block instances as
members of STRUCT and ARRAY types are not supported by OpenPCS.

4.3.3.108 S5005

Function block instances as function results are not supported.

249 / 297

OpenPCS Programing System

Reference

Function block instances as result type of a function are not supported in
OpenPCS.

4.3.3.109 S5006

Function block instances as parameters are not supported.

Parameters of a function block type are not supported in OpenPCS.

4.3.3.110 S5008

Expected an integer or an enum. Invalid array index.

The type variable or constant used as an index in an indexed variable access is
invalid. An index must be of type INT or of an enumeration type.

4.3.3.111 S5009

Invalid sequence beginning. Current result is empty. Use "LD" to initialize current
result.

This error occurs when a sequence of statements starts with an instruction that
uses the current result. The first instruction usually is a load statement. This error
can also occur, if the current result is used in the first instruction after a CAL, a
JMP or a label.

Example:

PROGRAM main

VAR

Switch : BOOL;

END_VAR

ST Switch (* Error: Current result is undefined. *)

LD Switch

EQ TRUE

JMPC NextStep

LD TRUE

JMP End (* The value loaded in the previous statement will be lost
after the JMP-statement *)

NextStep:

LD FALSE

END:

ST Switch (* Error: Current result is undefined after a label *)

(* Code *)

END_PROGRAM

250 / 297

OpenPCS Programing System

Reference

4.3.3.112 S5010

Invalid instruction within a parentheses computation.

The instruction at the given position is not allowed between parentheses. Please
replace the instruction or move it out of the parentheses.

Example:

FUNCTION_BLOCK Count

VAR_INPUT

 StartValue : DINT;

 FReset : BOOL;

END_VAR

VAR_OUTPUT

 CurrentCountValue : DINT;

END_VAR

VAR

 CountValue : DINT;

END_VAR

LD fReset

EQ TRUE

JMPCN Continue

LD StarValue

ST CountValue

Continue:

LD CountValue

ADD 1

ST CountValue

ST CurrentCountValue

END_FUNCTION_BLOCK

PROGRAM main

VAR

Counter : Count;

StartValue : DINT;

Result : DINT;

END_VAR

LD 5

ADD (StartValue

ST Counter.StartValue

EQ 1000

ST Counter.fReset

CAL Counter (* Error: CAL is not allowed between parentheses
*)

251 / 297

OpenPCS Programing System

Reference

LD Counter.CurrentCounter (* Error: Load is not allowed between
parentheses *)

)

ST Result

END_PROGRAM

4.3.3.113 S5011

ARRAYs of function block instances are invalid.

Arrays of function blocks are not supported.

4.3.3.114 S5012

Result type and operand type are incompatible.

The result type of the preceding operation and the type of the variable in which this
result is stored are incompatible.

Example:

VAR

 X : INT;

END_VAR

LD 65000

ST x (* 65000 is not of type INT *)

4.3.3.115 S5013

Result type and type of the first formal input parameter are incompatible.

The result type of the preceding operation and the type of the first input parameter
in a function or function block call are incompatible.

Example:

FUNCTION Fun1

VAR

 InVar : INT;

END_VAR

(* Code *)

END_FUNCTION

PROGRAM main

VAR

 X : DINT;

END_VAR

LD x

ADD 1000

Fun1 (* Error: result type of the preceding operation is DINT,
the type of the first input parameter of Fun1 is INT *)

ST x

252 / 297

OpenPCS Programing System

Reference

END_PROGRAM

4.3.3.116 S5014

Wrong number of parameters.

Too many parameters found in a call of a function or a function block.

4.3.3.117 S5015

Invalid type for direct address.

A located variable has been declared with an unsupported type. Only located
variables of type ANY_NUM or ANY_BIT are supported.

4.3.3.118 S5016

Variable is read-only. Write-access invalid.

A write access has been attempted to a variable, that has only read access.

4.3.3.119 S5017

Variable is not a STRUCTure.

A initialization value for a structure has been assigned to a variable which is not of a
structured type.

Example.

VAR

 A : INT := (m1 := 5, m2 := TRUE); (* not allowed *)

END_VAR

4.3.3.120 S5018

Variable is no array.

An array initialization has been assigned to a variable which is not of an array type.

Example:

VAR

 A : INT := [4]; (* not allowed *)

END_VAR

4.3.3.121 S5019

Initialization value and variable type incompatible.

The type of the initialization value and the type of the variable are incompatible.

253 / 297

OpenPCS Programing System

Reference

Example:

VAR

 X : INT := 65000;

END_VAR

4.3.3.122 S5020

Too many initialization values.

The initialization value for an array type or variable has more elements as provided
by the array declaration.

Example:

VAR

 A : ARRAY [1..5] OF INT := [1, 2, 3, 4, 5, 6];

(* too much initialization values, array has only 5 elements *)

END_VAR

4.3.3.123 S5021

Formal parameter incorrectly declared.

The name of an output parameter has been expected. The identifier has been found
in the current scope but is not the name of an output parameter.

Tips:

Check if the name is spelled correctly.

Make sure that the identifier is not an input or in/out parameter.

4.3.3.124 S5022

Multiple assignments to a parameter in a call of a function block instance.

This error occurs, when in a call of a function block instance a parameter is
initialized twice.

Example:

FUNCTION_BLOCK Fb1

VAR_INPUT

 InParam1 : int;

 InParam2 : int;

 InParam3 : bool;

END_VAR

(* Code *)

END_FUNCTION_BLOCK

PROGRAM main

VAR

254 / 297

OpenPCS Programing System

Reference

 fbInst : fb1;

END_VAR

(* Code *)

cal fbInst(InParam1 := 1,

 InParam1 := 2,

 InParam3 := true

)

(* Code *)

END_PROGRAM

4.3.3.125 S5023

Too much initialization data.

This error occurs, when a member of a struct type or instance is initialized twice in
an explicit structure initialization.

Example:

TYPE

 StructType : STRUCT

 Member1 : int;

 Member2 : int;

 Member3 : bool;

 END_STRUCT;

END_TYPE

VAR

 StructVar : StructType := (Member1 := 1, Member1 := 2, Member3
:= FALSE);

END_VAR

4.3.3.126 S5024

Unallowed type for this operation.

The operation on the given position is not defined for the type of the current result.
I. e. the type of the actual parameter is incompatible with the type of the first
formal parameter.

Example:

VAR

 X : REAL;

END_VAR

LD 1 (* The constant 1 can be converted implicitly to any
integer or any bit type *)

LN (* Error: LN is only defined for ANY_REAL types *)

ST X

255 / 297

OpenPCS Programing System

Reference

4.3.3.127 S5025

Unallowed parameter type for this function.

The type of the actual parameter is incompatible with any type allowed for the
parameter at the given position.

Example:

VAR

 X : STRING;

END_VAR

LD "EXAMPLE"

LEFT 3.0 (* Error: the second parameter of LEFT has type UINT *)

ST X

4.3.3.128 S5026

Invalid formal parameter type.

The name of an input or an in/out parameter has been expected. The identifier has
been found in the current scope but is neither the name of an input nor of an
output parameter.

Tips:

Check if the name is spelled correctly.

Make sure that the identifier is not an output parameter.

4.3.3.129 S5027

Incompatible operand types.

The operands for the operation at the given position must be compatible. I. e. they
must have the same type or, if at least one of the parameter is a constant an
implicit cast to the type of the other operand has be possible.

Example:

VAR

 X : REAL;

END_VAR

LD 1

(* The constant 1 can be converted implicitly to any integer or any
bit type *)

MAX X (* Error: X is of type REAL *)

ST X

4.3.3.130 S5028

Data type not allowed for this operation.

256 / 297

OpenPCS Programing System

Reference

This error occurs, if the type of an actual parameter is not allowed for the operation
at the given position.

Example:

VAR

 StringVar : STRING;

END_VAR

LD 1

CONCAT "EXAMPLE"

(* Error: CONCAT expects a STRING operand as first input parameter *)

ST StringVar

4.3.3.131 S5029

Invalid function block call.

This error occurs, if a call to a function block instance is attempted and this
instance is an input parameter of the calling function block or program.

Example:

FUNCTION_BLOCK Fb1

VAR_INPUT

 InParam1 : int;

 InParam2 : int;

 InParam3 : bool;

END_VAR

(* Code *)

END_FUNCTION_BLOCK

FUNCTION_BLOCK Fb2

VAR_INPUT

 fbInstInput : Fb1;

 (* other input declarations *)

END_VAR

VAR

 (* local variable declarations *)

END_VAR

(* Code *)

cal fbInstInput(InParam1 := 1,

 InParam2 := 2,

 InParam3 := true

)

(* Code *)

END_PROGRAM

4.3.3.132 S5030

Variable is write-only. Read-access invalid.

257 / 297

OpenPCS Programing System

Reference

A read access has been attempted to a variable, that has only write access.

4.3.3.133 S5031

Bit access allowed only on bit data types.

This error occurs if a bit selection is attempted on a variable that is not of a bit
data type or of type BOOL.

Example:

VAR

 DintVar : DINT;

 BoolVar : BOOL;

END_VAR

LD DintVar.4

(* Error: bit selection allowed only on variables of type ANY_BIT
except BOOL *)

ST BoolVar

4.3.3.134 S5032

Bit position is greater than the number of bits in the selected variable.

This error occurs, when the bit position given in a bit selection is greater than the
number of the most significant bit of the selected variable. The number of bits
accessible in a bit selection depends on the variables data type. The bit positions
are counted from the least significant bit at position 0 to the most significant bit at
position n - 1, where n is the number of bits in the data type.

Example:

VAR

 wVar : WORD := 5;

 fVar : BOOL := FALSE;

END_VAR

(* Code *)

LD wVar.16 (* The selected variable is of type WORD. I. e.
it has 16 bits with bit positions from 0 to 15. *)

ST fVar

(* Code *)

4.3.3.135 S5033

IN_OUT parameter missing. Please supply every formal IN_OUT parameter with a
an actual parameter.

This error occurs, if at least one of the IN_OUT parameters of a function block is
not supplied with an actual parameter, when calling an instance of the respective
function block. IN_OUT parameters are references and have to be supplied with an
actual parameter in every call of a function block instance.

258 / 297

OpenPCS Programing System

Reference

Example:

FUNCTION_BLOCK Fb1

VAR_IN_OUT

 InOutParam1 : INT;

 InOutParam2 : BOOL;

END_VAR

(* Code *)

END_FUNCTION_BLOCK

PROGRAM main

VAR

 fbInst : fb1;

 IntVar1 : INT;

 IntVar2 : INT;

END_VAR

(* Code *)

cal fbInst() (* Error: none of the IN_OUT variables of FB1 is
supplied with an actual parameter *)

cal fbInst(InOutParam1 := IntVar1

) (* Error: the actual parameter for the second IN_OUT parameter is
missing *)

cal fbInst (InOutParam1 := IntVar1,

 InOutParam2 := IntVar2

) (* Correct: every formal IN_OUT parameter of FB1 is
supplied with an actual parameter *)

(* Code *)

END_PROGRAM

4.3.3.136 S5034

Invalid IN_OUT parameter. IN_OUT parameters must not be expressions or
constants.

This error occurs, if an IN_OUT parameter is supplied with an expression or a
constant value. This is not allowed because IN_OUT parameters are references.

Example:

FUNCTION_BLOCK Fb1

VAR_IN_OUT

 InOutParam1 : INT;

 InOutParam2 : BOOL;

END_VAR

(* Code *)

END_FUNCTION_BLOCK

PROGRAM main

VAR

 fbInst : fb1;

259 / 297

OpenPCS Programing System

Reference

 IntVar1 : INT;

 IntVar2 : INT;

END_VAR

(* Code *)

cal fbInst(InOutParam1 := IntVar1,

 InOutParam2 := 5

) (* Error: the actual parameter for the second IN_OUT
parameter is a constant. *)

cal fbInst(InOutParam1 := IntVar1,

 InOutParam2 := (IntVar1

ADD IntVar2)

) (* Error: the actual parameter for the second IN_OUT
parameter is an expression. *)

cal fbInst (InOutParam1 := IntVar1,

 InOutParam2 := IntVar2

) (* Correct: Both IN_OUT parameters of FB1 are supplied with
variables. *)

(* Code *)

END_PROGRAM

4.3.3.137 S5035

Generic data types are not allowed.

This error occurs, if an ANY data type is used in a variable or parameter declaration.
The use of generic data types is allowed only for function overloading and type
conversion in standard function or functions provided by the manufacturer.

Example:

FUNCTION IntegerToString : STRING

VAR_INPUT

 InVar : ANY_INT; (* Error: User-defined functions cannot be
overloaded *)

END_VAR

(* Code *)

END_FUNCTION

4.3.3.138 S5036

Local types are not allowed in this variable section.

This error occurs, if a local user defined type is used in the declaration of a global or
external variable or in the declaration of a parameter. Global and external variables
as well as parameters have to be of a predefined type or of a global type. Global
types are either hardware dependent types, provided by the firmware or project
global user defined types.

Example:

PROGRAM main

260 / 297

OpenPCS Programing System

Reference

TYPE

 StructType : STRUCT

 Member1 : BOOL;

 Member2 : STRING;

 END_STRUCT;

 (* Other type definitions *)

END_TYPE

VAR_GLOBAL

 GlobVar : StructType; (* Not allowed because StructType is not
known in other POUs *)

(* Other global variable definitions *)

END_VAR

VAR

 (* Local variable definitions *)

END_VAR

(* Code *)

END_PROGRAM

FUNCTION_BLOCK Fb1

TYPE

 StructType : STRUCT

 Member1 : BOOL;

 Member2 : STRING;

 END_STRUCT;

END_TYPE

VAR_EXTERNAL

 GlobVar : StructType; (* Not allowed because StructType is not
known in other POUs *)

 (* Other external declarations *)

END_VAR

VAR_INPUT

 InVar : StructType; (* Not allowed because StructType is not
known in other POUs *)

 (* Other input declarations *)

END_VAR

(* Code *)

END_FUNCTION_BLOCK

4.3.3.139 S5037

Too many indices within the braces [....] of an array-access.

This error occurs, if an access to an array element is attempted with more indices
as dimensions provided in the type definition of the elements data type.

Example:

PROGRAM main

TYPE

 ArrayType : Array[1..5, 1..20] of INT;

261 / 297

OpenPCS Programing System

Reference

 (* Other type definitions *)

END_TYPE

VAR

 ArrayVar : ArrayType;

 IntVar : INT;

(* Other variable definitions *)

END_VAR

LD ArrayVar[1, 2, 3] (* Error: Variables of type ArrayType
have only 2 dimensions *)

ST IntVar

 (* Code *)

END_PROGRAM

4.3.3.140 S5038

Directly represented variables are only allowed as parameters in prototypes.

A directly represented variable has been declared in the VAR_INPUT, VAR_OUTPUT
or VAR_IN_OUT section of a program organization unit. This is not allowed. Directly
represented variables are not allowed in functions and function blocks. VAR_INPUT,
VAR_OUTPUT and VAR_IN_OUT variables are not supported in programs.

If you want to access a directly represented variable from a function block, declare
the variable with a symbolic name in the VAR_GLOBAL section of a program and use
this symbolic name in a declaration in the VAR_EXTERNAL section of the function
block.

Functions cannot access directly represented variables.

Example:

FUNCTION_BLOCK SetOutput

VAR_EXTERNAL

 OutputLocation : BOOL;

END_VAR

VAR_INPUT

 Value : BOOL;

END_VAR

LD Value

ST OutputLocation

END_FUNCTION_BLOCK

PROGRAM main

VAR_GLOBAL

 OutputLocation AT%Q0.0 : BOOL;

END_VAR

VAR

Switch : SetOutput;

CurrentValue : BOOL;

END_VAR

262 / 297

OpenPCS Programing System

Reference

LD CurrentValue

NOT

CAL Switch(Value := CurrentValue)

END_PROGRAM

4.3.3.141 S5039

"&x" is only allowed if x is a direct variable.

The identifier preceded by the &-operator is not the name of a directly represented
variable.

Tips:

Make sure that the name is spelled correctly.

Make sure that the variable is a directly represented variable.

4.3.3.142 S5040

Too few indices within the braces [....] of an array access.

This error occurs, if an access to an array element is attempted with less indices as
dimensions provided in the type definition of the elements data type.

Example:

PROGRAM main

TYPE

 ArrayType : Array[1..5, 1..10, 1..20] of INT;

 (* Other type definitions *)

END_TYPE

VAR

 ArrayVar : ArrayType;

 IntVar : INT;

(* Other variable definitions *)

END_VAR

LD ArrayVar[1, 2] (* Error: Variables of type ArrayType have
3 dimensions *)

ST IntVar

 (* Code *)

END_PROGRAM

4.3.3.143 S5041

Values of type INT24 or REAL48 are invalid in this context.

Operation not supported for this type.

263 / 297

OpenPCS Programing System

Reference

4.3.3.144 S5042

Function block instances may not be "RETAIN".

An instance of a function block has been defined in a variable section with RETAIN
attribute. This is not supported. Please remove the attribute or move the instance
declaration in another variable section, which has no RETAIN attribute.

4.3.3.145 S5043

Variables, constants and parameters are not allowed as initialization values in
declarations. Please use a literal or enumeration value.

In declarations variables, constants or parameters cannot be used to initialize
values.

4.3.3.146 S6002

No prototype.

An unknown type name has been used in a variable declaration or a function call.

Tips

Make sure that a type a function or function block with this name is declared in the
context of the active project.

Make sure the name of the type, function or function block is spelled correctly.

Recompile the whole project.

Please consult your hardware documentation if none of the above actions eliminates
the problem.

4.3.3.147 S6004

Recursion (i.e., direct or indirect self-reference) detected.

Recursion detected. A function cannot invoke itself recursively, neither directly nor
indirectly (i.e. by invoking another function, that invokes one of the functions in the
calling hierarchy). Function blocks and programs can not declare instances of
themselves, neither directly nor indirectly (i.e. by calling an instance of another
function block that declares an instance of a function block type already used in the
calling hierarchy).

4.3.3.148 S6005

Too many types and function blocks. For the maximum number of type definitions
please consult your hardware documentation.

This error occurs, if too many types functions or function blocks have been used in
the calling hierarchy of a program organization unit. For the maximum number of
types, functions and function blocks supported see the Table D.1: Implementation-
dependent parameters

264 / 297

OpenPCS Programing System

Reference

4.3.4 Linker Messages

4.3.4.1 L10001

Variable declared twice: <Variable name>.

The variable with the specified name has been declared twice.

Tips:

If the variable is declared in a PROGRAM POU, check if a resource global variable
with the same name has been declared.

If the variable is a resource global variable check if a global variable with the same
name has been declared in a PROGRAM POU of the resource.

If one of the above cases is true, change the name of one of the variables or move
the variable declaration in the PROGRAM POU in a VAR_EXTERNAL section.
Attention: if you move the variable into the external section, every access to the
external variable accesses the resource-global variable with the same name.

4.3.4.2 L10004

Unresolved external: <Variable name>.

Either a global variable with the specified name has not been found, or a function
block type with the specified name has not been found.

Tips:

Make sure that the variable name is spelled correctly.

If the variable is not a function block instance, make sure that a variable with this
name is declared in the VAR_GLOBAL section of the calling program or in a file with
resource-global variable declarations.

If the variable is a function block instance, make sure that the function block has
been compiled successfully, i.e. an object file for this function block exists.

4.3.4.3 L10026

Unsupported address: <AddressDescription>.

The address <AddressDescription> is not supported by this hardware.

Tips:

Check if the address is spelled correctly.

Check if the syntax of the address description is correct. The syntax of the address
description is hardware dependent, but must be a string formed of the percent sign
"%" followed by a location prefix, a size prefix and one or more unsigned integers,
separated by periods (.). The size prefix may be empty. For valid location and size
prefixes consult your hardware documentation.

265 / 297

OpenPCS Programing System

Reference

4.3.4.4 L10027

Invalid hardware description: %1..

The hardware description file for the hardware with name <hardware name> has not
been found.

Tips:

Check if the resource specification contains a valid hardware module name.

Reinstall OpenPCS. If this doesn't remove your error, consult your hardware
documentation or refer to your hardware manufacturer.

4.3.4.5 L10029

Hardware configuration error.

An error occurred while getting firmware information. Please check if the hardware
configuration file is correct or if the DLL for the specified firmware is installed in your
OpenPCS directory.

ATTENTION: This file should be altered only by the manufacturer.

4.3.4.6 L10030

Invalid type for variable: %1.

A directly represented variable of a complex type (array, struct, string) has been
found. This is not supported by the hardware.

4.3.4.7 L10031

Initializations of directly represented variables are not allowed.

An initialization of a directly represented variable has been found. This is not
supported by the hardware. Please remove the initialization.

4.3.4.8 L10032

Address <AddressDescription> invalid in this context.

The address with the specified description is a valid address but not allowed in this
context (Task, POU, Resource, Configuration).

4.3.4.9 L10033

Attribute RETAIN not supported for directly represented variables.

A directly represented variable with RETAIN attribute has been found. This is not
supported by the hardware. Please move the variable declaration in another section
or remove the attribute from the section.

266 / 297

OpenPCS Programing System

Reference

4.3.4.10 L10034

Attribute CONST not supported for directly represented variables.

A directly represented variable with CONST attribute has been found. This is not
supported by the hardware. Please move the variable declaration in another section
or remove the attribute from the section.

4.3.4.11 L10035

Instance limit for function block <FunctionBlockName> reached.

The maximum number of instances of the specified function block has already been
exceed. The maximum number of instances of a firmware function block is hardware
dependent and can be changed by the hardware manufacturer by setting or
changing the "MaxInstances" entry in the specification section of the function block
in the hardware description file. Please consult your hardware documentation, for
the maximum number of instances of a firmware function block.

4.3.4.12 L10036

Invalid process image description. Please contact your manufacturer.

The description of the process image in the hardware configuration file is invalid.
Please check if the sizes for the input, output and marker sections are correct and if
all size entries are of the same unit. They should be specified either in bits or
bytes.

ATTENTION: This file should be altered only by the manufacturer.

4.3.4.13 L10063

An error occurred while opening a file: %1.

4.3.4.14 L10105

Internal error while loading function or DLL: <DLL/Function-Name>.

The specified DLL or function could not be loaded. Either your OpenPCS directory
does not contain a DLL with the specified name, or your DLL has an invalid version.
Please reinstall your system or consult your hardware description.

4.3.4.15 L10106

Native code compiler needed for selected optimization. Please choose another
optimization or install a native code compiler.

 "Speed only" optimization is activated but no native code compiler is defined for
this hardware. "Speed only" optimization is only valid, if a native code compiler is
installed. If you do not have a native code compiler please select another
optimization in the "Edit Resource Specifications" dialog. For a native code compiler
for your hardware please refer to your manufacturer.

267 / 297

OpenPCS Programing System

Reference

4.3.4.16 L12001

Type conflict. Type of external the variable doesn't match with type of the global
variable with the same name.

A global variable with the same name as the external variable has been found, but
the types of the global and the external variable are different.

Tips:

Make sure that the external variable name is spelled correctly.

Make sure that the type of the external variable is spelled correctly.

Make sure that the global variable is the requested variable.

Change the type of the external or the global variable.

4.3.4.17 L12002

Readable access to this variable is not allowed: <Variable name>.

A read access to a variable that has only write access has been attempted.

Tips:

Make sure that the specified variable name is spelled correctly.

The specified variable is an output location. A read access to output locations is not
allowed.

4.3.4.18 L12003

Writable access to this variable is not allowed: <Variable name>.

A write access to a variable that has only read access has been attempted.

Tips:

Make sure that the specified variable name is spelled correctly

The specified variable is a constant. Write access to a constant variable is not
allowed. Check if the CONSTANT attribute can be removed from the variable.

The specified variable is an input location. A write access to input locations is not
allowed.

4.3.4.19 L12005

Internal linker error no.: <errorno>. Please contact your manufacturer.

4.3.4.20 L12006

Memory allocation failure. Not enough memory to perform operation.

4.3.4.21 L12007

No object information found for task <TaskName>. Please rebuild all.

268 / 297

OpenPCS Programing System

Reference

The object file (<TaskName>.crd) for the specified task has not been found. Please
rebuild the whole resource.

4.3.4.22 L12008

Interpreter stack overflow in task <TaskName>.

Interpreter call-stack-overflow. Please reduce the depth of the calling hierarchy of
<TaskName>.

4.3.4.23 L12064

Error exporting OPC variables to OPC server configuration. Error code: %1.

An OPC variable is erroneous. Please use a proper one.

4.3.4.24 L12065

Error initializing ConfOPC.DLL. Please contact your manufacturer.

The DLL could not be initialized. Please ask the hardware manufacturer.

4.3.4.25 L12066

Incorrect alignment for address <address>: variable must be placed at an
alignment border."

The direct variable should be moved to a properly aligned address, in order to avoid
potential erroneous behavior on some controllers that have an alignment of 2 or 4.
With alignment 2, all variables having the size of a WORD (W) or a DWORD (D)
should be move to even addresses. With alignment 4, all variables having the size of
a WORD (W) should be moved to even addresses and all variables having the size of
a DWORD (D) should be moved to adresses divisible by 4.

4.3.4.26 L12996

Unknown command: <Command>.

An unknown command line argument has been used with ITLINK.

4.3.4.27 L12997

Unknown object kind: <ObjectKindSpecification>.

An invalid object file has been found. Please rebuild the whole resource.

4.3.4.28 L12998

Invalid object kind. Kind found/requested: <ObjectKind>.

An invalid object file has been found. Please rebuild the whole resource.

269 / 297

OpenPCS Programing System

Reference

4.3.4.29 L12999

Invalid object version found. Object version found/expected: <ObjectVersion>.

The object file version and the compiler object version are different. The object file
has been created with a different compiler version. Please recompile the whole
resource.

4.3.4.30 L13000

Load of resource global variable information failed.

The object file with the resource global information has not been found. Please
rebuild the whole resource.

4.3.4.31 L13001

No object information found for pou <pouname>

The object file (<pouname>.obj) for the specified POU has not been found. Please
rebuild the whole resource.

4.3.4.32 L14009

Resource size exceeds size of PLC memory.

The size of the resource exceeds the PLC memory limit. Calculation can differ from
real size.

4.3.4.33 L14010

Resource size warning limit reached. Used X of Y bytes.

The size of the resource has reached the configured warning limit. Set the size
within the browser options dialog.

4.3.4.34 L15001

An undefined task type has been used or no task type has been defined for task %
1.

Check the configuration parameters of the properties of the task type. You may also
ask your hardware manufacturer.

4.3.4.35 L20012

Persistency file creation disabled due to online linking

If your hardware uses online linking the creation of the persistency file is disabled.

270 / 297

OpenPCS Programing System

Reference

4.3.5 Compiler Messages

4.3.5.1 C10006

Data type "REAL" is not supported.

Data type "REAL" is not supported by the active hardware. For a list of data types
supported by OpenPCS see the IEC 1131-3 Compliance statement Please consult
your hardware documentation for a list of data types supported by your hardware.

4.3.5.2 C10007

Data type "DATE" is not supported.

Data type "DATE" is not supported. For a list of data types supported by OpenPCS
see IEC 1131-3 Compliance statement. Please consult your hardware documentation
for a list of data types supported by your hardware.

4.3.5.3 C10008

Data type "TIME_OF_DAY" is not supported.

Data type "TIME_OF_DAY" is not supported. For a list of data types supported by
OpenPCS see IEC 1131-3 Compliance statement. Please consult your hardware
documentation for a list of data types supported by your hardware.

4.3.5.4 C10009

Data type "STRING" is not supported.

Data type "STRING" is not supported by the active hardware. For a list of data
types supported by OpenPCS see the IEC 1131-3 Compliance statement. Please
consult your hardware documentation for a list of data types supported by your
hardware.

4.3.5.5 C10010

Data type "DATE_AND_TIME" is not supported.

Data type "DATE_AND_TIME" is not supported. For a list of data types supported by
OpenPCS see the IEC 1131-3 Compliance statement. Please consult your hardware
documentation for a list of data types supported by your hardware.

4.3.5.6 C10012

Data type "TIME" is not supported.

Data type "TIME" is not supported by the active hardware. For a list of data types
supported by OpenPCS see the IEC 1131-3 Compliance statement. Please consult
your hardware documentation for a list of data types supported by your hardware.

271 / 297

OpenPCS Programing System

Reference

4.3.5.7 C10017

The sections "VAR_INPUT", "VAR_OUTPUT" and "VAR_IN_OUT" are not supported in
programs.

VAR_INPUT, VAR_OUTPUT and VAR_IN_OUT sections in programs are not supported.
For more information about supported variable types see the IEC 1131-3 Compliance
statement.

4.3.5.8 C10019

Directly represented variables are not allowed in this POU.

Either the program organization unit is a function or a function block or a file with
global symbolic variable definitions. Directly represented variables are not allowed in
functions or function blocks. If you want to access a directly represented variable
from a function block, declare the variable with a symbolic name in the VAR_GLOBAL
section of a program and use this symbolic name in a declaration in the
VAR_EXTERNAL section of the function block. Functions cannot access directly
represented variables.

Directly represented resource global variables have to be declared in a specific file.

4.3.5.9 C10020

Bit access not allowed for this variable/parameter.

Variable or parameter has to be of the ANY BIT type.

4.3.5.10 C10021

Constant must not be negative.

A negative constant has been found where an unsigned operand has been
expected. Please change the constant value or the variable type (if possible).

4.3.5.11 C10024

Constant is out of range.

The constant at the given position is not in the range of the associated data type.

4.3.5.12 C10025

IN/OUT parameters must always be supplied with actual parameters.

A formal in/out parameter has been declared in a function block, but not supplied
with an actual parameter in the CAL statement of an instance. In/out parameters
are references and must be supplied with an actual parameter.

4.3.5.13 C10026

Unsupported address.

272 / 297

OpenPCS Programing System

Reference

The address at the given position is not supported by the active hardware. Please
consult your hardware documentation for a list of addresses supported by the
hardware.

4.3.5.14 C10028

Inout-parameters of type struct are not supported.

Structured in/out-parameters are not supported. Please define an input parameter
and an output parameter of this kind.

4.3.5.15 C10030

Value of hardware configuration file entry "Alignment" must be greater than 0.

The value of the entry Alignment in your hardware configuration file is set to 0.
Please set it at least to 1.

4.3.5.16 C10031

RETAIN-variables are not supported by this hardware.

Your hardware doesn't support RETAIN variables. Please remove the attribute. For a
list of supported variable types consult your hardware documentation.

4.3.5.17 C10034

Invalid command for this hardware.

The command at the given position is not supported by this hardware. For a list of
unsupported commands p consult your hardware documentation. For a list of
commands not supported by OpenPCS see the IEC 1131-3 Compliance statement.

4.3.5.18 C10035

The operand/parameter must be of type "UINT".

An actual parameter of type UINT has been expected in a function call (operation),
but the actual parameter is not of this type.

Example:

VAR

 StringVariable : STRING;

 Length : INT := 32;

END_VAR

LD "EXAMPLE"

LEFT length (* Error: this parameter must be of type UINT *)

ST StringVariable

273 / 297

OpenPCS Programing System

Reference

4.3.5.19 C10036

Structs and arrays of complex data types are not supported by this hardware.

An array of a structured type, an array of an array type, a structure with a
structured member or a structure with an array member has been declared. This is
not supported by the hardware. For more information about supported data types
for your hardware, consult your hardware documentation.

Example:

TYPE

 DayOfWeek : STRUCT

 Name : STRING;

 DayNumber : UINT;

 END_STRUCT;

DayDescriptions : ARRAY[1..100] OF DayOfWeek;

(* Error: Day of Week is a complex data type. Arrays of complex data
types are not supported by the hardware. *)

Presence : STRUCT

 Name : STRING;

 OursPerDay : ARRAY[1..31] OF UINT;

 (* Error: ARRAY is a complex data type. Structs of
complex data types are not supported by the hardware *)

 END_STRUCT;

END_TYPE

4.3.5.20 C10038

Couldn't detect the type of the constant.

The type of a constant could not be determined. Please initialize a variable of the
desired type with this constant and use the variable instead of the constant.

4.3.5.21 C10043

Implementation code is not allowed.

Implementation code has been found in a file with resource global variable
declarations. This is not allowed. Please declare the requested variable in another
program organization unit as an external variable and move the code in the
respective file.

4.3.5.22 C10045

Function blocks instances are not allowed in this section.

An instance declaration of a function block has been found in a section where this is
not allowed. Please move the declaration in a section, where function block
instances are supported.

274 / 297

OpenPCS Programing System

Reference

4.3.5.23 C10046

"VAR_GLOBAL" is not allowed.

A VAR_GLOBAL section has been found in a program organization unit where this
section kind is not supported. Please change the section kind or move the variable
declaration in a file, where global variables are supported.

According to the IEC 61131-3 VAR_GLOBAL sections are supported only in
PROGRAMs. However the hardware manufacturer may restrict the declaration of
global variables to resource global variable files. I. e. global variables are allowed
only in specific files which contain only global variable declarations.

4.3.5.24 C10047

Only "VAR_GLOBAL" allowed.

A variable declaration section, which is not a VAR_GLOBAL section, has been found
in a file for resource global variable declaration. This is not allowed. Please change
the section kind or move the variable declaration in another file, where this kind of
declarations are supported.

4.3.5.25 C10049

String too long.

A string has been declared with a length specification, which exceeds the maximum
string length supported by the hardware.

For the maximum string length supported by OpenPCS see the IEC 1131-3
Compliance statement. However, the hardware-manufacturer can restrict the
maximum string length by changing the value of the "MaxStringLength" entry in the
[MODULE] section of the hardware description file.

4.3.5.26 C10055

This variable cannot be initialized.

Either an initialization of a directly represented variable has been found or the
hardware doesn't support variable initializations. The initialization of directly
represented variables is not supported by OpenPCS. The initialization of symbolic
variables can be forbidden by the manufacturer by changing the value for the
"InitVariables" entry in the [MODULE] section of the hardware description file to 0.
Please consult your hardware documentation to find out, if variable initialization is
supported by your hardware.

4.3.5.27 C10057

Data type is not supported.

The data type at the given position is not supported. For a list of data types
supported by OpenPCS see the IEC 1131-3 Compliance statement. For a list of data
types supported by your hardware, please consult your hardware documentation.

275 / 297

OpenPCS Programing System

Reference

4.3.5.28 C10060

LD/ST of function block instances is not allowed.

A LD or ST instruction with a function block instance as an operand has been found.
This is not allowed.

4.3.5.29 C10063

An error occurred while opening a file.

4.3.5.30 C10064

Internal Compiler Error No. %1. Please contact your manufacturer.

An internal compiler error occurred. Please contact your manufacturer.

4.3.5.31 C10067

Struct declarations are not supported.

A struct declaration has been detected, but is not supported by the hardware.
Struct declarations are supported by OpenPCS. The hardware manufacturer
however, can forbid struct declarations by setting the value of the "StructAllowed"
entry in the [MODULE] section of the hardware description file to 0. Please consult
your hardware documentation to find out if struct declarations are supported by
your hardware.

4.3.5.32 C10068

Array declarations are not supported.

An array declaration has been detected, but is not supported by the hardware.
Array declarations are supported by OpenPCS. The hardware manufacturer however,
can forbid array declarations by setting the value of the "ArrayAllowed" entry in the
[MODULE] section of the hardware description file to 0. Please consult your
hardware documentation to find out if array declarations are supported by your
hardware.

4.3.5.33 C10069

Enumerated data type declarations are not supported.

A enumerated data type declaration has been detected, but is not supported by the
hardware. Enumerated data type declarations are supported by OpenPCS. The
hardware manufacturer however, can forbid this declarations by setting the value of
the "EnumAllowed" entry in the [MODULE] section of the hardware description file to
0. consult your hardware documentation to find out if enumerated data type
declarations are supported by your hardware.

4.3.5.34 C10075

Invalid array index. It has to range between -32767 and 32767.

276 / 297

OpenPCS Programing System

Reference

An array index is out of the supported range [-32767, 32767].

4.3.5.35 C10076

Lower array bound exceeds minimum array bound limit (dimension #).

An lower array bound is out of the supported range [-32767, 32767]. dimension # is
the erroneous dimension of the array, if multidimensional.

4.3.5.36 C10078

Invalid type of a global or directly represented variable.

A directly represented variable of a complex or an user defined type has been
declared. This is not supported. Global variable of structured types are also not
supported.

4.3.5.37 C10083

Only directly represented variables are allowed in this POU.

Resource global variables are separated in two kind of files. Files which contain only
symbolic variables and files which contain the directly represented variables. In
these files symbolic and directly represented variables must not be mixed up.

4.3.5.38 C10084

Global structs are not supported.

Please declare this variable in a local section and use input and output parameters,
if the value should be changed by a function or function block. The type declaration
for the desired structure must be done on project level.

Example:

(* The following structure has to be declared as a project global
type*)

TYPE

 DayOfWeek : STRUCT

 Name : STRING;

 DayNumber : UINT;

 END_STRUCT;

END_TYPE

FUNCTION_BLOCK AdjustDayName

VAR_INPUT

 DayIn : DayOfWeek;

END_VAR

VAR_OUTPUT

 DayOut : DayOfWeek;

END_VAR

LD DayIn

277 / 297

OpenPCS Programing System

Reference

ST DayOut

LD DayIn.DayNumber

EQ 1

LD "MONDAY"

ST DayOut.Name

LD DayIn.DayNumber

EQ 2

LD "TUESDAY"

ST DayOut.Name

END_FUNCTION_BLOCK

PROGRAM main

VAR

 Day : DayOfWeek;

 DayNumber : UINT;

END_VAR

LD DayNumber

ST Day.DayNumber

CAL AdjustDayName(DayIn := Day | Day := DayOut)

END_PROGRAM

4.3.5.39 C10092

Memory allocation failure.

4.3.5.40 C10093

Data Segment Out Of Memory

To much data (e.g. variables) for program or function block so the data doesn't fit
into a 64 kB segment. Segments are restricted to 64 kB.

Remark:

If this error occurs, try to restruct the program/function block and put some
variables into other function blocks (FBs can be used as data containers) or use
resource global variables.

4.3.5.41 C10094

Initial Data Segment Out Of Memory

To much data (e.g. variables) for program or function block so the data doesn't fit
into a 64 kB segment. Segments are restricted to 64 kB.

Remark:

If this error occurs, try to restruct the program/function block and put some
variables into other function blocks (FBs can be used as data containers) or use
resource global variables.

278 / 297

OpenPCS Programing System

Reference

4.3.5.42 C10095

Code Segment Memory Allocation Failure

This error occurs if the program code (UCode/Native Code) doesn't fit into a 64 kB
segment. The size for a segment is restricted to 64 kB.

Remark:

If this error occurs, it is possible to restruct the program (e.g. putting some parts of
the code into Function Blocks) so that the program decreases down to 64 kB.

4.3.5.43 C10096

Data Segment size warning limit reached. Used X of Y bytes.

The size of the corresponding data segment has reached the configured warning
limit. Set the size within the browser options dialog.

4.3.5.44 C10097

Initial Data Segment size warning limit reached. Used X of Y bytes.

The size of the corresponding initial data segment has reached the configured
warning limit. Set the size within the browser options dialog.

4.3.5.45 C10098

Code Segment size warning limit reached. Used X of Y bytes.

The size of the corresponding code segment has reached the configured warning
limit. Set the size within the browser options dialog.

4.3.5.46 C10100

Invalid expression for parameter.

An invalid expression has been passed as an actual parameter in a call of a function
or a function block instance.

4.3.5.47 C10108

Constant of type TIME is out of range.

For the range of TIME constants supported by OpenPCS see the IEC 1131-3
Compliance statement.

4.3.5.48 C10109

Invalid data type for this operation. Integer or real type expected.

The operation at the given position is only supported for integer and real operands.

279 / 297

OpenPCS Programing System

Reference

4.3.5.49 C10110

Nested functions are not supported.

A function call has been passed as an actual parameter in the call of a function or a
function block instance. This is not supported. Please save the return value of the
function in a variable and pass this variable as an actual parameter to the called
program organization unit.

4.3.5.50 C10112

Type conflict.

Either the current result is incompatible with the expected data type or the type of
an actual parameter is incompatible with the type of the respective formal
parameter.

4.3.5.51 C10113

Operation not supported for this data type.

The data type of an operand is not allowed for the operation at the given position.
For more information about allowed data types for this operation see IEC 61131-3
and the IEC 1131-3 Compliance statement.

4.3.5.52 C10114

Parameter expressions are not supported for this operation.

An expression has been used as an actual parameter. This is not supported. Please
store the result of the expression in a variable and pass this variable to the called
function or function block.

4.3.5.53 C10115

Retain attribute for FB instances forbidden.

RETAIN function block instances are not supported. Please remove the attribute or
move the instance declaration out of this section.

4.3.5.54 C10777

Upper array bound exceeds maximum array bound limit (dimension #).

An upper array bound is out of the supported range [-32767, 32767]. dimension # is
the erroneous dimension of the array, if multidimensional.

4.3.5.55 C11001

Can't determine unambiguously the type of constant -> take %1.

280 / 297

OpenPCS Programing System

Reference

The type of a numeric constant couldn't be determined unambiguously. In this case
usually the biggest supported data type of the expected data type class (ANY_INT,
ANY_REAL, ANY_BIT) is presumed.

4.3.5.56 C11007

Function has no input parameter. Is this intended?

A function call to a function which has no parameters has been detected. Was this
the intend? Functions do not contain internal state information and can be supplied
only with input parameters. Generally the return value is computed by using the
input parameters. Because of this reasons a function without input parameters
usually doesn't make sense. Please check if the called function makes sense.

4.3.6 Make Messages

4.3.6.1 M21004

Unknown command: %1.

An unknown command line argument has been used with ITMAKE.

4.4 Shortcuts

4.4.1 Common Shortcuts

File Submenu

CTRL+N:
CTRL+F4:
CTRL+S:
ALT+F10:
CTRL+P:
CTRL+O:
ALT+F4:

New File
Close
Save
Syntax Check
Print
Open Project
Exit

Edit Submenu

CTRL+Z:

CTRL+Y:
CTRL+X/SHIFT+D
EL:
CTRL+C/CTRL+INS
:
CTRL+V/SHIFT+IN
S:
DEL:
F4:
SHIFT+F4:
CTRL+F:
CTRL+H:
CTRL+G:

Undo
Redo
Cut
Copy
Paste
Delete
Next Error
Previous Error
Find
Replace
Goto IL Line (SFC)
Select All
Properties

281 / 297

OpenPCS Programing System

Reference

CTRL+A:
ALT+RETURN:

PLC Submenu

F7:
CTRL+F7:
F9:
F5:
F11:
F10:
SHIFT+F11:
ALT+ENTER:

Build Active Resource
Rebuild Active Resource
Toggle Breakpoint
Go
Step Into
Step Over
Step Out
Resource Properties

Window Submenu

F6:
ALT+1:
ALT+2:
ALT+3:
ALT+4:

Next Pane
Project
Document
Test and Comissioning
Output

Ctrl+Enter: Fullscreen

Insert->Variable Submenu

ALT+SHIFT+V:
ALT+SHIFT+I:
ALT+SHIFT+O:
ALT+SHIFT+N:
ALT+SHIFT+L:
ALT+SHIFT+G:
ALT+SHIFT+E:
ALT+SHIFT+F:

All Variables
Input Variables
Output Variables
In/Out Variables
Local Variables
Global Variables
External Variables
FB-Instance Variables

4.4.2 Editor depending Shortcuts

IL/ST Editor

CTRL+ALT+F:
CTRL+ALT+B:

Insert Function
Insert Functionblock

LADDER Editor

F12:
CTRL+ALT+F:
CTRL+ALT+B:
SHIFT+RETURN:

Insert Network
Insert Function
Insert Functionblock
Insert New Line in Comment

SFC Editor

CTLR+ALT+S:
CTLR+ALT+L:
CTLR+ALT+R:

Insert Step/Transition
Insert Step/Transition left
Insert Step/Transition right

282 / 297

OpenPCS Programing System

Reference

CTLR+ALT+J:
CTLR+ALT+B:
CTLR+ALT+F:

Insert Jump
Insert Functionblock
Insert Function

CFC/FBD Editor

CTRL+B:
CTRL+SHIFT+V:

Insert Connection
Switches between variable value and variable name at
the margins in onlinemode

283 / 297

OpenPCS Programing System

Index

-) -
) (Right-paranthesis-operator) 158

- * -
*_TO_** 159, 217

*_to_bool 159

*_TO_STRING 159

- A -
About OPC 34

About OPC Server 94

About this manual 25

ABS 159

ABS_DINT 159

ABS_DINT_FBD 159

ABS_INT 159

ABS_INT_FBD 159

ABS_REAL 159

ABS_REAL_FBD 159

ABS_SINT 159

ABS_SINT_FBD 159

ABS_UDINT_FBD 159

ABS_UINT_FBD 159

ABS_USINT_FBD 159

ACOS 160

ACOS_REAL 160

ACOS_REAL_FBD 160

ACTION 160

Active Document Server 112

Active Resource 34

ADD 160

ADD (time) 160

Add files 38

Add Task 34

ADD_DINT 160

ADD_DINT_FBD 160

ADD_INT 160

ADD_INT_FBD 160

ADD_REAL 160

ADD_REAL_FBD 160

ADD_SINT 160

ADD_SINT_FBD 160

ADD_TIME 160

ADD_TIME_FBD 160

ADD_UDINT 160

ADD_UDINT_FBD 160

ADD_UINT 160

ADD_UINT_FBD 160

ADD_USINT 160

ADD_USINT_FBD 160

AddHW 99

Adding a Library to a project 114

Adding Hardware Support 23

Adding input or output to compound block
74

Adjusting order of cyclic tasks 105

Alias names 64

AND 161

AND_BOOL_EN 161

AND_BOOL_FBD 161

AND_BYTE_FBD 161

AND_DWORD_EN 161

AND_DWORD_FBD 161

AND_WORD_EN 161

AND_WORD_FBD 161

ANDN 161

ANDN_BOOL_FBD 161

ANDN_BYTE_FBD 161

ANDN_DWORD_FBD 161

ANDN_WORD_FBD 161

ANY 161

ANY_BIT 161

ANY_DATE 161

ANY_INT 162

ANY_NUM 162

ANY_REAL 162

ARRAY 162

ASIN 163

ASIN_REAL 163

ASIN_REAL_FBD 163

Assignment 163

Assignment Editor Introduction 48

AT 163

ATAN 164

ATAN_REAL 164

ATAN_REAL_FBD 164

AutoComplete 53, 58

AutoDeclare 53, 58

Automatic positioning of the caret 67

- B -
Block specific help 62

Block Type Program Function Function
Block 127

BOOL 164

Bool_to_* 164

BOOL_TO_BYTE 164

BOOL_TO_BYTE_EN 164

284 / 297

OpenPCS Programing System

Index

BOOL_TO_dint 164

BOOL_TO_DINT_EN 164

BOOL_TO_DWORD 164

BOOL_TO_DWORD_EN 164

BOOL_TO_int 164

BOOL_TO_INT_EN 164

BOOL_TO_REAL 164

BOOL_TO_REAL_EN 164

BOOL_TO_sint 164

BOOL_TO_SINT_EN 164

BOOL_TO_STRING_EN 159, 164

BOOL_TO_TIME_EN 164

BOOL_TO_udint 164

BOOL_TO_UDINT_EN 164

BOOL_TO_uint 164

BOOL_TO_UINT_EN 164

BOOL_TO_usint 164

BOOL_TO_USINT_EN 164

BOOL_TO_WORD 164

BOOL_TO_WORD_EN 164

Breakpoints 150

Browser Introduction 27

Browser Options 39

Build active resource 35

BY 165

BYTE 165

BYTE_TO_BOOL 159, 165

BYTE_TO_BOOL_EN 159, 165

BYTE_TO_dint 165

BYTE_TO_DINT_EN 165

BYTE_TO_DWORD 165

BYTE_TO_DWORD_EN 165

BYTE_TO_int 165

BYTE_TO_INT_EN 165

BYTE_TO_REAL 165

BYTE_TO_REAL_EN 165

BYTE_TO_sint 165

BYTE_TO_SINT_EN 165

BYTE_TO_STRING_EN 159, 165

BYTE_TO_TIME_EN 165

BYTE_TO_udint 165

BYTE_TO_UDINT_EN 165

BYTE_TO_uint 165

BYTE_TO_UINT_EN 165

BYTE_TO_usint 165

BYTE_TO_USINT_EN 165

BYTE_TO_WORD 165

BYTE_TO_WORD_EN 165

- C -
C10006 270

C10007 270

C10008 270

C10009 270

C10010 270

C10012 270

C10017 271

C10019 271

C10020 271

C10021 271

C10024 271

C10025 271

C10026 271

C10028 272

C10030 272

C10031 272

C10034 272

C10035 272

C10036 273

C10038 273

C10043 273

C10045 273

C10046 274

C10047 274

C10049 274

C10055 274

C10057 274

C10060 275

C10063 275

C10064 275

C10067 275

C10068 275

C10069 275

C10075 275

C10076 276

C10078 276

C10083 276

C10084 276

C10092 277

C10093 277

C10094 277

C10095 278

C10096 278

C10097 278

C10098 278

C10100 278

C10108 278

C10109 278

285 / 297

OpenPCS Programing System

Index

C10110 279

C10112 279

C10113 279

C10114 279

C10115 279

C10777 279

C11001 279

C11007 280

CAL 165

CALC 165

CALCN 165

CAN_ENABLE_CYCLIC_SYNC 165

CAN_GET_CANOPEN_KERNEL_STATE 166

CAN_GET_LOCAL_NODE_ID 166

CAN_GET_STATE 167

CAN_NMT 167

CAN_PDO_READ8 168

CAN_PDO_WRITE8 168

CAN_RECV_BOOTUP 169

CAN_RECV_BOOTUP_DEV 169

CAN_RECV_EMCY 170

CAN_RECV_EMCY_DEV 170

CAN_REGISTER_COBID 171

CAN_SDO_READ_STR 172

CAN_SDO_READ8 172

CAN_SDO_WRITE_STR 174

CAN_SDO_WRITE8 173

CAN_SEND_SYNC 175

CAN_WRITE_EMCY 175

CANopen 156

CANopen introduction 116

CANopen constants 123

CANopen network variables 116

Caret and selection 66

Caret navigation 68

Caret position by selected moves 66

CASE 176

Catalog 40, 41

CD 176

CDA 21, 91

CDT 176

CFC Crossreference 109

CFC Editor Online 60

CFC/FBD Options 39

Character String Literals 124

Check over Variable 57

Check project consistency 31

CLK 177

Coils 55

Comments in ST 52

Common errors 79

Common Shortcuts 280

Compiler Overview 99

Compiler Command Line 99

Compliance Statement 127

Compound Blocks Introduction 73

CONCAT 177

CONCAT_STRING 177

CONFIGURATION 177

Configuration process 118

Connection flag 63

Connections 59

CONSTANT 177

Constants 125

Contact 55

Control Data Analyzer 21, 91

Control Relay 56

Copying blocks with inputs 64

COS 177

COS_REAL 177

COS_REAL_FBD 177

CR 177

Create a Library 113

Create compound block 74

Create new connection 96

Create new project 31

Create resource 33

Creating new files 32

Crossreference 108

Cross-Reference (per variable) 109

CTD 178

CTU 178

CTUD 179

CU 179

Custom Tools 40

CV 179

- D -
D 179

D(Action Qualifier) 180

Data Analyzer 91

Data Types 154

DATE 180

DATE_AND_TIME 180

DCF 120

Declaration Editor introduction 42

Declaration Keywords 154

Declaration of array datatypes 47

Declaration of CANopen network variables
120

Declaration of enumeration datatypes 48

Declaration of structured datatypes 47

Declaration Sections 42

286 / 297

OpenPCS Programing System

Index

DELETE 180

Delete Connection 98

Derived datatypes 46

DINT 180

dint_TO_BOOL 159, 180

DINT_TO_BOOL_EN 159, 180

dint_TO_BYTE 180

DINT_TO_BYTE_EN 180

dint_TO_DWORD 180

DINT_TO_DWORD_EN 180

dint_TO_int 180

DINT_TO_INT_EN 180

dint_TO_REAL 180

DINT_TO_REAL_EN 180

dint_TO_sint 180

DINT_TO_SINT_EN 180

DINT_TO_STRING_EN 159, 180

DINT_TO_TIME_EN 180

dint_TO_udint 180

DINT_TO_UDINT_EN 180

dint_TO_uint 180

dint_TO_usint 180

DINT_TO_USINT_EN 180

dint_TO_WORD 180

DINT_TO_WORD_EN 180

Direct Calls 107

Directly represented variables 45

DIV 180

DIV (time) 181

DIV_DINT 180

DIV_DINT_FBD 180

DIV_INT 180

DIV_INT_FBD 180

DIV_REAL 180

DIV_REAL_FBD 180

DIV_SINT 180

DIV_SINT_FBD 180

DIV_UDINT 180

DIV_UDINT_FBD 180

DIV_UINT 180

DIV_UINT_FBD 180

DIV_USINT 180

DIV_USINT_FBD 180

DO 181

Download 35

Driver 99

DS 181

DT 181

DWORD 181

DWORD_TO_BOOL 159, 181

DWORD_TO_BOOL_EN 159, 181

DWORD_TO_BYTE 181

DWORD_TO_BYTE_EN 181

DWORD_TO_dint 181

DWORD_TO_DINT_EN 181

DWORD_TO_int 181

DWORD_TO_INT_EN 181

DWORD_TO_REAL 181

DWORD_TO_REAL_EN 181

DWORD_TO_sint 181

DWORD_TO_SINT_EN 181

DWORD_TO_STRING_EN 159, 181

DWORD_TO_TIME_EN 181

DWORD_TO_udint 181

DWORD_TO_UDINT_EN 181

DWORD_TO_uint 181

DWORD_TO_UINT_EN 181

DWORD_TO_usint 181

DWORD_TO_USINT_EN 181

DWORD_TO_WORD 181

DWORD_TO_WORD_EN 181

- E -
Edit connection properties 98

Edit resource 33

Editor depending Shortcuts 281

Elementary Data Types 44

Elements of a sequential function chart 76

ELSE 181

ELSIF 182

EN 182

END_ACTION 182

END_CASE 182

END_CONFIGURATION 182

END_FOR 182

END_FUNCTION 182

END_FUNCTION_BLOCK 182

END_IF 183

END_PROGRAM 183

END_REPEAT 183

END_RESOURCE 183

END_STEP 183

END_STRUCT 183

END_TRANSITION 183

END_TYPE 183

END_VAR 183

END_WHILE 184

ENO 184

EQ 184

EQ_BOOL_FBD 184

EQ_BYTE_FBD 184

EQ_DINT_FBD 184

287 / 297

OpenPCS Programing System

Index

EQ_DWORD_FBD 184

EQ_INT_FBD 184

EQ_REAL_FBD 184

EQ_SINT_FBD 184

EQ_STRING_FBD 184

EQ_TIME_FBD 184

EQ_UDINT_FBD 184

EQ_UINT_FBD 184

EQ_USINT_FBD 184

EQ_WORD_FBD 184

Erase 38

Error Logs 152

ET 184

ETRC 184

Event Task Run Control 184

Exception handling 82

Exception Handling in native code 107

Exclude from Project 40

Executing code 17

Execution Order 60, 87

EXIT 185

EXP 186

EXP_REAL 186

Expressions in ST 51

EXPT 186

EXPT_DINT 186

EXPT_INT 186

EXPT_REAL 186

EXPT_SINT 186

EXPT_UDINT 186

EXPT_USINT 186

Extensible inputs 62

- F -
F_EDGE 186

F_TRIG 186

FALSE 187

Fast navigation with the caret 71

FBD 187

FBD Editor Online 88

File 32

File Operations 32

File-Pane 27

FIND 187

FIND_STRING 187

FIND_STRING_FBD 187

Finding error position 82

Finding Errors in CFC 62

Finding Errors in FBD 88

First Program 15

FOR 188

Force Variables 89

FROM 188

Function 56, 188

FUNCTION BLOCK 189

Functionblock 56

Functionblocks 56

Functionblocks and Functions 56

Functions 56

Functions with negatable inputs 62

Fundamentals for keyboard usage 66

- G -
G10001 225

GE 189

GE_BOOL_FBD 189

GE_BYTE_FBD 189

GE_DINT_FBD 189

GE_DWORD_FBD 189

GE_INT_FBD 189

GE_REAL_FBD 189

GE_SINT_FBD 189

GE_STRING_FBD 189

GE_TIME_FBD 189

GE_UDINT_FBD 189

GE_UINT_FBD 189

GE_USINT_FBD 189

GE_WORD_FBD 189

GetDateStruct 190

GETSYSTEMDATEANDTIME 190

GetTaskInfo 190

GetTime 191

GetTimeCS 191

GetVarData 192

GetVarFlatAddress 192

Global Id 65

Going Online 35

GT 193

GT_BOOL_FBD 193

GT_BYTE_FBD 193

GT_DINT_FBD 193

GT_DWORD_FBD 193

GT_INT_FBD 193

GT_REAL_FBD 193

GT_SINT_FBD 193

GT_STRING_FBD 193

GT_TIME_FBD 193

GT_UDINT_FBD 193

GT_UINT_FBD 193

GT_USINT_FBD 193

288 / 297

OpenPCS Programing System

Index

GT_WORD_FBD 193

- H -
Hardware 99

Hardware and Software Requirements 13

Hardware information 36

Help-Pane 30

How to Read Error Message 224

- I -
IEC61131 Standard Function Blocks 152

IEC61131-3 operations 153

IEC61131-3 Standard Functions 152

IF 193

IL 194

IL Editor Introduction 49

IL Editor Online 50

Import/Export 31

IN 194

INITIAL_STEP 194

Inline edit at the caret position 72

Input and Output Variables 85

INSERT 194

Insert a DCF-file into OpenPCS 120

Insert connections by keyboard 73

Insertion of blocks by keyboard usage 72

Install a Library 114

Installation 13

Instruction List Instructions 155

Instructions in IL 50

Instructions in ST 51

INT 195

int_TO_BOOL 159, 195

INT_TO_BOOL_EN 159, 195

INT_TO_BYTE_EN 195

int_TO_DINT 195

INT_TO_DINT_EN 195

int_TO_DWORD 195

INT_TO_DWORD_EN 195

int_TO_REAL 195

INT_TO_REAL_EN 195

int_TO_sint 195

INT_TO_SINT_EN 195

INT_TO_STRING_EN 159, 195

INT_TO_TIME_EN 195

int_TO_udint 195

INT_TO_UDINT_EN 195

INT_TO_UINT_EN 195

int_TO_usint 195

INT_TO_USINT_EN 195

int_TO_WORD 195

INT_TO_WORD_EN 195

Intellisense 53, 58

Interrupt Tasks 93

Interrupts 104

Interval 195

Introduction CFC Editor 58

Introduction FBD Editor 83

- J -
JMP 195

JMPC 195

JMPCN 195

Jumps 78

- K -
Keyboard combinations for navigating the
caret 73

Keyboard handling for CFC and FBD 88

- L -
L 196

L10001 264

L10004 264

L10026 264

L10027 265

L10029 265

L10030 265

L10031 265

L10032 265

L10033 265

L10034 266

L10035 266

L10036 266

L10063 266

L10105 266

L10106 266

L12001 267

L12002 267

L12003 267

L12005 267

L12006 267

L12007 267

L12008 268

L12064 268

L12065 268

L12066 268

289 / 297

OpenPCS Programing System

Index

L12996 268

L12997 268

L12998 268

L12999 269

L13000 269

L13001 269

L14009 269

L14010 269

L15001 269

L20012 269

Ladder Editor introduction 53

Ladder Editor Online 56

Ladder Logic introduction 54

LD 196

LD (Ladder Diagram) 196

LDN 196

LE 196

LE_BOOL_FBD 196

LE_BYTE_FBD 196

LE_DINT_FBD 196

LE_DWORD_FBD 196

LE_INT_FBD 196

LE_REAL_FBD 196

LE_SINT_FBD 196

LE_STRING_FBD 196

LE_TIME_FBD 196

LE_UDINT_FBD 196

LE_UINT_FBD 196

LE_USINT_FBD 196

LE_WORD_FBD 196

LEFT 196

LEFT_DINT 196

LEFT_INT 196

LEFT_SINT 196

LEFT_STRING_FBD 196

LEFT_UDINT 196

LEFT_UINT 196

LEFT_USINT 196

LEN 197

LEN_STRING 197

LEN_STRING_FBD 197

Lib-Pane 29

Library Overview 113

Library-Pane 29

License Editor Overview 102

LIMIT 197

LIMIT_BOOL 197

LIMIT_BYTE 197

LIMIT_DINT 197

LIMIT_DWORD 197

LIMIT_INT 197

LIMIT_REAL 197

LIMIT_SINT 197

LIMIT_STRING 197

LIMIT_TIME 197

LIMIT_UDINT 197

LIMIT_UINT 197

LIMIT_USINT 197

LIMIT_WORD 197

Linker Command Line 100

LINT 197

LN 197

LN_REAL 197

LN_REAL_FBD 197

LOG 198

LOG_REAL 198

LOG_REAL_FBD 198

Lreal 198

LT 198

LT_BOOL_FBD 198

LT_BYTE_FBD 198

LT_DINT_FBD 198

LT_DWORD_FBD 198

LT_INT_FBD 198

LT_REAL_FBD 198

LT_SINT_FBD 198

LT_STRING_FBD 198

LT_TIME_FBD 198

LT_UDINT_FBD 198

LT_UINT_FBD 198

LT_USINT_FBD 198

LT_WORD_FBD 198

Lword 198

- M -
M21004 280

Make Command Line 101

Margin Bars 59

Marking a single element 81

Marking several elements 82

Masking of unused connectors 64

MAX 198

MAX_BOOL 198

MAX_DINT 198

MAX_DINT_FBD 198

MAX_DWORD 198

MAX_INT 198

MAX_INT_FBD 198

MAX_REAL 198

MAX_REAL_FBD 198

MAX_SINT 198

MAX_SINT_FBD 198

290 / 297

OpenPCS Programing System

Index

MAX_STRING 198

MAX_TIME 198

MAX_UDINT 198

MAX_UDINT_FBD 198

MAX_UINT 198

MAX_UINT_FBD 198

MAX_USINT 198

MAX_USINT_FBD 198

MAX_WORD 198

Maximum String Length 125

MID 199

MIN 199

MIN_BOOL 199

MIN_BYTE 199

MIN_DINT 199

MIN_DINT_FBD 199

MIN_DWORD 199

MIN_INT 199

MIN_INT_FBD 199

MIN_REAL 199

MIN_REAL_FBD 199

MIN_SINT 199

MIN_SINT_FBD 199

MIN_STRING 199

MIN_TIME 199

MIN_UDINT 199

MIN_UDINT_FBD 199

MIN_UINT_FBD 199

MIN_USINT 199

MIN_USINT_FBD 199

MIN_WORD 199

MOD 199

MOD_DINT 199

MOD_DINT_FBD 199

MOD_INT 199

MOD_INT_FBD 199

MOD_SINT 199

MOD_SINT_FBD 199

MOD_UDINT 199

MOD_UDINT_FBD 199

MOD_UINT 199

MOD_UINT_FBD 199

MOD_USINT 199

MOD_USINT_FBD 199

Monitoring code 19

More Information 25

MOVE 200

MOVE_DINT 200

MOVE_INT 200

MOVE_REAL 200

MOVE_SINT 200

MOVE_UDINT 200

MOVE_UINT 200

MOVE_USINT 200

Moving/copying blocks and margin connectors
by keyboard 72

MUL 200

MUL (time) 200

MUL_DINT 200

MUL_DINT_FBD 200

MUL_INT 200

MUL_INT_FBD 200

MUL_REAL 200

MUL_REAL_FBD 200

MUL_SINT 200

MUL_SINT_FBD 200

MUL_UDINT 200

MUL_UDINT_FBD 200

MUL_UINT 200

MUL_UINT_FBD 200

MUL_USINT 200

MUL_USINT_FBD 200

Multiple Connections 61

Multiple Resources 104

Multitasking 103

MUX 198

- N -
N (Action Qualifier) 200

Native Code 106

NCC 201

NCC ARM ARM Mode 108

NCC ARM THUMB Mode 108

NCC Hitachi H8/300H 108

NCC Infineon C16x (huge model) 108

NCC Intel Protected Mode 107

NCC Intel Real Mode 108

NCC Motorola 68K 108

NCC Motorola DSP563xx 108

NCC Motorola PowerPC 8x 108

NE 201

NE_BOOL_FBD 201

NE_BYTE_FBD 201

NE_DINT_FBD 201

NE_DWORD_FBD 201

NE_INT_FBD 201

NE_REAL_FBD 201

NE_SINT_FBD 201

NE_STRING_FBD 201

NE_TIME_FBD 201

NE_UINT_FBD 201

NE_USINT_FBD 201

NE_WORD_FBD 201

291 / 297

OpenPCS Programing System

Index

NEG 201

Nested Comments 127

Network 54

NOT 201

NOT_BOOL_FBD 201

NOT_BYTE_FBD 201

NOT_DWORD_FBD 201

NOT_WORD_FBD 201

- O -
OF 201

On 201

Online Change 150

Online connections introduction 96

Online Edit 21, 151

Online Server Overview 96

OPC 201

OPC - I/O Introduction 34

OPC - I/O-Pane 29

Open Project 31

OpenPCS Framework Introduction 26

OpenPCS Function Blocks 153

OpenPCS Samples 14

Operators 54

Optimisation Settings 104

OR 202

OR_BOOL 202

OR_BOOL_FBD 202

OR_BYTE 202

OR_BYTE_FBD 202

OR_DWORD 202

OR_DWORD_FBD 202

OR_WORD 202

OR_WORD_FBD 202

ORN 202

ORN_BOOL_FBD 202

ORN_BYTE_FBD 202

ORN_DWORD_FBD 202

ORN_WORD_FBD 202

Oscilloscope 92

Others 157

Output Window 26

Overview SmartSIM 93

- P -
P 202

Passing Output Parameters 127

performance 105

POINTER 202

Positioning of the caret 66

POU 203

Print Form 112

Print IEC61131 Configuration 109

Priority 203

PROGRAM 203

PT 203

PV 203

- Q -
Q 203

Q1 203

QD 203

QU 203

- R -
R(Action Qualifier) 204

R(eset) 204

R_EDGE 204

R_TRIG 204

R1 205

READ_ONLY 205

READ_WRITE 205

REAL 205

Real_to_* 205

REAL_TO_BOOL 159

REAL_TO_BOOL_EN 159

REAL_TO_STRING_EN 159

Rebuild active resource 35

Rebuild all resources 35

Refresh project information 32, 205

Region marks 81

Release 206

Remote OPC Server 94

REPEAT 206

REPLACE 207

Replacement of Blocks 61, 88

Representation of the caret 66

Resource 207

Resource global variables 38

Resource information 36

Resource-Pane 28

Resources introduction 32

RESUME 207

RET 208

RETAIN 208

RETC 208

RETCN 208

RETURN 209

292 / 297

OpenPCS Programing System

Index

RIGHT 209

RIGHT_DINT 209

RIGHT_INT 209

RIGHT_SINT 209

RIGHT_STRING_FBD 209

RIGHT_UDINT 209

RIGHT_UINT 209

RIGHT_USINT 209

ROL 209

ROL_BOOL 209

ROL_BOOL_FBD 209

ROL_BYTE 209

ROL_BYTE_FBD 209

ROL_DWORD 209

ROL_DWORD_FBD 209

ROL_WORD 209

ROL_WORd_FBD 209

ROR 209

ROR_BOOL 209

ROR_BOOL_FBD 209

ROR_BYTE 209

ROR_BYTE_FBD 209

ROR_DWORD 209

ROR_DWORD_FBD 209

ROR_WORD 209

ROR_WORD_FBD 209

RS 210

RTC 210

- S -
S(Action Qualifier) 211

S(et) 211

S1 211

S1000 225

S1001 225

S1002 225

S1003 225

S1004 226

S1005 226

S1006 226

S1008 226

S1009 226

S1010 226

S1011 226

S1012 227

S1013 227

S1014 227

S1015 227

S1016 228

S1017 228

S1018 228

S1019 228

S1020 228

S1021 228

S1022 229

S1023 229

S1024 229

S1025 229

S1026 230

S1027 230

S1028 230

S1029 230

S1030 230

S1031 230

S1032 231

S3000 231

S3001 231

S3002 232

S3003 232

S3004 232

S3005 232

S3006 233

S3007 233

S3008 233

S3009 233

S3010 234

S3011 234

S3012 234

S3014 235

S3016 235

S3017 235

S3018 235

S3019 235

S3020 235

S3022 236

S3023 236

S3024 236

S3025 236

S3026 236

S3028 236

S3030 237

S3032 238

S3033 238

S3034 238

S3035 238

S3036 239

S3037 239

S3038 239

S3039 239

S3040 239

S3041 240

S3042 240

293 / 297

OpenPCS Programing System

Index

S3044 240

S3046 240

S3047 241

S3048 241

S3049 242

S3050 242

S4000 242

S4001 242

S4003 242

S4005 243

S4006 243

S4007 243

S4008 243

S4009 243

S4010 244

S4011 244

S4012 244

S4013 244

S4014 244

S4015 245

S4016 245

S4017 245

S4018 245

S4019 245

S4020 245

S4021 245

S4022 246

S4023 246

S4024 246

S4033 246

S4034 247

S4035 247

S4036 247

S5000 247

S5001 248

S5002 248

S5003 248

S5004 248

S5005 248

S5006 249

S5008 249

S5009 249

S5010 250

S5011 251

S5012 251

S5013 251

S5014 252

S5015 252

S5016 252

S5017 252

S5018 252

S5019 252

S5020 253

S5021 253

S5022 253

S5023 254

S5024 254

S5025 255

S5026 255

S5027 255

S5028 255

S5029 256

S5030 256

S5031 257

S5032 257

S5033 257

S5034 258

S5035 259

S5036 259

S5037 260

S5038 261

S5039 262

S5040 262

S5041 262

S5042 263

S5043 263

S6002 263

S6004 263

S6005 263

Sample Program 15

Save System 151

SaveSystemCmd 151

SD 211

Search within project 32

SEL 211

Select Connection 98

SEMA 211

Set variables 89

SETSYSTEMDATEANDTIME 211

Setting fonts and color 40

SFC 212

SFC introduction 75

SFC Editor Online 78

SHL 212

SHL_BOOL 212

SHL_BOOL_FBD 212

SHL_BYTE 212

SHL_BYTE_FBD 212

SHL_DWORD 212

SHL_DWORD_FBD 212

SHL_WORD 212

SHL_WORD_FBD 212

SHR 212

SHR_BOOL 212

294 / 297

OpenPCS Programing System

Index

SHR_BOOL_FBD 212

SHR_BYTE 212

SHR_BYTE_FBD 212

SHR_DWORD 212

SHR_DWORD_FBD 212

SHR_WORD 212

SHR_WORD_FBD 212

SIN 212

SIN_REAL 212

SIN_REAL_FBD 212

Single 212

Single Bit Access 126

SINT 213

sint_TO_BOOL 213

SINT_TO_BOOL_EN 213

sint_TO_BYTE 213

SINT_TO_BYTE_EN 213

sint_TO_dint 213

SINT_TO_DINT_EN 213

sint_TO_DWORD 213

SINT_TO_DWORD_EN 213

sint_TO_int 213

SINT_TO_INT_EN 213

sint_TO_REAL 213

SINT_TO_REAL_EN 213

SINT_TO_STRING_EN 159, 213

SINT_TO_TIME_EN 213

sint_TO_udint 213

SINT_TO_UDINT_EN 213

sint_TO_uint 213

SINT_TO_UINT_EN 213

sint_TO_usint 213

SINT_TO_USINT_EN 213

sint_TO_WORD 213

SINT_TO_WORD_EN 213

SL 213

Span segments 107

SQRT 213

SQRT_REAL 213

SQRT_REAL_FBD 213

SR 213

ST 214

ST (Structured Text) 214

ST Editor introduction 51

ST Editor Online 52

Start and Stop 89

Starting Online Editor 36

Starting OpenPCS 13

STEP 214

Steps and initial steps 77

STN 214

STRING 159, 214

String_to_* 215

STRING_TO_BOOL_EN 159, 214, 215

STRING_TO_BYTE_EN 214, 215

STRING_TO_DINT_EN 214, 215

STRING_TO_DWORD_EN 214, 215

STRING_TO_INT_EN 214, 215

STRING_TO_REAL_EN 214, 215

STRING_TO_SINT_EN 214, 215

STRING_TO_TIME_EN 214, 215

STRING_TO_UDINT_EN 214, 215

STRING_TO_UINT_EN 214, 215

STRING_TO_USINT_EN 214, 215

STRING_TO_WORD_EN 214, 215

STRUCT 215

Structure of a Declaration Line 43

Structure of Instruction List 50

Structured Text Keywords 156

SUB 216

SUB (time) 216

SUB_DINT 216

SUB_DINT_FBD 216

SUB_INT 216

SUB_INT_FBD 216

SUB_REAL 216

SUB_REAL_FBD 216

SUB_SINT 216

SUB_SINT_FBD 216

SUB_TIME 216

SUB_TIME_FBD 216

SUB_UDINT 216

SUB_UDINT_FBD 216

SUB_UINT 216

SUB_UINT_FBD 216

SUB_USINT 216

SUB_USINT_FBD 216

Synchronisation 121

Syntax check at CFC connections 63

- T -
Table 1 Character Set Features 128

Table 10 elementary data types 130

Table 12 Data type declaration feature
131

Table 13 Default initial values 131

Table 14 Data type initial value declaration
features 131

Table 15 Location and size prefix features
for directly represented variables 131

Table 16 Variable keywords for variable
declaration 132

295 / 297

OpenPCS Programing System

Index

Table 17 Variable type assignement features

 132

Table 18 Variable initial value assignement
features 133

Table 19 Graphical negation of Boolean
signals 133

Table 2 Identifier features 128

Table 20 Use EN input an ENO output 133

Table 21 Typed and overloaded functions
133

Table 22 Type conversion function features

 133

Table 23 Standard functions of one numeric
variable 134

Table 24 Arithmetic standard functions
135

Table 25 Standard bit shift functions 135

Table 26 Standard bitwise Boolean functions

 135

Table 27 Standard selection functions
135

Table 28 Standard comparison functions
136

Table 29 Standard character string functions

 136

Table 3 Comment features 128

Table 30 Functions of time data types
136

Table 31 Functions of enumerated data
types 137

Table 33 Function block declaration features

 137

Table 34 Standard bistable function blocks

 138

Table 35 Standard edge detection function
blocks 138

Table 36 Standard counter function blocks

 138

Table 37 Standard timer function blocks
138

Table 39 Program declaration features
138

Table 4 Numeric Literals 128

Table 40 Step features 139

Table 41 Transitions and Transition
conditions 140

Table 42 Declaration of actions 140

Table 43 Step/action association 140

Table 44 Action block features 141

Table 45 Action qualifiers 141

Table 46 Sequence evolution 141

Table 5 Character string literal features
129

Table 52 Instruction list (IL) operators
142

Table 53 Function block invocation features
for IL language 143

Table 55 Operators of the ST language
143

Table 56 ST language statements 143

Table 57 Representation of lines and block

 144

Table 58 Graphic execution control elements

 144

Table 59 Power rails 145

Table 6 Two character combinations in
character strings 129

Table 60 Link Elements 145

Table 61 Contacts 145

Table 62 Coils 145

Table 63 Reserved Names 146

Table 7 Duration literal features 129

Table 8 Date and time of day literals 130

Table D.1 Implementation-dependent
parameters 146

Table E.1 Error conditions 149

TAN 216

TAN_REAL 216

TAN_REAL_FBD 216

Task 217

Templates 24

Test and Commissioning Introduction 89

Text Block 60

THEN 217

TIME 217

TIME_OF_DAY 217

TIME_TO_BOOL_EN 217

TIME_TO_BYTE_EN 217

TIME_TO_DINT_EN 217

TIME_TO_DWORD_EN 217

TIME_TO_INT_EN 217

TIME_TO_REAL_EN 217

TIME_TO_SINT_EN 217

TIME_TO_STRING_EN 159, 217

TIME_TO_UDINT_EN 217

TIME_TO_UINT_EN 217

TIME_TO_USINT_EN 217

TIME_TO_WORD_EN 217

TO 188, 218

TO_STRING 133

TOD 218

TOF 218

TON 219

Tooltips for structs and elements of structs

 53

TP 219

296 / 297

OpenPCS Programing System

Index

Transition 220

Transitions 78

Trend View 21, 91

Trigger 92

TRUE 220

TRUNC 220

TYPE 220

Type definitions 38

- U -
UCODE 106

UDINT 221

udint_TO_BOOL 159, 221

UDINT_TO_BOOL_EN 159, 221

udint_TO_BYTE 221

UDINT_TO_BYTE_EN 221

udint_TO_dint 221

UDINT_TO_DINT_EN 221

udint_TO_DWORD 221

UDINT_TO_DWORD_EN 221

udint_TO_int 221

UDINT_TO_INT_EN 221

udint_TO_REAL 221

UDINT_TO_REAL_EN 221

udint_TO_sint 221

UDINT_TO_SINT_EN 221

UDINT_TO_STRING_EN 159, 221

UDINT_TO_TIME_EN 221

udint_TO_uint 221

UDINT_TO_UINT_EN 221

udint_TO_usint 221

UDINT_TO_USINT_EN 221

udint_TO_WORD 221

UDINT_TO_WORD_EN 221

UINT 221

uint_TO_BOOL 159, 221

UINT_TO_BOOL_EN 159, 221

uint_TO_BYTE 221

UINT_TO_BYTE_EN 221

uint_TO_dint 221

UINT_TO_DINT_EN 221

uint_TO_DWORD 221

UINT_TO_DWORD_EN 221

uint_TO_int 221

UINT_TO_INT_EN 221

uint_TO_REAL 221

UINT_TO_REAL_EN 221

uint_TO_sint 221

UINT_TO_SINT_EN 221

UINT_TO_STRING_EN 159, 221

UINT_TO_TIME_EN 221

uint_TO_udint 221

UINT_TO_UDINT_EN 221

uint_TO_usint 221

UINT_TO_USINT_EN 221

uint_TO_WORD 221

UINT_TO_WORD_EN 221

ULINT 221

Uninstall Library 115

Unknown instructions 107

UNTIL 221

Upload 37

Usage without License Key 103

Using constants as inputs 60

Using languages other than IL 82

USINT 221

usint_TO_BOOL 159, 221

USINT_TO_BOOL_EN 159, 221

usint_TO_BYTE 221

USINT_TO_BYTE_EN 221

usint_TO_dint 221

USINT_TO_DINT_EN 221

usint_TO_DWORD 221

USINT_TO_DWORD_EN 221

usint_TO_int 221

USINT_TO_INT_EN 221

usint_TO_REAL 221

USINT_TO_REAL_EN 221

usint_TO_sint 221

USINT_TO_SINT_EN 221

USINT_TO_STRING_EN 159, 221

USINT_TO_TIME_EN 221

usint_TO_udint 221

USINT_TO_UDINT_EN 221

usint_TO_uint 221

USINT_TO_UINT_EN 221

usint_TO_WORD 221

USINT_TO_WORD_EN 221

- V -
VAR 221

VAR_ACCESS 221

VAR_EXTERNAL 222

VAR_GLOBAL 222

VAR_IN_OUT 222

VAR_INPUT 222

VAR_OUTPUT 222

Variable Address 105

Variablecatalog 41

Variablegrid 41

297 / 297

OpenPCS Programing System

Index

Variabletable 41

VARINFO 222

- W -
Watch variables 89

Watching variables 35

Watchlist 90

WHILE 223

Wiring 84

WITH 223

WORD 223

WORD_TO_BOOL 159, 223

WORD_TO_BOOL_EN 159, 223

WORD_TO_BYTE 223

WORD_TO_BYTE_EN 223

WORD_TO_dint 223

WORD_TO_DINT_EN 223

WORD_TO_DWORD 223

WORD_TO_DWORD_EN 223

WORD_TO_int 223

WORD_TO_INT_EN 223

WORD_TO_REAL 223

WORD_TO_REAL_EN 223

WORD_TO_sint 223

WORD_TO_SINT_EN 159, 223

WORD_TO_STRING_EN 159, 223

WORD_TO_TIME_EN 223

WORD_TO_udint 223

WORD_TO_UDINT_EN 223

WORD_TO_uint 223

WORD_TO_UINT_EN 223

WORD_TO_usint 223

WORD_TO_USINT_EN 223

Working with Blocks 58, 83

Working with Networks 86

Working with watchlists 90

WSTRING 224

- X -
XML-Import/Export 24

XOR 224

XOR_BOOL_EN 224

XOR_BOOL_FBD 224

XOR_BYTE_EN 224

XOR_BYTE_FBD 224

XOR_DWORD_EN 224

XOR_DWORD_FBD 224

XOR_WORD_EN 224

XOR_WORD_FBD 224

XORN 224

XORN_BOOL_FBD 224

XORN_BYTE_FBD 224

XORN_DWORD_FBD 224

XORN_WORD_FBD 224

	Table of Contents
	A Quick Tour through OpenPCS
	Installation
	Hardware and Software Requirements
	Starting OpenPCS
	OpenPCS Samples
	Guided Tour
	Guided Tour: Intro
	Sample Program
	Executing code
	Monitoring code
	Control Data Analyzer
	Online Edit

	Additional
	Adding Hardware Support
	Templates
	XML-Import/Export
	About this manual
	More Information

	OpenPCS Tools
	OpenPCS Framework
	OpenPCS Framework: Introduction
	Output Window

	Browser
	Browser: Introduction
	Browser: Overview
	File-Pane
	Resource-Pane
	OPC - I/O-Pane
	Library-Pane
	Help-Pane

	Projects
	Create new project
	Check project consistency
	Open Project
	Import/Export
	Search within project
	Refresh project information

	Files
	Creating new files
	File Operations

	Resources and Tasks
	Resources: introduction
	Create resource
	Edit resource
	Add Task
	Active Resource

	OPC - I/O
	OPC - I/O: Introduction
	About OPC

	Compiler
	Build active resource
	Rebuild active resource
	Rebuild all resources

	Online
	Going Online
	Download
	Watching variables
	Starting Online Editor
	Hardware information
	Resource information
	Upload
	Erase

	Other Browser Features
	Resource global variables
	Type definitions
	Add files
	Browser Options
	CFC/FBD Options
	Setting fonts and color
	Custom Tools
	Exclude from Project

	Catalog
	Catalog
	Variable Catalog

	Declaration Editor
	Declaration Editor: introduction
	Declaration Sections
	Structure of a Declaration Line
	Elementary Data Types
	Directly represented variables
	Derived datatypes
	Declaration of array datatypes
	Declaration of structured datatypes
	Declaration of enumeration datatypes

	Assignment Editor
	Assignment Editor: Introduction

	IL Editor
	IL Editor: Introduction
	Structure of Instruction List
	Instructions in IL
	IL Editor Online

	ST Editor
	ST Editor: introduction
	Instructions in ST
	Expressions in ST
	Comments in ST
	ST Editor Online
	Tooltips for structs and elements of structs
	AutoComplete / AutoDeclare

	Ladder Diagram Editor
	Ladder Editor: introduction
	Ladder Logic: introduction
	Network
	Operators
	Coils
	Contact
	Control Relay
	Functionblocks and Functions
	Ladder Editor Online
	Check over Variable
	AutoComplete / AutoDeclare

	CFC Editor
	Introduction CFC Editor
	Working with Blocks
	Connections
	Margin Bars
	CFC Editor Online
	Advanced CFC topics
	Text Block
	Using constants as inputs
	Execution Order
	Multiple Connections
	Replacement of Blocks
	Finding Errors in CFC
	Block specific help
	Extensible inputs
	Functions with negatable inputs
	Syntax check at CFC connections
	Connection flag
	Copying blocks with inputs
	Alias names
	Masking of unused connectors
	Global ID
	Keyboard handling for CFC and FBD editor
	Fundamentals for keyboard usage
	Caret and selection
	Representation of the caret
	Positioning of the caret
	Caret position by selected moves
	Automatic positioning of the caret
	Caret navigation
	Fast navigation with the caret
	Inline edit at the caret position
	Insertion of blocks by keyboard usage
	Moving/copying blocks and margin connectors by keyboard
	Insert connections by keyboard
	Keyboard combinations for navigating the caret

	Compound Blocks
	Compound Blocks: Introduction
	Create compound block
	Adding input or output to compound block

	SFC Editor
	SFC: introduction
	Elements of a sequential function chart
	Steps and initial steps
	Transitions
	Jumps
	SFC Editor Online
	Common errors
	Selecting Elements
	Marking a single element
	Region marks
	Marking several elements

	Advanced SFC topics
	Exception handling
	Finding error position
	Using languages other than IL / ST

	FBD Editor
	Introduction FBD Editor
	Working with Blocks
	Connections
	Margin Bars
	Advanced
	Working with Networks
	Execution Order
	Replacement of Blocks
	Finding Errors in FBD
	FBD Editor Online
	Keyboard handling for CFC and FBD editor

	Test and Commissioning
	Test and Commissioning: Introduction
	Start and Stop
	Watch variables
	Set variables
	Force Variables
	Working with watchlists

	Control Data Analyzer
	Control Data Analyzer
	Oscilloscope
	Trigger

	SmartSIM
	Overview SmartSIM
	Interrupt Tasks

	OPC Server
	About OPC Server
	Remote OPC Server

	Online Server
	Online Server: Overview
	Online Server Setup
	Online connections: introduction
	Create new connection
	Delete Connection
	Edit connection properties
	Select Connection

	Hardware drivers
	Hardware drivers: Overview

	Compiler
	Compiler: Overview
	Instruction List Compiler
	Compiler Command Line

	Linker
	Linker Command Line

	Make
	Make Command Line

	Licence Editor
	Licence Editor: Overview
	Usage without Licence Key

	Advanced Topics
	Runtime issues
	Multitasking
	Interrupts
	Optimisation Settings
	Multiple Resources
	Variable Address
	Performance
	Adjusting order of cyclic tasks

	Native Code Compiler
	Native Code
	Direct Calls
	Exception Handling in native code
	Unknown instructions
	Span segments
	NCC Intel Protected Mode
	NCC Infineon C16x (huge model)
	NCC Motorola 68K
	NCC Hitachi H8/300H
	NCC Motorola DSP563xx
	NCC Intel Real Mode
	NCC Motorola PowerPC
	NCC ARM ARM Mode
	NCC ARM THUMB Mode

	Documentation
	Crossreference
	Cross-Reference (per variable)
	Print IEC61131 Configuration
	CFC Crossreference
	Print-Options
	Active Document Server

	Libraries
	Library: Overview
	Create a Library
	Install a Library
	Adding a Library to a project
	Uninstall Library

	CANopen
	CANopen: introduction
	CANopen network variables
	Configuration process
	Insert a DCF-file into OpenPCS
	Declaration of CANopen network variables
	Synchronisation
	CANopen constants

	IEC61131-3
	IEC61131-3 Details
	Character String Literals
	Maximum String Length
	Constants
	Single Bit Access
	Passing Output Parameters
	Nested Comments
	Block Type: Program, Function, Function Block

	IEC61131-3 Compliance Statement
	Compliance Statement
	Table 1: Character Set Features
	Table 2: Identifier features
	Table 3: Comment features
	Table 4: Numeric Literals
	Table 5: Character string literal features
	Table 6: Two character combinations in character strings
	Table 7: Duration literal features
	Table 8: Date and time of day literals
	Table 10: elementary data types
	Table 12: Data type declaration feature
	Table 13: Default initial values
	Table 14: Data type initial value declaration features
	Table 15: Location and size prefix features for directly represented variables
	Table 16: Variable keywords for variable declaration
	Table 17: Variable type assignement features
	Table 18: Variable initial value assignement features
	Table 19: Graphical negation of Boolean signals
	Table 20: Use EN input an ENO output
	Table 21: Typed and overloaded functions
	Table 22: Type conversion function features
	Table 23: Standard functions of one numeric variable
	Table 24: Arithmetic standard functions
	Table 25: Standard bit shift functions
	Table 26: Standard bitwise Boolean functions
	Table 27: Standard selection functions
	Table 28: Standard comparison functions
	Table 29: Standard character string functions
	Table 30: Functions of time data types
	Table 31: Functions of enumerated data types
	Table 33: Function block declaration features
	Table 34: Standard bistable function blocks
	Table 35: Standard edge detection function blocks
	Table 36: Standard counter function blocks
	Table 37: Standard timer function blocks
	Table 39: Program declaration features
	Table 40: Step features
	Table 41: Transitions and Transition conditions
	Table 42: Declaration of actions
	Table 43: Step/action association
	Table 44: Action block features
	Table 45: Action qualifiers
	Table 46: Sequence evolution
	Table 52: Instruction list (IL) operators
	Table 53: Function block invocation features for IL language
	Table 55: Operators of the ST language
	Table 56: ST language statements
	Table 57: Representation of lines and block
	Table 58: Graphic execution control elements
	Table 59: Power rails
	Table 60: Link Elements
	Table 61: Contacts
	Table 62: Coils
	Table 63: Reserved Names
	Table D.1: Implementation-dependent parameters
	Table E.1: Error conditions

	Online Features
	Breakpoints
	Online Edit
	Save System
	Error Logs

	Reference
	Keywords (by category)
	IEC61131-3 Standard Function Blocks
	IEC61131-3 Standard Functions
	IEC61131-3 operations
	OpenPCS Functions and Function Blocks
	Data Types
	Declaration Keywords
	Instruction List Instructions
	Structured Text Keywords
	CANopen
	Others

	Keywords (A..Z)
	")" (Right-paranthesis-operator)
	*_TO_BOOL
	*_TO_STRING
	ABS
	ACOS
	ACTION
	ADD
	ADD (time)
	AND
	ANDN
	ANY
	ANY_BIT
	ANY_DATE
	ANY_INT
	ANY_NUM
	ANY_REAL
	ARRAY
	ASIN
	Assignment
	AT
	ATAN
	BOOL
	BOOL_TO_*
	BY
	BYTE
	CAL
	CALC
	CALCN
	CAN_ENABLE_CYCLIC_SYNC
	CAN_GET_CANOPEN_KERNEL_STATE
	CAN_GET_LOCAL_NODE_ID
	CAN_GET_STATE
	CAN_NMT
	CAN_PDO_READ8
	CAN_PDO_WRITE8
	CAN_RECV_BOOTUP
	CAN_RECV_BOOTUP_DEV
	CAN_RECV_EMCY
	CAN_RECV_EMCY_DEV
	CAN_REGISTER_COBID
	CAN_SDO_READ8
	CAN_SDO_READ_STR
	CAN_SDO_WRITE8
	CAN_SDO_WRITE_STR
	CAN_SEND_SYNC
	CAN_WRITE_EMCY
	CASE
	CD
	CDT
	CLK
	CONCAT
	CONFIGURATION
	CONSTANT
	COS
	CR
	CTD
	CTU
	CTUD
	CU
	CV
	D(DATE)
	D(Action Qualifier)
	DATE
	DATE_AND_TIME
	DELETE
	DINT
	DIV
	DIV (time)
	DO
	DS
	DT
	DWORD
	ELSE
	ELSIF
	EN
	END_ACTION
	END_CASE
	END_CONFIGURATION
	END_FOR
	END_FUNCTION
	END_FUNCTION_BLOCK
	END_IF
	END_PROGRAM
	END_REPEAT
	END_RESOURCE
	END_STEP
	END_STRUCT
	END_TRANSITION
	END_TYPE
	END_VAR
	END_WHILE
	ENO
	EQ
	ET
	ETRC
	EXIT
	EXP
	EXPT
	F_EDGE
	F_TRIG
	FALSE
	FBD
	FIND
	FOR
	FROM
	Function
	FUNCTION BLOCK
	GE
	GetDateStruct
	GETSYSTEMDATEANDTIME
	GetTaskInfo
	GetTime
	GetTimeCS
	GetVarData
	GetVarFlatAddress
	GT
	IF
	IL
	IN
	INITIAL_STEP
	INSERT
	INT
	Interval
	JMP
	JMPC
	JMPCN
	L(Action Qualifier)
	LD
	LD (Ladder Diagram)
	LDN
	LEFT
	LE
	LEN
	LIMIT
	LINT
	LN
	LOG
	Lreal
	LT
	Lword
	MUX
	MAX
	MID
	MIN
	MOD
	MOVE
	MUL
	MUL (time)
	N (Action Qualifier)
	NCC
	NE
	NEG
	NOT
	OF
	On
	OPC
	OR
	ORN
	P(Action Qualifier)
	POINTER
	POU
	Priority
	PROGRAM
	PT
	PV
	Q(Parameter)
	Q1
	QD
	QU
	R(Action Qualifier)
	R(eset)
	R_EDGE
	R_TRIG
	R1
	READ_ONLY
	READ_WRITE
	RED_SHOWROLE
	REAL
	REAL_TO_*
	Release
	REPEAT
	REPLACE
	Resource
	RESUME
	RET
	RETAIN
	RETC
	RETCN
	RETURN
	RIGHT
	ROL
	ROR
	RS
	RTC
	S(Action Qualifier)
	S(et)
	S1
	SD
	SEL
	SEMA
	SETSYSTEMDATEANDTIME
	SFC
	SHL
	SHR
	SIN
	Single
	SINT
	SL
	SQRT
	SR
	ST
	ST (Structured Text)
	STEP
	STN
	STRING
	STRING_TO_*
	STRUCT
	SUB
	SUB (time)
	TAN
	Task
	THEN
	TIME
	TIME_OF_DAY
	TIME_TO_*
	TO
	TOD
	TOF
	TON
	TP
	Transition
	TRUE
	TRUNC
	TYPE
	UDINT
	UINT
	ULINT
	UNTIL
	USINT
	VAR
	VAR_ACCESS
	VAR_INPUT
	VAR_OUTPUT
	VAR_IN_OUT
	VAR_GLOBAL
	VAR_EXTERNAL
	VARINFO
	WHILE
	WITH
	WORD
	WSTRING
	XOR
	XORN

	Errors and Warnings
	How to Read Error Message
	General Errors
	G10001

	Syntax Errors
	S1000
	S1001
	S1002
	S1003
	S1004
	S1005
	S1006
	S1008
	S1009
	S1010
	S1011
	S1012
	S1013
	S1014
	S1015
	S1016
	S1017
	S1018
	S1019
	S1020
	S1021
	S1022
	S1023
	S1024
	S1025
	S1026
	S1027
	S1028
	S1029
	S1030
	S1031
	S1032
	S3000
	S3001
	S3002
	S3003
	S3004
	S3005
	S3006
	S3007
	S3008
	S3009
	S3010
	S3011
	S3012
	S3014
	S3016
	S3017
	S3018
	S3019
	S3020
	S3022
	S3023
	S3024
	S3025
	S3026
	S3028
	S3030
	S3032
	S3033
	S3034
	S3035
	S3036
	S3037
	S3038
	S3039
	S3040
	S3041
	S3042
	S3044
	S3046
	S3047
	S3048
	S3049
	S3050
	S4000
	S4001
	S4003
	S4005
	S4006
	S4007
	S4008
	S4009
	S4010
	S4011
	S4012
	S4013
	S4014
	S4015
	S4016
	S4017
	S4018
	S4019
	S4020
	S4021
	S4022
	S4023
	S4024
	S4033
	S4034
	S4035
	S4036
	S5000
	S5001
	S5002
	S5003
	S5004
	S5005
	S5006
	S5008
	S5009
	S5010
	S5011
	S5012
	S5013
	S5014
	S5015
	S5016
	S5017
	S5018
	S5019
	S5020
	S5021
	S5022
	S5023
	S5024
	S5025
	S5026
	S5027
	S5028
	S5029
	S5030
	S5031
	S5032
	S5033
	S5034
	S5035
	S5036
	S5037
	S5038
	S5039
	S5040
	S5041
	S5042
	S5043
	S6002
	S6004
	S6005

	Linker Messages
	L10001
	L10004
	L10026
	L10027
	L10029
	L10030
	L10031
	L10032
	L10033
	L10034
	L10035
	L10036
	L10063
	L10105
	L10106
	L12001
	L12002
	L12003
	L12005
	L12006
	L12007
	L12008
	L12064
	L12065
	L12066
	L12996
	L12997
	L12998
	L12999
	L13000
	L13001
	L14009
	L14010
	L15001
	L20012

	Compiler Messages
	C10006
	C10007
	C10008
	C10009
	C10010
	C10012
	C10017
	C10019
	C10020
	C10021
	C10024
	C10025
	C10026
	C10028
	C10030
	C10031
	C10034
	C10035
	C10036
	C10038
	C10043
	C10045
	C10046
	C10047
	C10049
	C10055
	C10057
	C10060
	C10063
	C10064
	C10067
	C10068
	C10069
	C10075
	C10076
	C10078
	C10083
	C10084
	C10092
	C10093
	C10094
	C10095
	C10096
	C10097
	C10098
	C10100
	C10108
	C10109
	C10110
	C10112
	C10113
	C10114
	C10115
	C10777
	C11001
	C11007

	Make Messages
	M21004

	Shortcuts
	Common Shortcuts
	Editor depending Shortcuts

	Index

